STSPIN L6480 and L6482

ST motor drivers are moving the future
The L6480 and L6482 ICs integrate a complex logic core providing a set of **high-level features**

- Current control algorithms
- Microstepping
- Programmable speed profile
- Comprehensive command set
- Protections
The devices also integrate analog circuitry and a complete gate driving stage making it a complete solution for stepper motor driving applications requiring high power.

- 3.3 V Reg.
- 15/7.5 V Reg.
- 16-MHz Oscillator
- SPI
- L648X logic
- ADC
- Charge pump
- 8 x Gate drivers
- DAC & Comp
- Thermal protection
- V_{ds} sensing
L6480 and L6482 characteristics

- Supply voltage **7.5 to 85 V**
- Dual full-bridge **gate drivers**
- Fully **programmable gate driving**
- Overcurrent protection based on MOSFET drain-source drop
- Up to **128 microsteps** (L6480)
- Current control
 - L6480: Voltage mode driving
 - L6482: Advanced current control
- **Sensorless stall detection** (L6480)
- **Digital Motion Engine**
 - Programmable speed profile
 - High-level commands
- **8-bit 5 MHz SPI interface** (Daisy-chain compatible)
- Integrated 16 MHz oscillator
- Integrated 5-bit ADC
- Integrated 15 V / 7.5 V voltage regulator
- Integrated 3.3 V voltage regulator
- **Overcurrent, overtemperature and undervoltage protections**
- **HTSSOP package**
Intelligence integration

Before L6480/82 ...

System MCU

Dedicated MCU

Many digital + analog connections

Gate drivers + + 8x

Dedicated MCU

Many digital + analog connections

Gate drivers + + 8x

Gate drivers + + 8x

Gate drivers + + 8x
Intelligence integration

with **L6480/82** ...

- System is greatly simplified
- Dedicated MCU no longer needed to perform speed profile and positioning calculations
- Less components
- Single MCU can drive more devices at the same time
A full-digital interface to MCU

- The fast SPI interface with daisy-chain capability allows a single MCU to manage multiple devices.

- Programmable alarm FLAG open-drain output for interrupt-based FW.

 In daisy-chain configuration, FLAG pins of different devices can be OR-wired to save host controller GPIOs.

- BUSY open-drain output allows the MCU to know when the last command has been performed.

 In daisy-chain configuration, BUSY pins of different devices can be OR-wired to save host controller GPIOs.

- BUSY can be used as SYNC signal giving a feedback of the step-clock to the MCU (programmable # of microsteps).
Fully programmable speed profile boundaries

Maximum speed
from 15.25 to 15610 step/s
(15.25 step/s resolution)

Minimum speed
from 0 to 976 step/s
(0.24 step/s resolution)

Acceleration & Deceleration
from 14.55 to 59590 step/s^2
(14.55 step/s^2 resolution)
Move(N, DIR) command perform a motion of N steps in the selected direction. This command can be performed only when the motor is stopped.
Positioning features: Absolute positioning commands

GoTo(Target) command: reach the target position using shortest path.
This command can be performed only when motor is stopped or is running at constant speed.

GoTo_DIR(Target, DIR) command: reach the target position moving the motor in the selected direction.
This command can be performed only when the motor is stopped or is running at constant speed.
Speed tracking features: Constant speed command

Run(SPD, DIR) command drives the motor to reach the target speed SPD in the selected direction. Target speed and direction can be changed anytime.
At power-up, the load could be in an unknown position. The absolute position counter should be initialized.

The **GoUntil** command moves the mechanical load to the limit switch position.

The **ReleaseSW** command moves the mechanical load on the limit switch triggering threshold.
The ADC input can also be monitored to detect an undervoltage condition on the motor supply voltage.

If the ADC input falls below the fixed 1.16 V threshold, an UVLO_ADC event is signaled by the device diagnostic but no automatic actions are performed.

When the ADC is used for the power supply configuration (ADCIN voltage at 1.65 V when nominal voltage is present), the UVLO is signaled when the VS voltage is below 70 % of the nominal value.
Programmable overcurrent protection

Each MOSFET of the external power stage is protected by an overcurrent protection system.

The overcurrent protection system monitors the voltage drop of the MOS and detects when its value exceeds the programmed threshold which can be set from 31.25 mV to 1 V. In this case, the whole power stage is immediately turned OFF.

