Introduction

Many designers know oscillators based on Pierce-Gate topology (hereinafter referred to as Pierce oscillators), but not all of them really understand how they operate, and only a few master their design. In practice, many of them do not even really pay attention to the oscillator design until they realize that it does not operate properly (usually when the product where it is embedded is already being produced). A crystal not working as intended results in project delays if not overall failure.

The oscillator should receive the proper amount of attention during the design phase, well before moving to the manufacturing phase. The designer must avoid the nightmare scenario of products being returned from field.

This application note introduces the Pierce oscillator basics and provides guidelines for good oscillator design. It also shows how to determine the different external components, and provides guidelines for correct PCB design.

This document finally contains an easy guideline to select suitable crystals and external components, and lists some recommended crystals (HSE and LSE) for the STM32 32-bit ARM® Cortex® MCUs and for the STM8AF/AL/S microcontrollers, to speed-up the application development. Refer to Table 1 for the list of applicable products.

<table>
<thead>
<tr>
<th>Type</th>
<th>Product categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcontrollers</td>
<td>STM8S Series</td>
</tr>
<tr>
<td></td>
<td>STM8AF Series, STM8AL Series</td>
</tr>
<tr>
<td></td>
<td>STM32 32-bit ARM Cortex MCUs</td>
</tr>
</tbody>
</table>
List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Quartz crystal properties and model</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Oscillator theory</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>Negative resistance</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Transconductance</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Negative-resistance oscillator principles</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Pierce oscillator design</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction to Pierce oscillators</td>
<td>11</td>
</tr>
<tr>
<td>3.2</td>
<td>RF feedback resistor</td>
<td>11</td>
</tr>
<tr>
<td>3.3</td>
<td>C_L load capacitance</td>
<td>12</td>
</tr>
<tr>
<td>3.4</td>
<td>Oscillator transconductance</td>
<td>13</td>
</tr>
<tr>
<td>3.5</td>
<td>Drive level (DL) and external resistor (RExt) calculation</td>
<td>14</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Calculating drive level (DL)</td>
<td>14</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Another drive level measurement method</td>
<td>15</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Calculating the external resistor (RExt)</td>
<td>16</td>
</tr>
<tr>
<td>3.6</td>
<td>Startup time</td>
<td>16</td>
</tr>
<tr>
<td>3.7</td>
<td>Crystal pullability</td>
<td>17</td>
</tr>
<tr>
<td>3.8</td>
<td>Safety factor</td>
<td>18</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Definition</td>
<td>18</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Measurement methodology</td>
<td>19</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Safety factor for STM32 and STM8 oscillators</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>Guidelines for selecting a suitable crystal and external components</td>
<td>20</td>
</tr>
<tr>
<td>4.1</td>
<td>Low-speed oscillators embedded in STM32 microcontrollers</td>
<td>20</td>
</tr>
<tr>
<td>4.2</td>
<td>Detailed steps to select an STM32-compatible crystal</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>Some recommended resonators for STM32 microcontrollers</td>
<td>26</td>
</tr>
<tr>
<td>5.1</td>
<td>STM32-compatible high-speed resonators</td>
<td>26</td>
</tr>
<tr>
<td>5.2</td>
<td>STM32-compatible low-speed resonators</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>Some recommended crystals for STM8AF/AL/S microcontrollers</td>
<td>30</td>
</tr>
</tbody>
</table>
6.1 Part numbers of recommended crystal oscillators 30
6.2 Part numbers of recommended ceramic resonators 30

7 Tips for improving oscillator stability ... 31
 7.1 PCB design guidelines .. 31
 7.2 PCB design examples ... 33
 7.3 Soldering guidelines ... 37

