Semiconductor solutions for healthcare applications
At STMicroelectronics, we have developed our healthcare product and service portfolio based on long-term research. We are involved in government-funded programs, collaborate with international universities and are a member of acknowledged healthcare consortia, such as the Continua Health Alliance.

Healthcare market segments and application examples

<table>
<thead>
<tr>
<th>Portable, telehealth monitoring</th>
<th>Wellness, fitness, assisted living</th>
<th>Clinical, diagnostics and therapy</th>
<th>Medical imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood pressure monitors</td>
<td>Pedometers</td>
<td>Patient monitoring</td>
<td>Ultrasound</td>
</tr>
<tr>
<td>Temperature meters</td>
<td>Heart rate monitors</td>
<td>Respirators</td>
<td>Magnetic resonance imaging (MRI)</td>
</tr>
<tr>
<td>Blood glucose meters</td>
<td>Fall detection</td>
<td>Infusion pumps</td>
<td>Positron emission tomography (PET)</td>
</tr>
<tr>
<td>Blood oximeters</td>
<td>Wheelchairs</td>
<td>Automated external defibrillators (AED)</td>
<td></td>
</tr>
<tr>
<td>Hearing aids</td>
<td>Hospital beds</td>
<td>Electrocardiograms (ECG)</td>
<td>Endoscopes</td>
</tr>
<tr>
<td>Portable ECG</td>
<td>Drug dispensers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Our position among the top-ranked semiconductor manufacturers, combined with strong cooperation with global healthcare leaders, enables us to develop optimized process technology and to design semiconductor devices with best-fit characteristics.

We are addressing the healthcare market with a broad portfolio of devices, such as discrete devices, low-power microcontrollers, image sensors, memories, MEMS (micro-electro-mechanical systems), thin-film batteries and analog, digital and mixed-signal ICs.

In addition to our standard products, ST offers our customers the possibilities of application-specific devices and access to our leading-edge silicon processes and package technologies for customer-designed products to give added performance and value to the end product.

Let STMicroelectronics’ experience in the healthcare and medical markets help you meet your customers’ needs.

Typical healthcare application diagram

![Typical healthcare application diagram](image-url)
Featured products

HMx01

Integrated diagnostic-quality bio-potential acquisition IC with 1, 2 or 3 differential channels

The HMx01D devices are fully integrated, diagnostic-quality bio-potential acquisition systems with 1, 2 or 3 differential channels. A fully-integrated high-pass filter removes the half-cell DC value so the channels work with the AC component only. Each channel provides high resolution and low-noise conversion of bio-potential signals up to 10 kHz. The input connection circuit matrix guarantees maximum flexibility in terms of electrodes, cables and connectors. The D versions include a dedicated impedance measurement channel that can be used to measure both body impedance average value and body impedance variation due to respiration. This channel delivers both the real and the imaginary parts of the body and the breathing impedances.

Key features

- 1, 2 or 3 bio-potential acquisition channels with integrated analog high-pass filters
- 1 bio-impedance measurement channel (D version) with 2- or 4-wire measurement
- Integrated configurable digital filtering and preprocessing
- Multi master/slave configuration to support up to 16 channels (12 bio-potential acquisitions and 4 bio-impedance channels)
- SPI serial interface
- Low supply voltage: 1.7 to 3.6 V
- CMRR: -126 dB
- Maximum data rate: 10 KSPS
- Less than 2 mW per channel at full bandwidth and resolution
- Internal or external clock

Featured products

HMx01

Integrated diagnostic-quality bio-potential acquisition IC with 1, 2 or 3 differential channels

The HMx01D devices are fully integrated, diagnostic-quality bio-potential acquisition systems with 1, 2 or 3 differential channels. A fully-integrated high-pass filter removes the half-cell DC value so the channels work with the AC component only. Each channel provides high resolution and low-noise conversion of bio-potential signals up to 10 kHz. The input connection circuit matrix guarantees maximum flexibility in terms of electrodes, cables and connectors. The D versions include a dedicated impedance measurement channel that can be used to measure both body impedance average value and body impedance variation due to respiration. This channel delivers both the real and the imaginary parts of the body and the breathing impedances.