The power stage cannot be enabled until a GetStatus command releases the failure condition.
Programmable overcurrent protection

Reference voltage drop for the high-side MOSFETs

OCD DAC generates a reference current which is used to generate the reference voltages

Reference voltage drop for the low-side MOSFETs

Reference voltage drop

OCD DAC

V_{OCD}

I_{DAC}

I_{DAC}

V_{OCD}

VS

PGND

OUTX1
Device shutdown
The power stage and the linear regulators are disabled.

Safe region
Normal operation is restored

Warning region
The device operates normally but it is approaching the thermal shutdown temperature

Power stage shutdown
The power stage is disabled and cannot be turned on in any way.

Device shutdown
The power stage and the linear regulators are disabled.
The devices integrate a diagnostic register collecting the information about the status of the system:

- Power stage enabled/disabled
- Command under execution (BUSY)
- Motor status (direction, acc., dec., etc.)
- Step-clock mode
- Overcurrent
- Thermal status
- Undervoltage (it indicates the power-up status also)
- Undervoltage on ADC input
- Stall detection
- SW status
- SW input falling edge (limit switch turn-on)
- Incorrect or not performable command received
Programmable gate drivers

Integrated gate drivers are fully programmable, allowing the L6480 and L6482 to fit a wide variety of MOSFETs and adjusting output slew-rates according to application requirements.

- Gate sink/source current
- Controlled current time (charging time)
- Turn-off current boost time
- Dead time
- Blanking time

Less power
Less EMI
Integrated voltage regulators

Supply management:

• Integrated voltage regulators allow the device to be self-supplied through a high-voltage bus.

• Input and output pins of both voltage regulators are accessible. Several supply scenarios are supported.

• Regulators cannot be used to supply external devices.
L6480
Voltage mode driving
BEMF compensation

Parameters:
- Starting amplitude: The “zero speed” amplitude of the output sinewave
- Starting comp. slope
- Final comp. slope
- Intersect speed

Algorithm:
- Amplitude versus Motor speed

Definitions:
- **Starting amplitude:** The “zero speed” amplitude of the output sinewave.
- **Starting comp. slope:** The slope of the compensation curve when speed is lower than the **Intersect speed**.
- **Intersect speed:** Speed at which the compensation curve slope switches from starting to final value.
- **Final comp. slope:** The slope of the compensation curve when the speed is greater than the **Intersect speed**.

Graph:
- X-axis: Motor speed
- Y-axis: Amplitude
- Graph showing the compensation curve with distinct segments for different speed ranges.
BEMF compensation

According to motor conditions (acc/deceleration, constant speed, hold), a different torque, and then current, could be needed.

The device logic switches from different compensation parameters sets according to motor status.
BEMF compensation
Supply voltage compensation

The voltage sinewaves are generated through a PWM modulation. As a consequence, the actual phase voltage depends on the supply voltage of the power stage.
Supply voltage compensation

Compensation algorithm calculates the correction coefficient

5-bit ADC measures the actual motor supply voltage

Compensation coefficient is applied to the sinewave amplitude

L6480

ADC

COMP

Sinewave Amplitude

PWM + Gate drivers

Power stage

$V_S + n(t)$

V_{OUT}
Sensorless stall detection

Using integrated current sensing and the adjustable STALL current threshold (i.e. voltage drop on the external MOSFET), a cheap and easy stall detection can be implemented.
Sensorless stall detection

Using integrated current sensing and the adjustable STALL current threshold (i.e. voltage drop on the external MOSFET), a cheap and easy stall detection can be implemented.
Sensorless stall detection

The stall condition is checked measuring the voltage drop on the low-side MOSFETS only.

STALL DAC generates a reference current which is used to generate the reference voltage.

Sensorless stall detection voltage threshold
Sensorless stall detection limitations

Stall detection performances can be reduced in the following conditions:

• **Low speed**
 (negligible BEMF value)

• **High speed**
 (current can be low because the low-pass filtering effect of the inductor)
Slow speed optimization

- During low-speed movements, the sinewave current could suffer from zero-crossing distortion. As result, the motor rotation is discontinuous.

