
March 2016 DocID023110 Rev 3 1/38

1

AN4099
Application note

Implementation of transmitters and receivers for infrared remote
control protocols with MCUs of the STM32F0 and STM32F3 Series

Introduction

Infrared radiation is the region of the electromagnetic spectrum that lies between
microwaves and visible light.

Infrared radiation has two ranges: near infrared light is closest in wavelength to visible light,
while far infrared is closer to the microwave region of the electromagnetic spectrum.

The shorter waves are the ones used by remote controls. Information is transmitted and
received using electromagnetic energy, without using wires.

Infrared technology offers important advantages as a form of wireless communication.
Nowadays, almost all audio and video equipment can be controlled using an infrared remote
control. At the receiving end, a receiver detects the light pulses, which are processed to
retrieve/decode the information they contain.

There are many popular infrared protocol standards used to transmit data via infrared light,
such as RC5 and SIRC.

The purpose of this application note is to provide a generic solution for implementing an IR
transmitter (a remote control device) and receiver in software using microcontrollers of the
STM32F0 and STM32F3 Series. An example of software implementation is provided for
RC5 and SIRC protocols. Other protocols are supported and available upon request (for
further information contact the local STMicroelectronics sales office).

Note: The infrared transmitter and receiver solutions described in this document are implemented
in C language and are available within the STM320518-EVAL (Config2), STM32373C-EVAL
and STM32303C-EVAL packages available on www.st.com.

www.st.com

http://www.st.com

Contents AN4099

2/38 DocID023110 Rev 3

Contents

1 Infrared protocol specification . 6

1.1 RC5 protocol basics . 6

1.2 SIRC protocol basics . 7

2 Infrared transmitter . 10

2.1 Hardware considerations . 10

2.2 IR transmitter: universal solution .11

2.2.1 RC5 encoder solution . 13

2.2.2 How to use the RC5 encoder driver . 15

2.2.3 SIRC encoder solution . 16

2.2.4 How to use the SIRC encoder driver . 17

3 Infrared receiver . 18

3.1 Hardware considerations . 18

3.2 Universal solution: software implementation using a
GP-Timer configured in PWM input mode . 18

3.3 RC5 protocol solutions . 20

3.3.1 RC5 frame decoding mechanism . 20

3.3.2 RC5 decoding library . 23

3.3.3 How to use the RC5 decoder driver . 24

3.4 SIRC infrared control solution . 26

3.4.1 Software implementation . 26

3.4.2 SIRC library . 28

3.4.3 How to use the SIRC decoder driver . 28

4 Interface layer . 31

4.1 Demonstration programs . 31

4.1.1 Transmitter demonstration using IRTIM . 31

4.1.2 Receiver demonstration using GP-Timer configured in PWM mode . . . 32

4.2 How to customize the IR drivers . 33

4.2.1 IR receiver drivers . 33

4.2.2 IR transmitter drivers . 35

5 Conclusion . 36

DocID023110 Rev 3 3/38

AN4099 Contents

3

6 Revision history . 37

List of tables AN4099

4/38 DocID023110 Rev 3

List of tables

Table 1. RC5 timings . 7
Table 2. SIRC timings. 9
Table 3. Example of implementation . 25
Table 4. Example of implementation . 29
Table 5. List of defines in the header file for the IR protocol parameters . 34
Table 6. Document revision history . 37

DocID023110 Rev 3 5/38

AN4099 List of figures

5

List of figures

Figure 1. RC5 bit representation . 6
Figure 2. Example of an RC5 frame . 6
Figure 3. RC5 idle time . 7
Figure 4. Length of logical bits . 8
Figure 5. Length of start bit . 8
Figure 6. Example of SIRC frame . 8
Figure 7. Hardware configuration for infrared transmitter . 10
Figure 8. Hardware description . 10
Figure 9. Main loop flowchart . 12
Figure 10. Send IR frame flowchart . 13
Figure 11. RC5 send frame flowchart . 14
Figure 12. Manchester encoding bits . 14
Figure 13. SIRC send frame flowchart . 16
Figure 14. SIRC logical bit conversion. 17
Figure 15. Hardware configuration. 18
Figure 16. Infrared decoding flowchart . 19
Figure 17. RC5 frame decoding mechanism . 20
Figure 18. Bit determination by the rising edge: low pulse . 21
Figure 19. Bit determination by the falling edge: high pulse . 22
Figure 20. RC5 solution flowchart . 23
Figure 21. SIRC frame reception mechanism . 26
Figure 22. SIRC solution flowchart . 27
Figure 23. Application layer architecture . 31
Figure 24. IR transmitter demo . 32
Figure 25. RC5 received frame shown in the LCD . 32

Infrared protocol specification AN4099

6/38 DocID023110 Rev 3

1 Infrared protocol specification

1.1 RC5 protocol basics

The RC5 code is a 14-bit word that uses bi-phase modulation (also called Manchester
coding) of a 36 kHz IR carrier frequency. All bits have an equal length of 1.778 ms, with half
of the bit time filled with a burst of the 36 kHz carrier and the other half being idle. A logical
zero is represented by a burst in the first half of the bit time. A logical one is represented by
a burst in the second half of the bit time. The duty cycle of the 36 kHz carrier frequency is
33% or 25% which reduces power consumption.