Key features

- 1, 2 or 3 bio-potential acquisition channels with integrated analog high-pass filters
- 1 bio-impedance measurement channel (D version) with 2- or 4-wire measurement
- Integrated configurable digital filtering and preprocessing

Note: 1. For the complete part number list, refer to the ECG unit product table at the end of the brochure.
STHV748

Integrated high-performance ultrasound pulse controller

The STHV748 is a quad, high-voltage fully-monolithic pulser IC mainly intended for medical ultrasound imaging applications. An ultrasound imaging system transmits ultrasound waveforms generated from a piezoelectric transducer. As soon as the transmission ends, the same transducer is then switched to receive mode and the echoes, are then converted into low-voltage signals. These signals are further conditioned, followed by post processing, to give the final image. The STHV748 correctly drives the piezoelectric transducer during the transmission phase and routes the received echoes to the receiving chain by means of an integrated T/R switch. The excellent STHV748 pulse symmetry (5 levels), while exciting the piezoelectric transducer, delivers low second-order distortion resulting in better image quality.

Key features

- 0 to ±90 V output voltage
- Up to 20 MHz operating frequency
- Embedded low-power, floating high-voltage drivers
- ±2 A source and sink current in PW and CW modes
- Greater than 42 dB second-harmonic suppression
- Dedicated half bridge for continuous wave operations
- Fully-integrated clamping-to-ground function
- Fully-integrated T/R switch and noise blocking diodes
- Latch-up free using HV SoI technology
8/32-bit ultra-low-power MCUs

STMicroelectronics' ultra-low-power portfolio includes a full range of 8-bit and 32-bit MCUs. It addresses most healthcare applications requiring reduced current consumption, from ultra-simple, cost-optimized feature needs to complex, high-performance requirements.

Key features
- Platform for 8-bit STM8L and 32-bit STM32L MCUs
- ST’s 130 nm ultra-low-leakage process technology – speed and power consumption are independent of MCU power supply
- Ultra-low voltage supply: 1.65 to 3.6 V
- Advanced analog functions down to 1.8 V
- Fast wake up
- On-board security and safety features for critical applications

STM8L
- 8-bit MCU: up to 16 MIPS at 16 MHz
- 2 to 64 Kbytes of embedded Flash, up to 4 Kbytes of SRAM and up to 2 Kbytes of EEPROM
- Up to four ultra-low-power modes: down to 350 nA with SRAM and context retention
- Run mode dynamic consumption down to 150 μA/MHz
- Free touch-sensing library

STM32L
- 32-bit ARM Cortex™-M3: up to 33 DMIPS at 32 MHz
- Pin-to-pin compatibility with STM32F series (except VBAT)
- 32 to 384 Kbytes of embedded Flash, up to 48 Kbytes of SRAM and up to 12 Kbytes of data EEPROM
- Six ultra-low-power modes: down to 300 nA
- Ultra-low-power dynamic modes: low-power run down to 9 μA; low-power sleep down to 4.9 μA with one timer
- Economical run mode consumption down to 230 μA/MHz from Flash at zero-wait state with dynamic voltage scaling (3 ranges)

STM8L15x consumption values

<table>
<thead>
<tr>
<th>Mode</th>
<th>From Flash @ 32 kHz</th>
<th>From RAM @ 32 kHz</th>
<th>Low-power Run</th>
<th>Low-power Wait</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic Run</td>
<td>90 μA/MHz</td>
<td>9 μA/MHz</td>
<td>5.1 μA</td>
<td>3.0 μA</td>
</tr>
<tr>
<td>Low-power Run</td>
<td>192 μA/MHz</td>
<td>90 μA/MHz</td>
<td>5.1 μA</td>
<td>3.0 μA</td>
</tr>
<tr>
<td>Low-power Sleep</td>
<td>1.2 μA</td>
<td>0.45 μA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STM32L consumption values

<table>
<thead>
<tr>
<th>Mode</th>
<th>From Flash @ 32 kHz</th>
<th>From RAM @ 32 kHz</th>
<th>Low-power Run</th>
<th>Low-power Wait</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run</td>
<td>230 μA/MHz</td>
<td>186 μA/MHz</td>
<td>9 μA</td>
<td>4.9 μA</td>
</tr>
<tr>
<td>Low-power Run</td>
<td>192 μA/MHz</td>
<td>90 μA/MHz</td>
<td>5.1 μA</td>
<td>3.0 μA</td>
</tr>
<tr>
<td>Low-power Sleep + 1 timer</td>
<td>1.0 μA</td>
<td>0.9 μA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stop with or without RTC</td>
<td>0.45 μA</td>
<td>0.45 μA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- POR/POR on
- BOR option at 2.4 μA
- Run and Wait consumption values are independent of V_{DD}
- RAM content preserved
- Startup time from active Halt 5 μs
- Active Halt and Halt values measured at $V_{DD} = 1.8$ V
INEMO-M1

The smallest 9-axis inertial system of the iNEMO® SoB family

INEMO-M1 is the first member of the iNEMO system on board (SoB) family. It integrates multiple sensors with a powerful computational core and provides reliable, drift-free 3D orientation estimation (roll, pitch and yaw, quaternions, rotation matrix), as well as sensor data.