8 Reference documents ... 38

9 FAQs ... 39

10 Conclusion .. 40

11 Revision history ... 41
List of tables

Table 1. Applicable products .. 1
Table 2. Example of equivalent circuit parameters 7
Table 3. Typical feedback resistor values for given frequencies 12
Table 4. Safety Factor (Sf) for STM32 and STM8 oscillators 19
Table 5. LSE oscillators embedded into STM32 microcontrollers 22
Table 6. HSE oscillators embedded in STM32 microcontrollers 26
Table 7. Recommended crystal resonators for the LSE oscillator in STM32 microcontrollers ... 27
Table 8. KYOCERA compatible crystals (not exhaustive list) 30
Table 9. NDK compatible crystals (not exhaustive list) 30
Table 10. Recommendable conditions (for consumer) 30
Table 11. Recommendable conditions (for CAN-BUS) 30
Table 12. Document revision history ... 41
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.</td>
<td>Quartz crystal model.</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2.</td>
<td>Impedance representation in the frequency domain.</td>
<td>6</td>
</tr>
<tr>
<td>Figure 3.</td>
<td>I-V curve of a dipole showing a negative transistance area (in purple)</td>
<td>9</td>
</tr>
<tr>
<td>Figure 4.</td>
<td>Block diagram of a typical oscillation loop based on a crystal resonator</td>
<td>10</td>
</tr>
<tr>
<td>Figure 5.</td>
<td>Pierce oscillator circuitry.</td>
<td>11</td>
</tr>
<tr>
<td>Figure 6.</td>
<td>Inverter transfer function.</td>
<td>12</td>
</tr>
<tr>
<td>Figure 7.</td>
<td>Current drive measurement with a current probe</td>
<td>15</td>
</tr>
<tr>
<td>Figure 8.</td>
<td>Negative resistance measurement methodology description</td>
<td>19</td>
</tr>
<tr>
<td>Figure 9.</td>
<td>Classification of low-speed crystal resonators</td>
<td>20</td>
</tr>
<tr>
<td>Figure 10.</td>
<td>Recommended layout for an oscillator circuit</td>
<td>32</td>
</tr>
<tr>
<td>Figure 11.</td>
<td>PCB with separated GND plane and guard ring around the oscillator</td>
<td>33</td>
</tr>
<tr>
<td>Figure 12.</td>
<td>GND plane</td>
<td>33</td>
</tr>
<tr>
<td>Figure 13.</td>
<td>Signals around the oscillator</td>
<td>33</td>
</tr>
<tr>
<td>Figure 14.</td>
<td>Preliminary design (PCB design guidelines not respected)</td>
<td>34</td>
</tr>
<tr>
<td>Figure 15.</td>
<td>Final design (design guidelines followed)</td>
<td>35</td>
</tr>
<tr>
<td>Figure 16.</td>
<td>GND plane</td>
<td>35</td>
</tr>
<tr>
<td>Figure 17.</td>
<td>Top layer view.</td>
<td>35</td>
</tr>
<tr>
<td>Figure 18.</td>
<td>PCB guidelines not respected</td>
<td>36</td>
</tr>
<tr>
<td>Figure 19.</td>
<td>PCB guidelines respected</td>
<td>37</td>
</tr>
</tbody>
</table>
1 Quartz crystal properties and model

A quartz crystal is a piezoelectric device transforming electric energy into mechanical energy and vice versa. The transformation occurs at the resonant frequency. The quartz crystal can be modeled as shown in Figure 1.

Figure 1. Quartz crystal model

- C_0: represents the shunt capacitance resulting from the capacitor formed by the electrodes
- L_m: (motional inductance) represents the vibrating mass of the crystal
- C_m: (motional capacitance) represents the elasticity of the crystal
- R_m: (motional resistance) represents the circuit losses

The impedance of the crystal is given by the following equation (assuming that R_m is negligible):

\[
Z = \frac{j}{w} \times \frac{w^2 \times L_m \times C_m - 1}{(C_0 + C_m) - \frac{w^2 \times L_m \times C_m \times C_0}{C_0}}
\]

Figure 2 represents the impedance in the frequency domain.