- New low-speed optimization algorithm heavily reduces the distortion. Smoothness of the driving is increased.
L6482
Advanced current control
Advanced current control

• Automatic selection of the decay mode
 Stable current control in microstepping

• Slow decay and fast decay balancing
 Reduced current ripple

• Predictive current control
 Average current control
Challenges to perform the right decay

During the OFF state, both slow and fast decay must be used for a better control:

L6482 performs an **AUTO-ADJUSTED DECAY**
Auto-adjusted decay

Target Current level

\[t_{\text{ON1}} \quad t_{\text{OFF,FAST}} \quad t_{\text{ON2}} \quad t_{\text{OFF}} \]

Fast decay for

\[t_{\text{OFF,FAST}} = \frac{t_{\text{OFF,FAST}}}{8} \]

in order to remove more energy than a slow decay

Slow decay for

\[t_{\text{OFF}} = TSW(*) \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>TON_MIN</td>
<td>Target minimum ON time</td>
</tr>
<tr>
<td>TOFF_FAST</td>
<td>Maximum fast decay duration</td>
</tr>
<tr>
<td>TSW</td>
<td>Fixed OFF time(*)</td>
</tr>
</tbody>
</table>

(*) No predictive control
Target Current level

- **t_{ON1}**
Fast decay for **t_{OFF,FAST1} = TOFF_FAST/8**
- **t_{ON2}**
Fast decay for **t_{OFF,FAST2} = TOFF_FAST/4**
- **t_{ON3}**
t_{OFF},Slow
- **t_{OFF3}**
- **t_{OFF,FAST3}**

Mixed decay:

- **t_{OFF3} = TSW (*)**
- **t_{OFF,FAST3} = t_{OFF,FAST2} = TOFF_FAST/4**
- **t_{OFF,Slow} = t_{OFF3} – t_{OFF,FAST3}**

Parameter Function

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>TON_MIN</td>
<td>Target minimum ON time</td>
</tr>
<tr>
<td>TOFF_FAST</td>
<td>Maximum fast decay duration</td>
</tr>
<tr>
<td>TSW</td>
<td>Fixed OFF time(*)</td>
</tr>
</tbody>
</table>

(*) No predictive control
Fast decay for $t_{\text{FALL1}} = \text{FAST_STEP}/4$

t_{FALL2} = FAST_STEP/2

t_{FALL3} = last FAST_STEP

In our case $t_{\text{FALL3}} = \text{FAST_STEP}/2$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>TON_MIN</td>
<td>Target minimum ON time</td>
</tr>
<tr>
<td>FAST_STEP</td>
<td>Maximum fast decay duration during falling steps</td>
</tr>
</tbody>
</table>
Predictive current control: average current

The extra on time is calculated cycle-by-cycle using the following formula:

$$t_{PRED}^n = \frac{(t_{ON}^{n-1} + t_{ON}^n)}{2}$$

Note: The TON_MIN limit of the current control is checked on \(t_{ON}\) time only. If \(t_{ON} < TON_MIN\), no extra on time is performed and the decay adjustment sequence is performed.
Predictive current control: average current

When the system reaches the stability $\Rightarrow t_{\text{PRED}n} = t_{\text{ON}n}$
In this case, the average current is equal to the reference: the system implements a control of the average value of the current.
Predictive current control: switching freq.

The current is increased

The new OFF time is evaluated according to \(t_{\text{PRED}} \) value:

\[t_{\text{OFF}}^2 = \text{TSW} - (t_{\text{PRED}} \times 2) \]

Extra ON time of \(t_{\text{PRED}} \) is performed

Considering

\[t_{\text{ON}}^n = t_{\text{PRED}}^n \approx t_{\text{PRED}}^1 \]

\[t_{\text{PWM}}^2 \approx (t_{\text{PRED}} \times 2) + t_{\text{OFF}}^2 = \text{TSW} \]
The peak DAC defines the amplitude of the microstepping sinewave (TVAL_X registers)

The microstep DAC returns a fraction of the peak according to the EL_POS register

The reference is compared to the voltage on the SENSE pin
Typical application

- Minimal component count
- MCU needs only 1 SPI interface and 2-4 optional GPIOs
Typical application

- Minimal component count
- MCU needs only 1 SPI interface and 2-4 optional GPIOs
Competitive advantages

• High level of integration
• Voltage mode driving
• External power stage is protected
• Advanced diagnostics
• Extended power range
• Suitable for multi-motor applications

Further information and full design support can be found at www.st.com/stspin