This 9 degrees-of-freedom inertial system represents a fully integrated solution that can be used in numerous applications such as virtual reality, augmented reality, image stabilization, human machine interfaces, robotics and inertial body tracking.

A complete set of communication interfaces in a very small size form factor (13 x 13 x 2 mm) make the INEMO-M1 system on board a flexible solution for effortless orientation estimation in embedded applications.

Key features

- Flexible interfaces: CAN, USART, SPI and I2C serial interfaces; full-speed USB 2.0
- Two power supply options: internal regulator (3.6 to 6 V), external regulated voltage (2.4 to 3.6 V)
- Embedding real-time algorithm to calculate attitude and heading (roll, pitch and yaw angles, quaternions or rotation matrix)
- In application programming interfaces for firmware upgrading

LIS3DH

Ultra-low-power accelerometer

The LIS3DH is an ultra-low-power, high-performance 3-axis linear accelerometer belonging to the nano family, with a digital I2C/SPI serial interface standard output. The device features ultra-low-power operating modes that allow advanced power saving and smart embedded functions. The LIS3DH has dynamically selectable full scales of ±2g/±4g/±8g/±16g and is capable of measuring accelerations with output data rates from 1 Hz to 5 kHz. The self-test capability allows the user to check the functioning of the sensor in the final application.

Key features

- Ultra-low power consumption: down to 2 μA
- ±2g/±4g/±8g/±16g dynamically selectable full scale
- Embedded 96-level FIFO of 16-bit data output
- Embedded temperature sensor and ADC converter
MP34DT01

High-performance, low-power digital MEMS microphone with 63 dB SNR

The MP34DT01 is an ultra-compact, low-power, omnidirectional, digital MEMS microphone built with a capacitive sensing element and an IC interface. The sensing element that detects the acoustic waves is manufactured using a special silicon micromachining process dedicated to produce audio sensors. The IC interface is manufactured using a CMOS process so that a dedicated circuit may be designed to provide a digital signal externally in PDM format. The MP34DT01 has an acoustic overload point of 120 dBSPL with a 63 dB signal-to-noise ratio and -26 dBFS sensitivity.

Key features
- Single supply voltage
- Low power consumption
- 120 dBSPL acoustic overload point
- 63 dB signal-to-noise ratio
- Omnidirectional sensitivity
- -26 dBFS sensitivity
- PDM output
- HCLGA package
- Top port design
- SMD compliant
- EMI shielded

LPS331AP

High-resolution digital pressure sensor

The LPS331AP is an ultra compact absolute piezoresistive pressure sensor. It includes a monolithic sensing element and an IC interface to take the information from the sensing element and to provide a digital signal to the external world.

The sensing element consists of a suspended membrane formed inside a single mono-silicon substrate. It is capable of detecting pressure and is manufactured using a dedicated process developed by ST, VENSENS.

Key features
- 260 to 1260 mbar absolute pressure range
- High-resolution mode: 0.020 mbar RMS
- Low power consumption:
 - Low-resolution mode: 5.5 μA
 - High-resolution mode: 30 μA
- High overpressure capability: 20x full scale
- Embedded temperature compensation
- Embedded 24-bit ADC
- Selectable ODR from 1 Hz to 25 Hz
- SPI and I2C interfaces
- Supply voltage: 1.71 to 3.6 V
- High shock survivability: 10000 g

LDCL015XX

150 mA capless ultra-low-drop linear regulator simplifies power management designs

The LDCL015XX provides 150 mA from an input voltage ranging from 1.8 to 5.5 V, with a typical dropout voltage of 50 mV. It is stable with no input or output capacitor. Low quiescent current, low noise and capless operation make it suitable for low-power battery-powered applications and reduces the board size required. Typical power supply rejection ratio is 52 dB at low frequencies, and starts to roll off at 10 kHz. The enable logic control function puts the LDCL015XX in shutdown mode, reducing the total current consumption to less than 1 μA. The device also includes short-circuit constant-current limit and thermal protection.