Figure 2. Impedance representation in the frequency domain
F_s is the series resonant frequency when the impedance $Z = 0$. Its expression can be deduced from equation (1) as follows:

\[
F_s = \frac{1}{2\pi \sqrt{L_m C_m}}
\]

F_a is the anti-resonant frequency when impedance Z tends to infinity. Using equation (1), it is expressed as follows:

\[
F_a = F_s \sqrt{1 + \frac{C_m}{C_0}}
\]

The region delimited by F_s and F_a is usually called the area of parallel resonance (shaded area in Figure 2). In this region, the crystal operates in parallel resonance and behaves as an inductance that adds an additional 180 ° phase to the loop. Its frequency F_p (or F_L: load frequency) has the following expression:

\[
F_p = F_s \left(1 + \frac{C_m}{2(C_0 + C_L)}\right)
\]

From equation (4), it appears that the oscillation frequency of the crystal can be tuned by varying C_L load capacitance. This is why in their datasheets, crystal manufacturers indicate the exact C_L required to make the crystal oscillate at the nominal frequency.

Table 2 gives an example of equivalent crystal circuit component values to have a nominal frequency of 8 MHz.

<table>
<thead>
<tr>
<th>Equivalent component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_m</td>
<td>8 Ω</td>
</tr>
<tr>
<td>L_m</td>
<td>14.7 mH</td>
</tr>
<tr>
<td>C_m</td>
<td>0.027 pF</td>
</tr>
<tr>
<td>C_0</td>
<td>5.57 pF</td>
</tr>
</tbody>
</table>

Using equations (2), (3) and (4) we can determine F_s, F_a and F_p of this crystal:

- $F_s = 7988768$ Hz
- $F_a = 8008102$ Hz

If the load capacitance C_L is equal to 10 pF the crystal will oscillate at $F_p = 7995695$ Hz.

To have an oscillation frequency of exactly 8 MHz, C_L should be equal to 4.02 pF.
2 Oscillator theory

Oscillators are one of the backbone components of modern digital ICs. They can be classified into different sub-families depending on their topology and operating principles. To each oscillator sub-family corresponds a suitable mathematical model that can be used to study the oscillator behavior and theoretically determine its performance.

This section deals only with harmonic oscillators (relaxation oscillators are not within the scope of this application note) with a particular focus on Pierce-oscillator topology (see Section 3: Pierce oscillator design for details). This restricted scope is due to the fact that all the oscillators covered by this document that require external passive components (external resonator, load capacitors, etc.), are of the previously mentioned type and topology.

The harmonic oscillator family can be divided into two main sub-families:

- Negative-resistance oscillators
- Positive-feedback oscillators.

These two sub-families of oscillators are similar for what regards the output waveform. They deliver an oscillating waveform at the desired frequency. This waveform is typically composed of a fundamental sine wave of the desired frequency plus a sum of overtone harmonics (at frequencies multiple of the fundamental one) due to the nonlinearity of some components of the oscillation loop.

These two sub-families differ in their operating principles. This difference also implies a different mathematical model to describe and analyze each sub-family.

Positive-feedback oscillators are generally modeled using the Barkhausen model where an oscillator must fulfill the Barkhausen criterion to maintain a stable oscillation at the desired frequency.

Negative-resistance oscillators could be described by the Barkhausen model, however this approach is not adequate. The most suitable approach to analyze a negative-resistance oscillator is by using the negative-resistance model as described in E. Vittoz paper ([1]).

STM32 low-speed external (LSE) and high-speed external (HSE) oscillators are both designed following the negative-resistance principle, hence this section focuses on the presentation of this model.

2.1 Negative resistance

Theoretically speaking, a negative resistance would be a dipole that absorbs heat and converts the energy into an electrical current proportional to the applied voltage but flowing in the opposite direction (exactly the opposite mechanism of an electrical resistance). In the real world such a dipole does not exist.

