Smart street lighting solutions

Data flow

GPRS/3G network
Contents

- Goals and design of street lighting
- Smart street lighting
- From incandescent lamps to HID and LED: today’s highest luminous performances
 - The advantages of electronic ballasts for HID lamps: ST’s solutions
 - Using LEDs in street lighting: ST’s solutions
- Smart communication system: wireless and wired
- Real-time lamppost fall detection using MEMS
- A complete solution for smart street lighting
Goals and design of street lighting

Goals
- Ensure maximum visual safety for drivers and pedestrians
- Improve visibility of people and objects
- Provide the best light quality and the highest color rendering
- Make residential areas surer
- Enhance street furniture appearance

Design principles
- Energy efficient
- Reliable and safe
- Technically advanced
- Cost effective
- Convenient for maintenance
What is smart street lighting?

- Enables smart cities with highly-efficient street light driving, advanced monitoring and remote control

Data flow

- Lamp controller with connectivity
- PDA with RF connectivity
- District data concentrator
- GPRS/3G network
- Services center
Why smart street lighting?

- Reduced maintenance costs
- Reduced energy consumption
- Performance and energy-consumption data at your fingertips
- Reduced greenhouse gas emissions
- Greater citizen satisfaction
From incandescent lamps to HID, LED

- Inefficient light sources such as incandescent lamps will be phased out
- LED technology will push the lighting market
- HID and HB LED offer outstanding luminous efficiency

Source: U.S Department of energy 2004, Philips Lighting 2005
HID, LED: highest performances

High intensity discharge (HID)
- Ignition at very high voltage
- Warm-up phase is required
- Steady-state phase with lamp power control is needed
- Different performances according to the metals and filler materials
 - **High pressure sodium** (up to 150 lm/W)
 - **Metal halide** (up to 110 lm/W)
 - **Mercury vapor** (up to 60 lm/W)

Light emitting diode (LED)
- A LED is activated when a DC voltage is applied
- The luminous flux and dominant wavelength are controlled by average current
- The ripple current has to be kept at acceptable levels
- Dimming can be implemented through digital or analog control
 - **Best LED efficiency**: 150 lm/W

Source: OSRAM
Electronic ballasts for HID lamps

- Increased lamp life
- Enhanced lumen constancy with life
- 10-15% lower energy consumption than magnetic ballasts
- More reliable lamp operation (end of life protection)
- Electronic ballasts are smaller than electromagnetic ballasts
- Electronics allow smart communication

Source: Philips Lighting
150 W electronic ballast for HID lamps

Description and purpose
- 2-stage electronic ballast for 150 W HID (high-intensity discharge) lamp, including a boost converter (PFC) working in transition mode (TM), and a full bridge inverter to drive a lamp with a low-frequency square wave

Key features
- Input: 185 to 265 V_{AC}, 50 Hz
- Load: 150 W MH or HPS lamp
- PF = 0.99, THD = 2.8%
- Dimmable
- Average efficiency: 90%
- EN55015 compliant
- Remote control interfacing by PLM

Key products
- STF10NM60ND; STGF10NC60SD; STTH1L06; STTH1R06; VIPer16L; L6562A; L6388E; TS272; ST7FLITE39F2

* Available in Q1/2012

ESICOM order code: STEVAL-ILH005V2*
70 W electronic ballast for HID lamps

Description and purpose

- Fully digital ballast to drive 70 W HID lamps, based on two ICs, the digital combo driver L6382D5 and a low-cost 8-bit microcontroller, able to manage the PFC and the half bridge stage

Key features

- Wide input voltage range
- High power factor (up to 0.998) and very low THD (5%)
- PFC boost working in TM
- Half bridge based on power MOSFETs
 - Controls the igniter circuit
 - Implements buck converter in TM
 - Provides alternate low frequency square wave current
- Overvoltage and short-circuit protection
- Suitable for HPS and MH lamps

Key products

L6382D5; STF8NM60ND; STTH1L06; VIPer16L; ST7LITE49K2; LIC01.

Available in Q1/2012
Using LEDs in street lighting

- The green way to lowering energy costs
 - Low power consumption
 - Long lumen constancy
 - Long and predictable lifetime
 - Light emission can be easily redirected
 - Reliability (robust against shock and vibration)
 - Environment friendly (CO₂ saving and mercury free)
 - Quick turn on/off and dimming

Source of graphic: RUUD lighting
100 W and above

- 130 W LED driver based on L6562AT and L6599AT

Description and purpose

The system is composed of three stages:

- a front-end PFC
- an LLC resonant converter
- an inverse buck converter

The key benefits are very high efficiency, long term reliability and small form factor

Key features

- Input mains range: 85 to 305 V$_{\text{AC}}$
- SMPS output voltage: 48 V at 2.7 A
- Long life time, electrolytic capacitors are not used
- Mains harmonics: meet EN61000-3-2 Class-C
- Efficiency at full load: > 93%
- EMI: meets EN55022-Class-B, EN55015
- Digital dimming

Key products

L6562AT, L6599AT, STF21NM60N, STD10NM60N, SEA05, STTH3L06U, STPS1L60A, STPS2H100A, STN3NF06

ESICOM order code: EVL130W-STRLIG, EVL130W-SL-EU, EVL6562A-LED
80 W and above

- 80 W offline LED driver with dimming based on L6562A

Description and purpose
- An innovative non-isolated solution for driving LEDs where high power factor, high efficiency and individual LED brightness regulation is required
- **PFC boost, inverse buck converter**