Key features
- No input or output capacitor required
- Input voltage: 1.8 to 5.5 V
- Very low drop: 50 mV at 100 mA load
- ±2% output voltage accuracy
- Output voltage tolerance: ±3%
- Low noise
- 150 mA guaranteed output current
- Available in fixed and adjustable output voltages, from 0.8 V in 100 mV steps
- Internal current and thermal limit
M24LR16E and M24LR64E
Dual Interface EEPROM

The M24LR16E and M24LR64E feature both an I²C and an RF interface, and so provide the flexibility to remotely program or update electronic products anytime during their lifetime and anywhere in the supply chain. RFID and NFC compatible, they are used to read measurements from portable healthcare applications and update the configuration data of clinical devices without powering on the device. They also feature an innovative energy harvesting function which can enable battery-less designs or greatly improve battery lifetime.

Key features
- I²C interface
 - 1.8 to 5.5 V wide operating voltage
 - 400 kHz across the entire voltage range
- 13.56 MHz RF interface
 - ISO 15693 industry standard: passive RF technology – no power needed to operate in RF
 - NFC compatible
- Memory
 - User memory: 4-Kbit, 16-Kbit or 64-Kbit EEPROM
 - Reliability: 40-year data retention and 1 million erase-write cycles
 - Data protection: unique and flexible 32-bit password protection scheme
- Energy harvesting
 - \(V_{\text{OUT}} \) pin providing the energy harvested from the RFID reader

STAC3932B/F, STAC4932B/F
100 V RF power MOSFETs in STAC® package for 1.5T and 3T MRI

A new generation of 100 V RF power MOSFETs housed in STAC® air-cavity packages and capable of delivering an output power up to 1.2 kW for industrial, scientific and medical applications such as 1.5T and 3T magnetic resonance imaging. The new air-cavity technology enables lower thermal resistance, lower weight and reduced cost compared to devices in ceramic packages.

Key features
- Frequency: 61.5 MHz (1.5T MRI), 123 MHz (3T MRI)
- Supply voltage: 100 V
- Output power: Up to 1.2 kW
- Gain: > 23 dB
- Efficiency: > 60%
- 25% lower thermal resistance \(R_{\text{THJC}} \)
- 4 times higher MTTF
- Cost-effective solution versus ceramic packages
- Available in two mounting configurations:
 - Bolt-down
 - Surface mount with AgSnCu back solder finishing
ESD/EOS protection devices

Protection devices come in 2 families:
- Transient voltage suppressors (TVS or Transil™)
- Crowbar diodes (Trisil™)

These devices protect circuits against:
- Electrostatic discharge (ESD) generated by contact with a person or a machine (IEC 61000-4-2)
- Electrical overstress (EOS) generated by lightning strikes or AED generated overvoltages (IEC 61000-4-5)

Key features

- Wide portfolio
 - TVS from 100 W to 5000 W
 - ESD array – including low capacitive arrays
 - Crowbar diodes
 - Crowbar diode arrays
- Wide range of applications
 - Airway clearance
 - Glucometers
 - Blood pressure
 - Monitoring stations