The term “negative resistance” is actually a misnomer of the “negative transresistance”, defined by the ratio between a given voltage variation (ΔV) and the induced current variation (ΔI). Unlike the resistance, always positive, the transresistance (also known as differential resistance) can be either positive or negative. Figure 3 gives the current-voltage curve for a dipole that shows a negative transresistance region. It is obvious that the V/I ratio is always positive, this is not the case for the ΔV / ΔI ratio.
The portion of the I-V curve represented in purple shows a negative transresistance:
\[\frac{\Delta V}{\Delta I} = \frac{V(D) - V(C)}{I(D) - I(C)} < 0 \]

while the portions in blue shows a positive transresistance:
\[\frac{\Delta V}{\Delta I} = \frac{V(B) - V(A)}{I(B) - I(A)} > 0 \]

Figure 3. I-V curve of a dipole showing a negative transresistance area (in purple)

2.2 Transconductance

Similarly to the conductance, defined as the inverse of the resistance, the transconductance is defined as the inverse of the transresistance. Transconductance can also be defined as the differential conductance, expressed as \(\Delta V / \Delta I \).

2.3 Negative-resistance oscillator principles

An oscillation loop is made of two branches (see Figure 4):
- The active branch of the oscillation loop, composed by the oscillator itself. This branch is responsible for providing enough energy at startup to make the oscillation start and build up until it reaches the stable oscillation phase. When a stable oscillation is reached, the oscillator branch provides enough energy to compensate for the losses of the passive branch.
- The passive branch is mainly composed of the resonator, the two load capacitors and all the parasitic capacitances.
Following the small signals theory and when the active branch (oscillator part) is correctly biased, the latter should have its transconductance equal to the passive branch conductance to maintain a stable oscillation around the oscillator biasing voltage.

However, at startup, the oscillator transconductance should be higher than (multiple of) the conductance of the passive part of the oscillation loop to maximize the possibility to build up the oscillation from inherent noise of the oscillation loop. Note that an excessive oscillator transconductance compared to the oscillation loop passive branch conductance may also saturate the oscillation loop and cause a startup failure.

To ensure the oscillator ability to startup successfully and maintain stable oscillation, a ratio between the negative resistance of the oscillation loop and the crystal maximal equivalent series resistance (ESR) is specified for STM32 and STM8 microcontrollers. It is recommended to have a ratio higher than 5 for the HSE oscillators, and higher than 3 for the LSE oscillators.
3 Pierce oscillator design

This section describes the different parameters and how to determine their values in order to be compliant with the Pierce oscillator design.

3.1 Introduction to Pierce oscillators

Pierce oscillators are variants of Colpitts oscillators, widely used in conjunction with crystal resonators. A Pierce oscillator (see Figure 5) requires a reduced set of external components, this results in a lower final design cost. In addition, the Pierce oscillator is known for its stable oscillation frequency when paired with a crystal resonator, in particular a quartz-crystal resonator.

![Figure 5. Pierce oscillator circuitry](image)

- Inv: the internal inverter that works as an amplifier
- Q: crystal quartz or a ceramic resonator
- R_F: internal feedback resistor
- R_{Ext}: external resistor to limit the inverter output current
- C_{L1} and C_{L2}: are the two external load capacitances
- C_s: stray capacitance, is the sum of the microcontroller pin capacitance (OSC_IN and OSC_OUT) and the PCB (a parasitic) capacitance.

3.2 R_F feedback resistor

In most STMicroelectronics microcontrollers, R_F is embedded in the oscillator circuitry, its role is to make the inverter act as an amplifier. The feedback resistor is connected between V_{in} and V_{out} to bias the amplifier at $V_{out} = V_{in}$, and force it to operate in the linear region.
(shaded area in Figure 6). The amplifier amplifies the noise (for example, the thermal noise of the crystal) within the range of serial to parallel frequency \((F_a, F_p)\), this noise causes the oscillation to start.

Figure 6. Inverter transfer function

![Inverter transfer function diagram]

Table 3 provides typical values of \(R_F\).