Key features
- Wide input voltage range: 88 to 265 V\(_{\text{AC}}\)
- LED current set to 350 mA, 700 mA and 1 A
- High efficiency (~90%) and high power factor
- Universal PWM input for dimming (ext. board required)
- Non-isolated SMPS
- Brightness regulation between 0% and 100%
- EMI filter implemented
- EN55015 and EN61000-3-2 compliant

Key products
L6562A, STTH1L06A, STF10NM50N, STP8NM50N, STPSC806D, BU87

ESICOM order code: STEVAL-ILL013V1
Up to 75 W

- 60 W offline LED driver for single LED string based on L6562AT

Description and purpose

- Single-stage isolated solution based on L6562AT and TSM101, offering high performance with a simple and reliable design for LED street lighting
- **High power factor flyback**

Key features

- Input voltage range: 185 to 265 V\textsubscript{AC}
- Able to drive single LED String
- Provides 350 mA to 0.5 A constant current for LED
- Max output voltage: 130 V\textsubscript{DC}
- No input electrolytic capacitor
- Efficiency: from 91% to 92.5%
- PF > 0.95
- Maximum 2f\textsubscript{LINE} output ripple: 1.0%

Key products

L6562AT; STP7N95K3; TSM101; 1.5KE350A; STTH1L06; STTH2L06

ESICOM order code: STEVAL-ILL042V1

* Available in Q1/2012
Innovative multi-string LED driving

- Digital constant-current controller for multi-string LED driving based on STM8S

Description and purpose

- Complete platform (HW/SW) for LED multi-string constant-current control based on an innovative methodology
- Each LED string can be dimmed and brightened independently
- System can be interfaced with ZigBee or PLM modules for remote control

Key features

- Input DC bus voltage: 48 V
- Independent LED string average current control
- Inverse buck topology
- System power: 120 W
- Switching frequency: 100 kHz
- Ripple current <10%
- Global dimming from 0% to 100% at 225 Hz (PWM dimming)
- Independent analog dimming on 4 channels
- Short-circuit protection

Key products

- STM8S208RB; STPS1L60; STN3NF06

ESICOM order code: STEVAL-ILL031V1
Smart communication

GPRS/3G network

Data flow

Highway: simple linear topology

City centre: complex topology

Dimming level, adjust on/off timing, lamp failure, consumed energy, lamp-burning hours, lamppost tilt, etc.
Wireless network solution

- IEEE 802.15.4 - ZigBee® network
 - A mesh topology is used to reach the data concentrator
- A network for each district is identified by its PANID
- Lamppost’s node configuration using RFID EEPROM which can be written/read during both manufacturing process and installation procedure by the PDA

Lamppost communication mode

STM32W or SPZB32W1x2.1

M24LR64-R

STM32W108xx: 32-bit MCU ARM Cortex-M3 ZigBee system on chip

SPZB32W1x2.1: ZigBee PRO modules based on the STM32W chipset

M24LR64-R: 64-Kbit Dual Interface EEPROM (I²C and ISO 15693 RF protocol at 13.56 MHz)
PLC wired network solution

- IEC 61334-5-1 power line communication network (ST7570) or proprietary protocol (ST7540)
 - Configured to work in CENELEC band B or C to avoid interference with AMR network
 - Data repeaters are used to reach the data concentrator
- A network for each district identified by unique identification
- Node configuration using RFID EEPROM which can be written/read during both manufacturing process and installation procedure by the PDA

STM32F103xx: 32-bit MCU ARM Cortex-M3 microcontroller
M24LR64-R: 64-Kbit Dual Interface EEPROM (I²C and ISO 15693 RF protocol at 13.56 MHz)
ST7570: IEC 61334-5-1 compliant PLM
ST7540: FSK stripped down power line transceiver
Data concentrator

- One concentrator for each district

STM32F107xx: 32-bit MCU ARM Cortex-M3 microcontroller with Ethernet

M24LR64-R: 64-Kbit Dual Interface EEPROM (I²C and ISO 15693 RF protocol at 13.56 MHz)

ST7570: IEC 61334-5-1 compliant PLM

ST7540: FSK stripped down power line transceiver

STM32W108xx: 32-bit MCU ARM Cortex-M3 ZigBee system on chip

SPZB32W1x2.1: ZigBee PRO modules based on the STM32W chipset

M24128-Bxx: 128-Kbit EEPROM
Real-time lamppost fall detection

- One low-g 3-axis accelerometer for each lamppost
- Tilt angle measurement
- Lamppost fall detection
- Key application benefits
 - Road safety
 - Reduced maintenance cost
Solutions for smart street lighting

- 150 W HID lamp ballast + ST7540-based communication for networked street lighting

Description and purpose
- Innovative networked street lighting system with remote control and monitoring based on PLM, including a dedicated PC GUI

Key features
- **Lamp driver and controller**
 - 150 W high-efficiency HID lamp ballast
 - High reliability (up to 85°C ambient temperature)
 - Dimmable and EN55015 compliant
 - Suitable for HPS and MH lamps
- **Communication section**
 - Remote control on power line
 - Routing policies to cover long distances without dedicated hardware resources
 - Allows remote turn-on/off, dimming, lamp and ballast status monitoring

ESICOM order code: STEVAL-ILH005V2*
STEVAL-IHP003V1

* Available in Q1/2012
Thank you

For more information, visit our website:

www.st.com

Or follow the links below:

LED and general lighting
HID lighting
LED lighting
Evaluation boards