Figure 1. RC5 bit representation

The RC5 frame can generate 2048 (32 x 64) different commands organized in 32 groups.
Each group has 64 different commands. An RC5 frame contains the following fields. An
example of an RC5 frame is shown in Figure 2.

• Start bit (S): 1 bit length, always logic 1.

• Field bit (F): 1 bit length, which denotes whether the command sent is in the lower field
(logic 1 = 0 to 63 decimal) or the upper field (logic 0 = 64 to 127 decimal). The field bit
was added later when it was realized that 64 commands per device were insufficient.
Previously, the field bit was combined with the start bit. Many devices still use this
original system.

• Control bit or Toggle bit (C): 1 bit length, which toggles each time a button is pressed.
This allows the receiving device to distinguish between two successive button presses
(such as "1", "1" for "11").

• Address: 5 bits length that selects one of 32 possible systems.

• Command: 6 bits length that (in conjunction with the field bit) represents one of the
128 possible RC5 commands.

Figure 2. Example of an RC5 frame

DocID023110 Rev 3 7/38

AN4099 Infrared protocol specification

37

To avoid frame collisions, an idle time is inserted between two successive frames with a
specific width (see Figure 3).

The idle time is defined as 50 bits wide. So, the periodicity of a frame is 64 x 1 bit width:

64 x 1.778 = 113.792 ms.

Figure 3. RC5 idle time

Note: The infrared protocol implementation is based on free RC5 specifications downloaded from
http://www.sbprojects.com.

1.2 SIRC protocol basics

The SIRC code is a 12-bit word. It uses modulation of a 40 kHz IR carrier frequency. The
SIRC protocol uses pulse distance encoding of the bits. Each pulse is a 600 µs long, 40 kHz
carrier burst. A logical "1" takes 1.8 ms to transmit, while a logical "0" takes 1.2 ms to
transmit (Figure 4).

Table 1. RC5 timings

Description Min Typ Max

RC5 half bit period 640 µs 889 µs 1140 µs

RC5 full bit period 1340 µs 1778 µs 2220 µs

RC5 message time 23.644 ms 24.889 µs 26.133 ms

RC5 message repetition time 108.089 ms 113.778 ms 119.467 ms

Carrier pulse bit time 27.233 µs 27.778 µs 28.349 µs

Infrared protocol specification AN4099

8/38 DocID023110 Rev 3

Figure 4. Length of logical bits

A SIRC frame contains the following fields.

• Start bit: the start burst is always 2.4 ms wide, followed by a standard space of 0.6 ms.

• Command 7 bits length: this field holds 7 bits that are used as command fields.

• Address 5 bits length: this field holds 5 bits that are used as address fields.

Figure 5. Length of start bit

With this protocol, the LSB is transmitted first. As such, it is assembled LSB to MSB. Since it
is sent as 7 bits for command, followed by 5 bits for device address, the code must split the
12 received bits into two groups of 7 and 5 bits.

Figure 6 shows an example of a SIRC frame.

In this case: Command 26h (0100110b) and address Ah (01010b).

Figure 6. Example of SIRC frame

An idle time is inserted between two successive frames in order to avoid collisions. Every
45 ms a repeat code is transmitted.

DocID023110 Rev 3 9/38

AN4099 Infrared protocol specification

37

Note: 1 The infrared protocol implementation is based on free SIRC specifications downloaded from
http://www.sbprojects.com.

2 The table shows an overview of the data pulse-width tolerances used in this application
note. The min-max SIRC timing can be specified by the user.

Table 2. SIRC timings

Description Typical Min Max

Syn pulse high level 2.4 ms 2.3 ms 2.6 ms

Syn pulse low level 0.6 ms 0.55 ms 0.7 ms

Bit 0 period 1.2 ms 1.1 ms 1.3 ms

Bit 1period 1.8 ms 1.7 ms 1.9 ms

SIRC message reception time 45 ms - -

Carrier pulse bit time 25 µs - -

Infrared transmitter AN4099

10/38 DocID023110 Rev 3

2 Infrared transmitter

2.1 Hardware considerations

The TX-IR LED is an infrared transmitter designed for infrared serial data links and remote
control applications. Data present is modulated at the selected carrier frequency of 36 kHz
or 40 kHz providing a simple, single-chip solution for infrared data communications and
remote control applications (see Figure 7).

Figure 7. Hardware configuration for infrared transmitter

An infrared interface (IRTIM) for remote control is available on STM32F0xx and STM32F3xx
devices. It can be used with an IR LED to perform remote control functionality.

The IR digital interface is designed to output a digital signal to an infrared diode driver
circuit. It can output a signal using any of the existing modulation styles, the modulation
style being dependent on the software algorithm.

The IR interface (see Figure 8) is very easy to configure and uses two signals provided by
two STM32 timers: TIM17 is used to provide the carrier frequency and TIM16 provides the
actual signal to be sent.