Note: 1. For the complete part number list, refer to the EMI filtering and signal conditioning product table at the end of the brochure
<table>
<thead>
<tr>
<th>Microcontrollers</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STM8L</td>
<td>Ultra-low-power 8-bit MCUs, 1.65 to 3.6 V, up to 6 MIPS, 2 to 64 Kbytes</td>
<td></td>
</tr>
<tr>
<td>STM32L</td>
<td>Ultra-low-power 32-bit MCUs, 1.65 to 3.6 V, up to 33 DMIPS, 32 to 384 Kbytes</td>
<td></td>
</tr>
<tr>
<td>STM32F</td>
<td>32-bit MCUs, 1.7 to 3.6 V, up to 68 DMIPS, 16 Kbytes to 1 Mbyte</td>
<td></td>
</tr>
<tr>
<td>SPEAR3x0</td>
<td>32-bit MPU based on ARM926EJ-S™ core with up to 400 DMIPS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dual Interface EEPROM</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M24LR16E-R</td>
<td>16-Kbit Dual Interface EEPROM with password protection, energy harvesting and RF status functions</td>
<td></td>
</tr>
<tr>
<td>M24LR64-R</td>
<td>64-Kbit Dual Interface EEPROM with password protection</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MEMS and sensors</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LIS331DLx</td>
<td>Digital-output motion sensors, low-power and high-performance 3-axis accelerometer</td>
<td></td>
</tr>
<tr>
<td>LIS3DH</td>
<td>MEMS digital-output motion sensor, ultra-low-power, high-performance 3-axis nano accelerometer</td>
<td></td>
</tr>
<tr>
<td>LIS344ALH</td>
<td>MEMS inertial sensor, high-performance 3-axis ±2g/±6g ultra-compact linear accelerometer</td>
<td></td>
</tr>
<tr>
<td>L3G4200D</td>
<td>Digital-output, low-power and high-stability 3-axis gyroscope</td>
<td></td>
</tr>
<tr>
<td>LSM303DLHx</td>
<td>Sensor modules, 3-axis accelerometer and 3-axis magnetometer</td>
<td></td>
</tr>
<tr>
<td>L3GD20</td>
<td>3-axis digital gyroscope</td>
<td></td>
</tr>
<tr>
<td>LSM330DL</td>
<td>Inertial module (3 accelerometers, 3 gyroscopes)</td>
<td></td>
</tr>
<tr>
<td>MP45DT02</td>
<td>Omnidirectional digital MEMS microphone, 58 dB signal-to-noise ratio and -26 dB sensitivity</td>
<td></td>
</tr>
<tr>
<td>MP34DB01</td>
<td>Omnidirectional digital MEMS microphone, 62 dB signal-to-noise ratio and -26 dB</td>
<td></td>
</tr>
<tr>
<td>LPS001WP</td>
<td>MEMS pressure sensor, 300 to 1100 mbar absolute digital output barometer</td>
<td></td>
</tr>
<tr>
<td>LPS331AP</td>
<td>MEMS pressure sensor, 260 to 1260 mbar absolute digital output barometer</td>
<td></td>
</tr>
<tr>
<td>STMT04/5/7</td>
<td>S-Touch® - FingerTip, multi-touch capacitive touchscreen controllers from 4 to 7 inch</td>
<td></td>
</tr>
<tr>
<td>STMP8121A</td>
<td>S-Touch® - FingerTip, multi-touch capacitive touchscreen controllers from 4 to 7 inch</td>
<td></td>
</tr>
<tr>
<td>STMT14x</td>
<td>STMTouch - Proximity or single touch key touch controllers</td>
<td></td>
</tr>
<tr>
<td>STTS751</td>
<td>2.25 V low-voltage local digital temperature sensor</td>
<td></td>
</tr>
<tr>
<td>STLM20</td>
<td>Ultra-low current, 2.4 V precision analog temperature sensor</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pulser ICs</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STHV748</td>
<td>5-level, ± 90 V, 2 A high-speed pulser with four independent channels and integrated Tx/Rx switch</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EMI filtering and signal conditioning</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EMIF01-1003M3</td>
<td>1-line EMI filter with ESD protection for keypads</td>
<td></td>
</tr>
<tr>
<td>EMIF04/06/08-1005Mx</td>
<td>4/6/8-line EMI filters with ESD protection</td>
<td></td>
</tr>
<tr>
<td>EMIF02-SPKG2F2</td>
<td>2-line EMI filter and ESD protection</td>
<td></td>
</tr>
<tr>
<td>EMIF06-MSD03F3</td>
<td>6-line EMI filter and ESD protection</td>
<td></td>
</tr>
<tr>
<td>ECMF06-6AM16</td>
<td>6-line common-mode filter with ESD protection</td>
<td></td>
</tr>
<tr>
<td>ECMF02-2BF3</td>
<td>2-line common-mode filter with ESD protection</td>
<td></td>
</tr>
<tr>
<td>ECMF04-4CMX8</td>
<td>2-line CMF including ID and V_{BUS} ESD protection</td>
<td></td>
</tr>
<tr>
<td>EMIF08-LCD04M16</td>
<td>8-line LC filter and ESD protection</td>
<td></td>
</tr>
<tr>
<td>BAL2690D3U</td>
<td>2.4 GHz matched balun for STLC2690</td>
<td></td>
</tr>
<tr>
<td>DIP2450-01D3</td>
<td>Diplexer for 2.4 and 5 GHz</td>
<td></td>
</tr>
<tr>
<td>BPF50-01D3</td>
<td>Band-pass filter for 5 GHz WLAN</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connectivity ICs</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SPZB32W1xx</td>
<td>IEEE 802.15.4 modules</td>
<td></td>
</tr>
<tr>
<td>SBP2532C2</td>
<td>Bluetooth module</td>
<td></td>
</tr>
<tr>
<td>STS02RT1</td>
<td>10/100 real-time Ethernet 3.3 V transceiver</td>
<td></td>
</tr>
<tr>
<td>STM32W</td>
<td>STM32 with embedded 2.4 GHz IEEE 802.15.4 radio, low-cost wireless network implementation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECG unit</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HM301</td>
<td>3-channel integrated diagnostic quality ECG analog front end</td>
<td></td>
</tr>
<tr>
<td>HM201</td>
<td>2-channel integrated diagnostic quality ECG analog front end</td>
<td></td>
</tr>
<tr>
<td>HM101</td>
<td>1-channel integrated diagnostic quality ECG analog front end</td>
<td></td>
</tr>
</tbody>
</table>
Amplifiers and comparators