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Feedback resistor range</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.768 kHz</td>
<td>10 to 25 M(\Omega)</td>
</tr>
<tr>
<td>1 MHz</td>
<td>5 to 10 M(\Omega)</td>
</tr>
<tr>
<td>10 MHz</td>
<td>1 to 5 M(\Omega)</td>
</tr>
<tr>
<td>20 MHz</td>
<td>470 k(\Omega) to 5 M(\Omega)</td>
</tr>
</tbody>
</table>

3.3 \(C_L\) load capacitance

The load capacitance is the terminal capacitance of the circuit connected to the crystal oscillator. This value is determined by the external capacitors \(C_{L1}\) and \(C_{L2}\) and the stray capacitance of the printed circuit board and connections (\(C_s\)). The \(C_L\) value is specified by the crystal manufacturer. For the frequency to be accurate, the oscillator circuit has to show the same load capacitance to the crystal as the one the crystal was adjusted for. Frequency stability mainly requires that the load capacitance be constant. The external capacitors \(C_{L1}\) and \(C_{L2}\) are used to tune the desired value of \(C_L\) to reach the value specified by the crystal manufacturer.

The following equation gives the expression of \(C_L\):

\[
C_L = \frac{C_{L1} \times C_{L2}}{C_{L1} + C_{L2}} + C_s
\]
For example, with $C_L = 15 \text{ pF}$ and $C_s = 5 \text{ pF}$,

$$C_L - C_s = \frac{C_L1 \times C_L2}{C_L1 + C_L2} = 10 \text{ pF}$$

hence $C_{L1} = C_{L2} = 20 \text{ pF}$.

3.4 Oscillator transconductance

Theoretically, to make the oscillation start and reach a stable phase, the oscillator must provide sufficient gain to compensate for the oscillation loop losses and to provide the energy for the oscillation build up. When the oscillation becomes stable, the equality between the oscillator provided power and the oscillation loop dissipated power is achieved.

Practically speaking, and due to tolerances on passive component values and their dependency on environmental parameters (e.g. temperature), the ratio between oscillator gain and oscillation loop critical gain cannot just exceed 1, as this would induce a too long oscillator startup time and might even prevent the oscillator from starting up.

This section describes the two approaches that can be used to check if an STM32 oscillator can be paired with a given resonator to ensure that the oscillation is started and maintained under the specified conditions for both resonator and oscillator. The approach depends on how the oscillator parameters are specified in the microcontroller datasheet:

- If the oscillation loop maximal critical gain parameter ($G_{m\text{crit,max}}$) is specified, ensure that the oscillation loop critical gain (g_{mcrit}) is smaller than the specified parameter.
- If the oscillator transconductance parameter (g_m) is specified, make sure that the gain margin ratio ($gain_{\text{margin}}$) is bigger than 5.

These parameters are determined by the formula $gain_{\text{margin}} = g_m / g_{mcrit}$, where

- g_m is the oscillator transconductance specified in the datasheet. Note that the HSE oscillator transconductance is in the range of a dozen of mA/V, while LSE oscillator transconductance ranges from a few to a few dozens of µA/V, depending on the product.
- g_{mcrit} is defined as the minimal transconductance of an oscillator required to maintain a stable oscillation when it is a part of the oscillation loop for which this parameter is relevant. g_{mcrit} is computed from oscillation-loop passive components parameters.

Assuming that C_{L1} equals C_{L2}, and that the crystal sees the same C_L on its pads as the value given by the crystal manufacturer, g_{mcrit} is expressed as follows:

$$g_{mcrit} = 4 \times ESR \times (2\pi F)^2 \times (C_0 + C_L)^2$$

where

- ESR is the equivalent series resistance
- C_0 is the crystal shunt capacitance
- C_L is the crystal nominal load capacitance.
- F is the crystal nominal oscillation frequency.
For example, to design the oscillation loop for the HSE oscillator embedded in an STM32F1 microcontroller with a transconductance value \((g_m)\) of 25 mA/V, we choose a quartz crystal from Fox, with the following characteristics:

- frequency = 8 MHz
- \(C_0 = 7\) pF
- \(C_L = 10\) pF
- ESR = 80 \(\Omega\).