Figure 8. Hardware description

DocID023110 Rev 3 11/38

AN4099 Infrared transmitter

37

2.2 IR transmitter: universal solution

The infrared transmitter solution based on the STM32 enables the user to send all RC5 and
SIRC instructions to all RC5 and SIRC receiver devices.

The application solution uses four peripherals.

• IRTIM: (IR interface with timers) generates the IR signal using TIM16 and TIM17

– TIM17: (Timer17) provides the carrier signal with a frequency of 36 kHz for RC5
and 40 kHz for the SIRC protocol.

– TIM16: (Timer16) provides the main signal to be sent (RC5 Frame or SIRC
Frame).

• GPIO: (general-purpose I/O) provides the I/O to be connected to the buttons of the
remote control and connected to the IR-LED.

• CLK: (clock controller) enables the clocks and provides the correct clock frequency for
the timers.

To generate the infrared remote control signals, TIM16 channel 1 (TIM16_OC1) and TIM17
channel 1 (TIM17_OC1) must be properly configured to generate correct waveforms. All
standard IR pulse modulation modes can be obtained by programming the two timer output
compare channels. The infrared function is output on the TIM_IR pin. The activation of this
function is done through the GPIOx_AFRx register by enabling the related alternate function
bit. The reference manual also mentions the I2C_PB9_FMP bit in the SYSCFG_CFGR1
register to activate the high current sink capability for direct control of the Infra LED. With the
circuitry used in the EVAL boards, this bit should remain reset.

Infrared transmitter AN4099

12/38 DocID023110 Rev 3

The main program flow is shown in Figure 9.

Figure 9. Main loop flowchart

1. The carrier frequency is specific for each IR protocol (36 kHz for RC5, 40 kHz for SIRC).

2. The envelop signal is specific for each IR protocol (889 µs for RC5, 600 µs for SIRC).

The objective of TIM17 is to generate the carrier signal.

TIM17_Period = (SystemCoreClock / FrequencyCarrier) - 1

TIM16 is used to generate the envelop signal.

TIM16_Period = (SystemCoreClock / FrequencyEnvelop) - 1

Once the modules are initialized (IRTIM, frame fields), the application waits for the SEL
button to be pressed to send the IR data. Figure 10 shows the send frame flowchart.

DocID023110 Rev 3 13/38

AN4099 Infrared transmitter

37

Figure 10. Send IR frame flowchart

2.2.1 RC5 encoder solution

RC5 encoding mechanism

Figure 11 shows how the RC5 frame is generated. The described flowchart is called during
the TIM16 update interrupt routine.

Infrared transmitter AN4099

14/38 DocID023110 Rev 3

Figure 11. RC5 send frame flowchart

In the Manchester encoding, a logic "0" and a logic "1" are indicated, respectively, by a 0 to
1 transition and by a 1 to 0 transition at the center of the sequence, as visually summarized
in Figure 12, where the red dashed lines indicate the time intervals.

Figure 12. Manchester encoding bits

DocID023110 Rev 3 15/38

AN4099 Infrared transmitter

37

RC5 encoding library

The RC5 encoder driver is based on the following functions.

RC5_Encode_Init()

This function initializes the different peripherals (GPIO, TIMER,...).

RC5_Encode_SendFrame()

This function sends the Manchester format RC5 frame.

RC5_Encode_SignalGenerate()

This function generates the frame signal by monitoring the output level of TIM16. It is
called during the TIM16 update interrupt to handle the output signal.

2.2.2 How to use the RC5 encoder driver

To use the RC5 encoder driver, proceed as follows.

– Call the function RC5_Encode_Init() to configure the timer and GPIO hardware
resources needed for RC5 encoding.

– Call the function RC5_Encode_SendFrame() to send the RC5 frame.

– TIM16 Update interrupts are used to encode the RC5 frame in pulse width
modulation.

Infrared transmitter AN4099

16/38 DocID023110 Rev 3

2.2.3 SIRC encoder solution

SIRC encoding mechanism

Figure 13. SIRC send frame flowchart

After generating the binary format frame, each logical bit is converted to a combination of "0"
and "1", representing a pulse width modulation format.

For example, a logical "1" takes 1.8 ms to transmit with 1.2 ms high level and 600 µs as low
level. The chosen base time is 600 µs, so the logical "1" is converted to 110.

For a logical "0", it takes 1.2 ms with 600 µs as high level and 600 µs as low level. It is
converted to 10 (refer to Figure 14, where red dashed lines are used to highlight time
intervals).

DocID023110 Rev 3 17/38

AN4099 Infrared transmitter

37

Figure 14. SIRC logical bit conversion

SIRC encoding library

The SIRC encoder driver is based on the following functions.

SIRC12_Encode_Init()

This function initializes the different peripherals (GPIO, TIMER, NVIC,...).

SIRC12_Encode_SendFrame()

This function sends the pulse width modulation of the SIRC12 Frame format.