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSV85x</td>
<td>Micropower op-amps, 180 µA/1.3 MHz with shutdown</td>
</tr>
<tr>
<td>LMV82x</td>
<td>Standard low-power op-amps, 400 µA/5.5 MHz with shutdown</td>
</tr>
<tr>
<td>TS33x</td>
<td>Micropower low-voltage rail-to-rail comparators</td>
</tr>
<tr>
<td>LMV3x</td>
<td>Low-cost, low-power rail-to-rail input/output op-amps</td>
</tr>
<tr>
<td>TS302x</td>
<td>Rail-to-rail 1.8 V high-speed micropower comparators</td>
</tr>
<tr>
<td>TS3011</td>
<td>Rail-to-rail high-speed comparator</td>
</tr>
<tr>
<td>TS6x</td>
<td>Rail-to-rail input/output CMOS op-amps</td>
</tr>
</tbody>
</table>

Protection devices

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSILC6-4xx</td>
<td>Ethernet, LVDS, USB 2.0 15 kV ESD protection</td>
</tr>
<tr>
<td>ESDA14V2BP6</td>
<td>8 V and 12 V keyboard/button/audio ESD protection</td>
</tr>
<tr>
<td>ESADLC5-1BM2</td>
<td>1-line bidirectional ESD protection, 8 pF</td>
</tr>
<tr>
<td>ESADVLC8-1BM2</td>
<td>1-line bidirectional ESD protection, 4 pF</td>
</tr>
<tr>
<td>SMM4F</td>
<td>2.5 kW, flat package, ESD overvoltage reverse polarity protection Transiltm</td>
</tr>
<tr>
<td>ESADLC1 - xxx</td>
<td>ESD array, low leakage (1 nA), low capacitance (1.5 pF), 1 to 4 lines</td>
</tr>
<tr>
<td>USBULC6</td>
<td>USB 2.0 high-speed 15 kV ESD protection</td>
</tr>
<tr>
<td>ESDA-1K</td>
<td>450 W EOS protection in SOD-523 package</td>
</tr>
<tr>
<td>HSP061-4NY8</td>
<td>High-speed protection, 2 x 1 mm flow-through package</td>
</tr>
<tr>
<td>SLV02.8</td>
<td>Gigabit Ethernet protection</td>
</tr>
</tbody>
</table>