To check if this crystal will oscillate, let us calculate \(g_{mcrit}\):

\[
g_{mcrit} = 4 \times 80 \times (2 \times \pi \times 8 \times 10^{-6})^2 \times (7 \times 10^{-12} + 10 \times 10^{-12})^2 = 0.23 \text{ mA/V}
\]

Calculating the gain margin gives:

\[
gain_{margin} = \frac{g_m}{g_{mcrit}} = \frac{25}{0.23} = 107
\]

The gain margin is sufficient to start the oscillation and the "gain margin greater than 5" condition is reached. The oscillator is expected to reach a stable oscillation after a typical delay specified in the datasheet.

If an insufficient gain margin is found (\(gain_{margin} < 5\)), the oscillation might start up in some conditions (achieved in laboratory) when designing and testing the final application, but this does not guarantee that the oscillation will start up in operating conditions. It is highly recommended that the selected crystal has a gain margin higher than or equal to 5 (try to select a crystal with a lower ESR and/or a lower \(C_L\)).

The conversion between the oscillator transconductance \((g_m)\) and the oscillation loop maximal critical gain \((G_{m_crit_max})\) is given by the formula \(G_{m_crit_max} = g_m / 5\).

3.5 Drive level (DL) and external resistor (\(R_{Ext}\)) calculation

The drive level (DL) and external resistor value (\(R_{Ext}\)) are closely related and will be addressed in the same section.

3.5.1 Calculating drive level (DL)

The drive level is the power dissipated in the crystal. It has to be limited, otherwise the quartz crystal can fail due to excessive mechanical vibration. The maximum drive level is specified by the crystal manufacturer, usually in mW. Exceeding this value may lead to the crystal being damaged, or to a shorter device lifetime.

The drive level is given by the following formula: \(DL = ESR \times I_Q^2\), where:

- ESR is the equivalent series resistor (specified by the crystal manufacturer):
 \[
 ESR = R_m \times \left(1 + \frac{C_0}{C_L}\right)^2
 \]

- \(I_Q\) is the current flowing through the crystal in RMS. This current can be displayed on an oscilloscope as a sine wave. The current value can be read as the peak-to-peak value \((I_{PP})\). When using a current probe (as shown in Figure 7), the voltage scale of an oscilloscope may be converted into 1 mA / 1 mV.
So, as described previously, when tuning the current with the potentiometer, the current through the crystal does not exceed $I_{Q\text{max RMS}}$ (assuming that the current through the crystal is sinusoidal).

Thus $I_{Q\text{max RMS}}$ is given by:

$$I_{Q\text{max RMS}} = \frac{\sqrt{\frac{D_{\text{max}}}{\text{ESR}}}}{\sqrt{2}} = I_{Q\text{max PP}}$$

Therefore the current through the crystal (peak-to-peak value read on the oscilloscope) should not exceed a maximum peak-to-peak current ($I_{Q\text{max PP}}$) equal to:

$$I_{Q\text{max PP}} = 2 \times \sqrt{\frac{2 \times D_{\text{max}}}{\text{ESR}}}$$

Hence the need for an external resistor R_{Ext} (refer to Section 3.5.3) when I_Q exceeds $I_{Q\text{max PP}}$. The addition of R_{Ext} then becomes mandatory and it is added to ESR in the expression of $I_{Q\text{max}}$.

3.5.2 Another drive level measurement method

The drive level can be computed as $DL = I_{QRMS}^2 \times \text{ESR}$, where I_{QRMS} is the RMS AC current.