SIRC12_Encode_SignalGenerate()

This function generates the frame signal by monitoring the output level of TIM16. It is
called in the TIM16 update interrupt to handle the output signal.

2.2.4 How to use the SIRC encoder driver

To use the SIRC encoder driver, proceed as follows.

– Call the function SIRC12_Encode_Init() to configure the timer and GPIO hardware
resources needed for SIRC encoding.

– Call the function SIRC12_Encode_SendFrame() to send the SIRC frame.

– TIM16 Update interrupts are used to encode the SIRC frame in pulse width
modulation.

Infrared receiver AN4099

18/38 DocID023110 Rev 3

3 Infrared receiver

3.1 Hardware considerations

To improve noise rejection, the IR pulses are modulated at around 36 kHz, 38 kHz or
40 kHz. The easiest way to receive these pulses is to use an integrated IR
receiver/demodulator module like the TSOP1736 (5 V supply version) or TSOP34836 (3.3 V
supply version) or other equivalent part number (refer to Figure 15).

These are 3-pin devices that receive the infrared burst and output the demodulated bit
stream on the output pin which is connected directly to one of the STM32 microcontroller’s
GPIO pins or GP-Timers Input Capture channels. If TSOP1736 is used, the selected GPIO
must be Five volt Tolerant (FT). The output of the IR module is inverted compared to the
transmitted data (the data is idle high and logic "0" becomes logic "1" and vice versa).

Note: The IR module needs two external components: a capacitor and a resistor (refer to the
related IR module datasheet for their values).

Figure 15. Hardware configuration

3.2 Universal solution: software implementation using a
GP-Timer configured in PWM input mode

Each infrared protocol can be decoded using one of the timer peripherals embedded in the
STM32 microcontroller. This timer can be configured in PWM input mode and used to
sample the infrared frame bits. The timer input capture function is active on edges with
opposite polarity.

DocID023110 Rev 3 19/38

AN4099 Infrared receiver

37

The timer generates three types of interrupt.

• Interrupt at each falling edge: this can be used to measure the entire pulse (duration
between two successive falling edges).

• Interrupt at each rising edge: this can be used to measure the low pulse (duration
between falling and rising edges).

• Update event: this is used to put the infrared packet into default state (bit count, data
and status) when the timer counter overflows.

The low pulse and whole pulse duration are used to determine the bit value. If the durations
are within the tolerance range of the bit time, one identifies the bit value (Logic0, Logic1 or
Header).

Figure 16 gives an overview of the infrared decoding procedure.

Figure 16. Infrared decoding flowchart

Infrared receiver AN4099

20/38 DocID023110 Rev 3

3.3 RC5 protocol solutions

3.3.1 RC5 frame decoding mechanism

Figure 17 shows how the RC5 frame is received. One of the STM32 microcontroller’s
general purpose timer is configured in mode PWM input.

This input can capture the current timer value both at falling and rising edges as well as
generate an interrupt on both edges. This feature makes it easy to measure the RC5 pulse
high and low times.

Figure 17. RC5 frame decoding mechanism

• TIMER interrupt event: falling edge

A: the TIMER interrupt is used to measure the period between two successive falling
edges (one or one and a half pulse duration).

• TIMER interrupt event: rising edge

B: TIMER is used to measure the duration between the falling and rising edges (the
low pulse duration).

The two durations are used to determine the bit value. Each bit value is determined in
relation to the last bit.

DocID023110 Rev 3 21/38

AN4099 Infrared receiver

37

Figure 18. Bit determination by the rising edge: low pulse

• If the low pulse duration is equal to T and the last bit determined is "0", then the actual
bit is logic0.

• If the low pulse duration is equal to 2T and the last bit determined is "0", then the actual
bit is Inv (invalid case: this case cannot be released).

• If the low pulse duration is equal to T and the last bit determined is "1", then the actual
bit is Nan (no bit: this bit is determined at the next falling edge).

• If the low pulse duration is equal to 2T and the last bit determined is "1", then the actual
bit is logic0.

Infrared receiver AN4099

22/38 DocID023110 Rev 3

Figure 19. Bit determination by the falling edge: high pulse

• If the high pulse duration is equal to T and the last bit determined is "0", then the actual
bit is Nan (no bit: this bit is determined at the next rising edge).

• If the high pulse duration is equal to 2T and the last bit determined is "0", then the
actual bit is logic1.

• If the high pulse duration is equal to T and the last bit determined is "1", then the actual
bit is logic1.

• If the high pulse duration is equal to 2T and the last bit determined is "1", then the
actual bit is Inv (invalid case: this case cannot be released).

DocID023110 Rev 3 23/38

AN4099 Infrared receiver

37

Figure 20. RC5 solution flowchart

3.3.2 RC5 decoding library

The RC5 driver is very simple to use.

RC5_Init()

This function initializes the different peripherals (GPIO, TIMER,...).

RC5_ResetPacket()

This function sets the packet structure to the default state. This function is mainly called
in the TIM2_IRQHandler routine. It occurs each TIMER overflow to reset the RC5
packet.