Power management

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STL02</td>
<td>White LED driver/backlighting</td>
</tr>
<tr>
<td>STL041</td>
<td>White LED driver/backlighting</td>
</tr>
<tr>
<td>STPxCMP</td>
<td>Driver/backlighting</td>
</tr>
<tr>
<td>STLD20D/40D</td>
<td>White LED driver/backlighting</td>
</tr>
<tr>
<td>L69240</td>
<td>Lithium battery charger</td>
</tr>
<tr>
<td>L6924U</td>
<td>USB compatible lithium battery charger</td>
</tr>
<tr>
<td>STw4102</td>
<td>Dual input Li-ion battery charger with gas gauge</td>
</tr>
<tr>
<td>STC3100</td>
<td>Battery monitor for gas gauge applications</td>
</tr>
<tr>
<td>L6920DB</td>
<td>0.8 A step-up, low IQ, down to 0.6 V_in</td>
</tr>
<tr>
<td>L6920D</td>
<td>1 A step-up, low IQ, down to 0.6 V_in</td>
</tr>
<tr>
<td>STBR00</td>
<td>1 A step-up, DFN8 (4 x 4 mm) package</td>
</tr>
<tr>
<td>L6928</td>
<td>Sync step-down converter, 95 % to 5.5 V_in</td>
</tr>
<tr>
<td>STL050</td>
<td>50 mA, 3 pA supply current, low drop linear regulator</td>
</tr>
<tr>
<td>STLQ015</td>
<td>150 mA, 1.7 µA supply current, low drop linear regulator</td>
</tr>
<tr>
<td>STT75</td>
<td>85 mA, very low quiescent current LDO regulator</td>
</tr>
<tr>
<td>LD39115J</td>
<td>150 mA, miniature high-performance LDO regulator</td>
</tr>
<tr>
<td>LD59015</td>
<td>150 mA, very high PSRR, low-noise LDO regulator</td>
</tr>
<tr>
<td>LDLN015</td>
<td>150 mA ultra-low noise LDO</td>
</tr>
<tr>
<td>LCDL015</td>
<td>150 mA capless LDO</td>
</tr>
<tr>
<td>LM4041</td>
<td>0.1% low consumption shunt voltage reference</td>
</tr>
<tr>
<td>STBB2J</td>
<td>800 mA, high-efficiency buck-boost converter in CSP package</td>
</tr>
<tr>
<td>ST1S15J</td>
<td>500 mA, high-efficiency buck converter in CSP package</td>
</tr>
<tr>
<td>STBB1</td>
<td>Dual-mode, 1 A IOUT buck-boost voltage regulator</td>
</tr>
<tr>
<td>VIPERxx</td>
<td>ViPerPlus family of high-performance offline high-voltage converters</td>
</tr>
</tbody>
</table>

ASSP for motor control

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L639x</td>
<td>MOSFET IGBT smartDRIVE gate drivers integrating advanced current sensing, comparator and operational amplifier</td>
</tr>
<tr>
<td>L62xx</td>
<td>powerSPIN – monolithic motor-driver platform for DC, BLDC and stepper motors</td>
</tr>
<tr>
<td>L6470</td>
<td>dSPIN – monolithic digital microstepping motor driver for stepper motors</td>
</tr>
<tr>
<td>L6460</td>
<td>flexSPIN – monolithic multi-motor driver with microstepping for stepper and DC motors</td>
</tr>
<tr>
<td>L6474</td>
<td>Monolithic microstepping driver with SPI and diagnostics</td>
</tr>
</tbody>
</table>

Amplifiers and comparators

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSV85x</td>
<td>Micropower op-amps, 180 µA/1.3 MHz with shutdown</td>
</tr>
<tr>
<td>LMV82x</td>
<td>Standard low-power op-amps, 400 µA/5.5 MHz with shutdown</td>
</tr>
<tr>
<td>TS33x</td>
<td>Micropower low-voltage rail-to-rail comparators</td>
</tr>
<tr>
<td>LMV3x</td>
<td>Low-cost, low-power rail-to-rail input/output op-amps</td>
</tr>
<tr>
<td>TS302x</td>
<td>Rail-to-rail 1.8 V high-speed micropower comparators</td>
</tr>
<tr>
<td>TS3011</td>
<td>Rail-to-rail high-speed comparator</td>
</tr>
<tr>
<td>TS6x</td>
<td>Rail-to-rail input/output CMOS op-amps</td>
</tr>
</tbody>
</table>
Interface ICs

<table>
<thead>
<tr>
<th>Order code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STUSB02E/03E</td>
<td>USB transceivers</td>
</tr>
<tr>
<td>STOTG04</td>
<td>USB On-The-Go</td>
</tr>
<tr>
<td>STMPE1801</td>
<td>18-bit enhanced port expander with keypad controller</td>
</tr>
<tr>
<td>STMPE2403</td>
<td>24-bit enhanced port expander with keypad and PWM controller</td>
</tr>
</tbody>
</table>