RC5_Decode(RC5_Frame_TypeDef *rc5_frame)

This function is intended to be called in the user application. It decodes the RC5
received messages. The following structure contains the different values of the RC5
frame.

typedef struct

{

__IO uint8_t FieldBit; /* Field bit field */

__IO uint8_t ToggleBit; /* Toggle bit field */

__IO uint8_t Address; /* Address field */

Infrared receiver AN4099

24/38 DocID023110 Rev 3

__IO uint8_t Command; /* Command field */

} RC5_Frame_TypeDef ;

IR_RC5_decode () is executed when the RC5FrameReceived flag is equal to YES.

RC5_DeInit()

This function de-initializes the different peripherals (GPIO, TIMER...).

TIM2_IRQHandler ()

This function handles the TIM Capture Compare interrupt.

– Timer Falling Edge Event: this is used to measure the period between two
successive falling edges (the entire pulse duration).

– Timer Rising Edge Event: this is used to measure the duration between falling
and rising edges (the low pulse duration).

– Update event (time-out event): this resets the RC5 packet. The Timer Overflow
is set to 3.7 ms.

The low pulse duration and the whole pulse duration are used to determine the bit
value. Each bit value is determined in relation to the last bit.

3.3.3 How to use the RC5 decoder driver

To use the RC5 decoder driver, proceed as follows.

– Call the function RC5_Init() to configure the timer and GPIO hardware resources
needed for RC5 decoding.

– TIM2 Capture Compare and Update interrupts are used to decode the RC5 frame,
if a frame is received correctly a global variable "RC5FrameReceived" is set to
inform the application.

– The application should then call the function RC5_Decode() to retrieve the
received RC5 frame.

Code example

#include "rc5_decode.h"

/* IR_FRAME will hold the RC5 frame (Address, Command,...) */

RC5_Frame_TypeDef IR_FRAME;

/* Initialize the RC5 driver */

RC5_Init();

while(1)

{

/* Decode the received RC5 frame and store it in IR_FRAME variable
*/

RC5_Decode(&IR_FRAME);

/* Here add the code that will process the just received frame, i.e.
IR_FRAME variable, otherwise it will be overwritten by the next frame
*/

DocID023110 Rev 3 25/38

AN4099 Infrared receiver

37

...

}

Note: 1 TIMx_IRQHandler ISRs are coded within the stm32f0xx_it.c or stm32f3xx_it.c

• If one or both interrupts are used in the application special care must be taken:

– either add the application code in these ISRs, or

– copy the contents of these ISRs in the application code.

2 User can easily tailor the application to the hardware using different define declarations in
the "ir_decode.h" file. Refer to Table 3.

Table 3. Example of implementation

Define name Description STM32F0xx STM32F30x STM32F37x

#define IR_TIM
Timer used for IR
decoding(1) TIM2 TIM1 TIM3

#define
TIM_PRESCALER

TIM prescaler

This parameter is
computed to have
1 µs as time base.
TIM frequency (in
MHz) / (prescaler+1)

47 71 71

#define IR_TIM_CLK
APB clock of the
used timer

RCC_APB1Periph_

TIM2

RCC_APB2Periph_

TIM1

RCC_APB1Periph_

TIM3

#define IR_TIM_IRQn IR TIM IRQ TIM2_IRQn TIM1_CC_IRQn TIM3_IRQn

#define
IR_TIM_Channel

IR TIM channel TIM_Channel_2 TIM_Channel_2 TIM_Channel_2

#define
IR_GPIO_PORT

Port to whom the
IR output is
connected(1)

GPIOB GPIOA GPIOB

#define
IR_GPIO_PORT_CLK

IR pin GPIO clock
port

RCC_APB2Periph_
GPIOB

RCC_AHBPeriph_

GPIOA

RCC_AHBPeriph_

GPIOB

#define IR_GPIO_PIN
Pin to whom the
IR is connected(1) GPIO_Pin_3 GPIO_Pin_9 GPIO_Pin_5

1. For more details on the available STM32 resources, refer to the product datasheets.

Infrared receiver AN4099

26/38 DocID023110 Rev 3

3.4 SIRC infrared control solution

3.4.1 Software implementation

Figure 21. SIRC frame reception mechanism

TIMER interrupt: in PWM input mode

The TIMER is used to sample the different bits of the SIRC frame. We capture the current
timer value both at each falling and rising edges as well as generate an interrupt on both
edges. This feature makes it easy to measure the SIRC pulse whole and low times.

• If the period measured is equal to T = 1200 µs and the low pulse duration is equal to
T/2 = 600 µs, then the bit is logic "0".

• If the period measured is equal to 3T/2 = 1800 µs and the low pulse duration is equal to
T = 1200 µs, then the bit is logic "1".

• If the whole period measured is equal to 3000 µs and the low pulse duration is equal to
2400 µs, then the bit is "start bit".

DocID023110 Rev 3 27/38

AN4099 Infrared receiver

37

Figure 22. SIRC solution flowchart

Infrared receiver AN4099

28/38 DocID023110 Rev 3

3.4.2 SIRC library

SIRC_Init()

This function initializes the different peripherals used for the SIRC protocol.

SIRC_Decode (SIRC_Frame_TypeDef *sirc_frame)

This function is intended to be called in the user application. It decodes the SIRC
received messages. It has as a parameter a structure that contains the different values
of the IR frame.

typedef struct

{

__IO uint8_t Command; /* Command field */

__IO uint8_t Address; /* Address field */

} SIRC_Frame_TypeDef;

SIRC_decode () must be executed when the IRFrameReceived flag is equal to YES.

SIRC_ResetPacket()

This function puts the IR packet to the default state. This function is called in the
TIM2_IRQHandler routine. It occurs each timer overflow to reset the IR packet.

SIRC_DeInit()

This function de-initializes the different peripherals used for the SIRC protocol.

TIM2_IRQHandler ()

This function handles the TIM Capture Compare interrupt.

– Timer Falling Edge Event: this is used to measure the different periods between
two successive falling edges in order to identify the frame bits.

– Timer Rising Edge Event: this is used to measure the duration between falling
and rising edges (low pulse duration).

– Update event (time-out event): this resets the RC5 packet. The timer overflow is
set to 4 ms.

The bit value is determined from these two durations.

3.4.3 How to use the SIRC decoder driver

To use the SIRC decoder driver, proceed as follows.

– TIM2 Capture Compare and Update interrupts are used to decode the IR frame. If
a frame is received correctly a global variable "IRFrameReceived" is set to inform
the application.

– The application should then call the function SIRC_Decode() to retrieve the
received IR frame.

– The user can easily tailor this driver to any other infrared protocol by simply
adapting the defines from sirc_decode.h to the infrared protocol specification (Bit
Duration, Header Duration, Marge Tolerance, Number of bits...) and the command
and device tables.

DocID023110 Rev 3 29/38

AN4099 Infrared receiver

37

Code example

#include "sirc_decode.h"

/* SIRC_FRAME will hold the SIRC frame (Address,Command,...) */

SIRC_Frame_TypeDef SIRC_FRAME;

/* Initialize the SIRC driver */

SIRC_Init();

while(1)

{

/* Decode the received SIRC frame and store it in SIRC_FRAME variable */

SIRC_Decode(&SIRC_FRAME);

/* Here add the code that will process the just received frame, i.e.
SIRC_FRAME variable, otherwise it will be overwritten by the next
frame */

...
}

Note: 1 TIMx_IRQHandler ISRs are coded within the stm32f0xx_it.c or stm32f3xx_it.c driver.

• If one or both interrupts are used in the application special care must be taken:

– either add the application code in these ISRs, or

– copy the contents of these ISRs in the application code.

2 User can easily tailor the application to the hardware using different define declarations in
the "ir_decode.h" file.

Table 4. Example of implementation

Define name Description STM32F0xx STM32F30x STM32F37x

#define IR_TIM
Timer used for IR
decoding(1) TIM2 TIM1 TIM3

#define
TIM_PRESCALER

TIM prescaler

This parameter is
computed to have
1 µs as time base.
TIM frequency (in
MHz) / (prescaler+1)

47 71 71

#define IR_TIM_CLK
APB clock of the
used timer

RCC_APB1Periph_

TIM2

RCC_APB2Periph_

TIM1

RCC_APB1Periph_

TIM3

#define IR_TIM_IRQn IR TIM IRQ TIM2_IRQn TIM1_CC_IRQn TIM3_IRQn

#define
IR_TIM_Channel

IR TIM channel TIM_Channel_2 TIM_Channel_2 TIM_Channel_2

Infrared receiver AN4099

30/38 DocID023110 Rev 3

#define
IR_GPIO_PORT

Port to whom the
IR output is
connected(1)

GPIOB GPIOA GPIOB

#define
IR_GPIO_PORT_CLK

IR pin GPIO clock
port

RCC_APB2Periph_
GPIOB

RCC_AHBPeriph_

GPIOA

RCC_AHBPeriph_

GPIOB

#define IR_GPIO_PIN
Pin to whom the
IR is connected(1) GPIO_Pin_3 GPIO_Pin_9 GPIO_Pin_5

1. For more details on the available STM32 resources, refer to the product datasheet.

Table 4. Example of implementation (continued)

Define name Description STM32F0xx STM32F30x STM32F37x

DocID023110 Rev 3 31/38

AN4099 Interface layer

37

4 Interface layer

Figure 23. Application layer architecture

There are many similar infrared protocols that are differentiated from the SIRC protocol by
timing parameters. These protocols are handled by sirc_decode.c/sirc_encode.c functions.
User only needs to update the timing values.

There are others that are quite different and are managed by specific functions such as RC5
and its associated driver rc5_decode.c/rc5_encode.c.

Each protocol has a specific structure frame. IR_FRAME is a pointer to the selected infrared
protocol structure and it contains the main information needed for communication (device
address and command).

4.1 Demonstration programs

To ensure a quick start, the infrared transmitter and receiver presented in this document are
implemented in C language and are available within the STM320518-EVAL(Config2),
STM32373C-EVAL and STM32303C-EVAL Demo package.