Power transistors

<table>
<thead>
<tr>
<th>Order code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STL120N2VH5</td>
<td>20 V, n-channel, super logic level, power MOSFET in PowerFLAT 5x6</td>
</tr>
<tr>
<td>ST14N3LLH5D1</td>
<td>30 V, n-channel, logic level power MOSFET in die form</td>
</tr>
<tr>
<td>STS10DN3LH5</td>
<td>30 V, dual n-channel, logic level power MOSFET in SO-8</td>
</tr>
<tr>
<td>STL65DN3LLH5</td>
<td>30 V, dual n-channel, logic level power MOSFET in PowerFLAT 5x6</td>
</tr>
<tr>
<td>STL15D4NF5</td>
<td>40 V, dual n-channel power MOSFET in PowerFLAT 5x6</td>
</tr>
<tr>
<td>STD30NF60LT4</td>
<td>60 V, n-channel logic level power MOSFET in DPAK</td>
</tr>
<tr>
<td>STB9NK60ZT4</td>
<td>600 V, n-channel power MOSFET in DPAK</td>
</tr>
<tr>
<td>STY13N65M5</td>
<td>650 V, n-channel power MOSFET in Max247</td>
</tr>
<tr>
<td>ST1NK80D2</td>
<td>800 V, n-channel power MOSFET in die form</td>
</tr>
<tr>
<td>ST1N105K3D2</td>
<td>1050 V, n-channel power MOSFET in die form</td>
</tr>
<tr>
<td>STGW45HF60WD</td>
<td>45 A, 600 V, n-channel advanced planar PT IGBT in TO-247</td>
</tr>
<tr>
<td>STGW3N120KD</td>
<td>N-channel 30 A, 1200 V short circuit rugged IGBT with ultrafast diode</td>
</tr>
<tr>
<td>STGW3N120HD</td>
<td>N-channel 30 A, 1200 V IGBT with ultra-fast diode</td>
</tr>
<tr>
<td>SD293x/393x</td>
<td>N-channel RF power MOSFETs</td>
</tr>
<tr>
<td>STAC3932B/F</td>
<td>1 kW, 100 V RF power MOSFET in STAC® package for 1.5T and 3T MRI</td>
</tr>
<tr>
<td>STAC4932B/F</td>
<td>STAC® package for 1.5T and 3T MRI</td>
</tr>
</tbody>
</table>

Clocks and timing circuits

<table>
<thead>
<tr>
<th>Order code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M41T6L2C6F</td>
<td>World’s smallest RTC with embedded crystal in LCC8 3.2 x 1.5 mm package</td>
</tr>
<tr>
<td>M41T6X</td>
<td>Low-power I²C RTC with alarm, 32 kHz output or programmable watchdog functions, 1.3 to 4.4 V operation</td>
</tr>
<tr>
<td>M41T83/93</td>
<td>I²C/SPI RTC with analog calibration, alarm, watchdog, 32 kHz and reset functions</td>
</tr>
<tr>
<td>M41ST8S</td>
<td>3.0/3.3 V PC combination serial RTC, NVRAM supervisor and microprocessor supervisor</td>
</tr>
<tr>
<td>M41ST87</td>
<td>I²C RTC and NVRAM supervisor with anti-tamper detection function</td>
</tr>
<tr>
<td>M48Txx</td>
<td>Non-volatile SRAM, 3 to 5.5 V with alarm, watchdog timer</td>
</tr>
</tbody>
</table>

Level translators and analog switches

<table>
<thead>
<tr>
<th>Order code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST1G3236</td>
<td>1-bit level shifter general purpose, 1.2 to 3.6 V, DFN6 1.0 x 1.2 mm</td>
</tr>
<tr>
<td>ST2329B</td>
<td>2-bit level shifter for PIC, 1.65 to 5.5 V, QFN8 1.2 x 1.4 mm</td>
</tr>
<tr>
<td>ST2129B</td>
<td>2-bit general-purpose level shifter, 1.65 to 5.5 V, QFN8 1.2 x 1.4 mm</td>
</tr>
<tr>
<td>ST2149B</td>
<td>4-bit level shifter general purpose, 1.65 to 5.5 V, QFN12 2.0 x 1.7 mm</td>
</tr>
<tr>
<td>STG719</td>
<td>Ultra-low leakage current (0.35 nA max at 85 °C) SPDT switch</td>
</tr>
</tbody>
</table>

EEPROM

<table>
<thead>
<tr>
<th>Order code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M24128-BFC6TP/A</td>
<td>128-Kbit I²C in WLCSP form</td>
</tr>
<tr>
<td>M24256-BRC6TP/A</td>
<td>256-Kbit I²C in WLCSP form</td>
</tr>
<tr>
<td>M9S256-RC6TP/A</td>
<td>256-Kbit SPI in WLCSP form</td>
</tr>
<tr>
<td>M24M01-RAW21/90</td>
<td>1-Mbit I²C in wafer form</td>
</tr>
<tr>
<td>M24M02-DR</td>
<td>2-Mbit serial FC bus EEPROM</td>
</tr>
</tbody>
</table>