4.1.1 Transmitter demonstration using IRTIM

This demonstration consists in transmitting IR messages displayed on an LCD.

Each IR message is displayed in two parts.

• The IR device receiver.

• The command to be executed.

Interface layer AN4099

32/38 DocID023110 Rev 3

Figure 24. IR transmitter demo

4.1.2 Receiver demonstration using GP-Timer configured in PWM mode

This demonstration consists in receiving IR messages and sending them to the LCD.

Each IR message is displayed in two parts.

• The device that transmitted the IR frame.

• The command to be executed.

Figure 25 shows the RC5 decoder using the PWMI method (refer to Section 3.2: Universal
solution: software implementation using a GP-Timer configured in PWM input mode).

Figure 25. RC5 received frame shown in the LCD

DocID023110 Rev 3 33/38

AN4099 Interface layer

37

4.2 How to customize the IR drivers

4.2.1 IR receiver drivers

To include an infrared decoder driver based on the PWM input solution in a user application,
the user must:

1. Add the header file of the appropriate IR protocol to the project.

Example: rc5_decode.h.

2. Add the file.c corresponding to the IR protocol to the project.

Example: rc5_decode.c.

3. Call the function of protocol initiation in the main()

Example: RC5_Init();

4. Add the TIMx interrupt functions to stm32f0xx_it.c or stm32f3xx_it.c.

Example:

void TIM2_IRQHandler (void)

{

static uint32_t ICValue1;

static uint32_t ICValue2;

/* IC1 Interrupt*/

if((TIM_GetFlagStatus(IR_TIM, TIM_FLAG_CC1) != RESET))

{

TIM_ClearFlag(IR_TIM, TIM_FLAG_CC1);

/* Get the Input Capture value */

ICValue2 = TIM_GetCapture1(IR_TIM);

/* RC5 */

RC5_DataSampling(ICValue2 - ICValue1, 0);

}

/* IC2 Interrupt */

else if((TIM_GetFlagStatus(IR_TIM, TIM_FLAG_CC2) != RESET))

{

TIM_ClearFlag(IR_TIM, TIM_FLAG_CC2);

/* Get the Input Capture value */

ICValue1 = TIM_GetCapture2(IR_TIM);

RC5_DataSampling(ICValue1 , 1);

}

/* Checks whether the IR_TIM flag is set or not.*/

else if ((TIM_GetFlagStatus(IR_TIM, TIM_FLAG_Update) != RESET))

{

/* Clears the IR_TIM's pending flags*/

TIM_ClearFlag(IR_TIM, TIM_FLAG_Update);

RC5_ResetPacket();

}

}

Interface layer AN4099

34/38 DocID023110 Rev 3

5. Define a structure for the IR protocol in the file main.c.

Example:

RC5_Frame_TypeDef IR_FRAME.

6. Call the decoding function in main().

Example:

void main(void)

{

RC5_Init();

while(1)

{

RC5_Decode(&IR_Frame).

}

}

Changes needed to support any IR protocol

This solution can be used to support any infrared protocol by making only a few changes in
the header file and updating the command and device tables.

– Create a header file (exp: ir_protocol_name.h) similar to the sirc_decode.h file.
Change the defines to adapt it to the specifications of the chosen IR protocol (bit
duration min/max, header duration min/max, total bits number, timeout...)

Note: IR refers to the name of the IR protocol. For example, SIRC_HEADER_LOW_MIN_US.

– Change the IR protocol frame field in IR_Frame_TypeDef structure.

Table 5. List of defines in the header file for the IR protocol parameters

Defines Meaning
Example settings
for SIRC protocol

IR_Time_OUT_US Timeout in µs 4050

IR_BITS_COUNT Number of bits 11

IR_TOTAL_BITS _COUNT Total number of bits 11

IR_ONTIME_MIN_US Min low pulse in µs (600 - 60)

IR_ONTIME_MAX_US Max low pulse in µs (1200 + 60)

IR_HEADER_LOW_MIN_US Min header low pulse in µs (2400 - 150)

IR_HEADER_LOW_MAX_US Max header low pulse in µs (2400 + 150)

IR_HEADER_WHOLE_MIN_US Min header whole duration in µs (2400 + 600 - 60)

IR_HEADER_WHOLE_MAX_US Max header whole duration in µs (2400 + 600 + 60)

IR_VALUE_STEP_US Step value between bit0 and bit1 in µs 600

IR_VALUE_MARGIN_US Margin in µs 100

IR_VALUE_00_US Bit0 duration in µs 1200

DocID023110 Rev 3 35/38

AN4099 Interface layer

37

typedef struct

{

/* Structure of the IR frame (Address, Command,....)*/

} IR_Frame_TypeDef;

– in the sirc_decode.c file, add the appropriate IR_Commands and IR_devices
tables for the IR protocol.

4.2.2 IR transmitter drivers

To include an infrared encoder driver based on the IRTIM solution in a user application
follow these steps:

1. Add the header file of the appropriate IR protocol to the project.

Example: rc5_encode.h.

2. Add the file.c corresponding to the IR protocol to the project.

Example: rc5_encode.c.

3. Call the protocol initiation function in the main()

Example: RC5_Encode_Init();

4. Add the TIMx interrupt functions to stm32f0xx_it.c or stm32f3xx_it.c.

Example:

void TIM16_IRQHandler(void)

{

RC5_Encode_SignalGenerate(RC5_FrameManchestarFormat);

/* Clear TIM16 update interrupt */

TIM_ClearITPendingBit(TIM16, TIM_IT_Update);

}

5. Call the encoding function in main().

Example:

void main(void)

{

RC5_Encode_Init();

while(1)

{

RC5_Encode_SendFrame(Address, Instruction, Control)

}

}

Conclusion AN4099

36/38 DocID023110 Rev 3

5 Conclusion

This application note provides a solution for implementing an IR transmitter/receiver in
software using one of the general-purpose timers available in STM32 microcontrollers.

The IR encoding application uses the STM32F0xx and STM32F3xx microcontrollers and
takes advantage of a powerful hardware modulator called IRTIM, that combines signals
from two internal timers to drive the IR interface. This feature makes the microcontroller well
suited for applications that require IR signal generation capability.

The IR decoding application allows the IR solution to be integrated in the HDMI-CEC
module in order to support high-level control functions for all of the various audiovisual
products in a given environment.

DocID023110 Rev 3 37/38

AN4099 Revision history

37

6 Revision history

Table 6. Document revision history

Date Revision Changes

02-May-2012 1 Initial release.

23-Oct-2012 2 Added support for STM32F3xx family of microprocessors.

10-Mar-2016 3

Updated document title, Introduction, Section 2.1: Hardware
considerations, Section 2.2: IR transmitter: universal solution,
Section 3.3.1: RC5 frame decoding mechanism, Section 4: Interface
layer and Section 5: Conclusion.

Updated Table 3: Example of implementation and Table 4: Example of
implementation.

Updated Figure 1: RC5 bit representation, Figure 2: Example of an
RC5 frame, Figure 8: Hardware description, Figure 9: Main loop
flowchart, Figure 11: RC5 send frame flowchart, Figure 12:
Manchester encoding bits and Figure 13: SIRC send frame flowchart.

Added footnotes 1 and 2 to Figure 9.

Removed former Table 1: Applicable products.

Minor text edits across the whole document.

AN4099

38/38 DocID023110 Rev 3

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

	1 Infrared protocol specification
	1.1 RC5 protocol basics
	Figure 1. RC5 bit representation
	Figure 2. Example of an RC5 frame
	Figure 3. RC5 idle time
	Table 1. RC5 timings

	1.2 SIRC protocol basics
	Figure 4. Length of logical bits
	Figure 5. Length of start bit
	Figure 6. Example of SIRC frame
	Table 2. SIRC timings

	2 Infrared transmitter
	2.1 Hardware considerations
	Figure 7. Hardware configuration for infrared transmitter
	Figure 8. Hardware description

	2.2 IR transmitter: universal solution
	Figure 9. Main loop flowchart
	Figure 10. Send IR frame flowchart
	2.2.1 RC5 encoder solution
	Figure 11. RC5 send frame flowchart
	Figure 12. Manchester encoding bits

	2.2.2 How to use the RC5 encoder driver
	2.2.3 SIRC encoder solution
	Figure 13. SIRC send frame flowchart
	Figure 14. SIRC logical bit conversion

	2.2.4 How to use the SIRC encoder driver

	3 Infrared receiver
	3.1 Hardware considerations
	Figure 15. Hardware configuration

	3.2 Universal solution: software implementation using a GP-Timer configured in PWM input mode
	Figure 16. Infrared decoding flowchart

	3.3 RC5 protocol solutions
	3.3.1 RC5 frame decoding mechanism
	Figure 17. RC5 frame decoding mechanism
	Figure 18. Bit determination by the rising edge: low pulse
	Figure 19. Bit determination by the falling edge: high pulse
	Figure 20. RC5 solution flowchart

	3.3.2 RC5 decoding library
	3.3.3 How to use the RC5 decoder driver
	Table 3. Example of implementation

	3.4 SIRC infrared control solution
	3.4.1 Software implementation
	Figure 21. SIRC frame reception mechanism
	Figure 22. SIRC solution flowchart

	3.4.2 SIRC library
	3.4.3 How to use the SIRC decoder driver
	Table 4. Example of implementation

	4 Interface layer
	Figure 23. Application layer architecture
	4.1 Demonstration programs
	4.1.1 Transmitter demonstration using IRTIM
	Figure 24. IR transmitter demo

	4.1.2 Receiver demonstration using GP-Timer configured in PWM mode
	Figure 25. RC5 received frame shown in the LCD

	4.2 How to customize the IR drivers
	4.2.1 IR receiver drivers
	Table 5. List of defines in the header file for the IR protocol parameters

	4.2.2 IR transmitter drivers

	5 Conclusion
	6 Revision history
	Table 6. Document revision history