This current can be calculated by measuring the voltage swing at the amplifier input with a low-capacitance oscilloscope probe (no more than 1 pF). The amplifier input current is negligible with respect to the current through C_{L1}, so we can assume that the current through the crystal is equal to the current flowing through C_{L1}. Therefore the RMS voltage at this point is related to the RMS current by $I_{QRMS} = 2 \pi F \times V_{RMS} \times C_{tot}$, with:

- $F = \text{crystal frequency}$
- $V_{RMS} = \frac{V_{pp}}{\sqrt{2}}$, where V_{pp} is the peak-to-peak voltage measured at C_{L1} level
- $C_{tot} = C_{L1} + (C_s / 2) + C_{\text{probe}}$ where:
 - C_{L1} is the external load capacitance at the amplifier input
 - C_s is the stray capacitance
 - C_{probe} is the probe capacitance

Therefore the drive level, DL, is given by: $DL = \frac{\text{ESR} \times (\pi \times F \times C_{tot})^2 \times (V_{pp})^2}{2}$.
This DL value must not exceed the drive level specified by the crystal manufacturer.

3.5.3 Calculating the external resistor (R_{Ext})

The role of this resistor is to limit the drive level of the crystal. With C_{L2}, it forms a low-pass filter that forces the oscillator to start at the fundamental frequency and not at overtones (prevents the oscillator from vibrating at the odd harmonics of the fundamental frequency). If the power dissipated in the crystal is higher than the value specified by the crystal manufacturer, the external resistor R_{Ext} becomes mandatory to avoid overdriving the crystal. If the power dissipated in the selected quartz is lower than the drive level specified by the crystal manufacturer, the insertion of R_{Ext} is not recommended and its value is then 0 Ω.

An initial estimation of R_{Ext} is obtained by considering the voltage divider formed by R_{Ext} and C_{L2}. Thus, the value of R_{Ext} is equal to the reactance of C_{L2}.

Therefore $R_{\text{Ext}} = \frac{1}{2\pi F C_{L2}}$, and so, with an oscillation frequency of 8 MHz and $C_{L2} = 15$ pF, we have $R_{\text{Ext}} = 1326$ Ω.

The recommended way of optimizing R_{Ext} is to first choose C_{L1} and C_{L2} as explained before, and to connect a potentiometer in the place of R_{Ext}. The potentiometer should be initially set to be approximately equal to the capacitive reactance of C_{L2}. It should then be adjusted as required, until an acceptable output and crystal drive level are obtained.

Caution: After calculating R_{Ext} it is recommended to recalculate the gain margin (refer to Section 3.4) to make sure that the addition of R_{Ext} has no effect on the oscillation condition. That is, the value of R_{Ext} has to be added to ESR in the expression of g_{mcrit}, and $g_m \gg g_{\text{mcrit}}$ must also remain true:

$$g_m \gg g_{\text{mcrit}} = 4 \times (\text{ESR} + R_{\text{Ext}}) \times (2\pi F)^2 \times (C_0 + C_L)^2$$

Note: If R_{Ext} is too low, there is a considerable decrease of the power dissipation by the crystal. If, on the other hand, R_{Ext} is too high, there is no oscillation.

3.6 Startup time

The startup time is the time required by the oscillation to start up and then build up until it reaches a stable oscillation phase. The startup time depends, among other factors, on the Q-factor of the resonator used. If the oscillator is paired with a quartz-crystal resonator characterized by its high Q-factor then the startup time will be higher if a ceramic resonator is used (ceramic resonators are know for their poor Q-factor compared to quartz-crystal resonators). The startup time also depends on the external components, C_{L1} and C_{L2}, and on the crystal frequency. The higher the crystal nominal frequency, the lower the start up time. In addition the startup problems are usually due to the fact that the gain margin is not properly dimensioned (as explained previously). This is caused either by C_{L1} and C_{L2} being too small or too large, or by the ESR being too high.

As an example, an oscillator paired with a few MHz nominal frequency crystal resonator would typically start up after a delay of few ms.

The startup time of a 32.768 kHz crystal ranges from 1 to 5 s.
3.7 Crystal pullability

Crystal pullability, also known as crystal sensitivity, measures the impact of small variations of the load capacitance seen by the crystal on the oscillation frequency shifting. This parameter usually has more importance when dealing with low-speed oscillators, since they are used to clock time-keeping functions (such as real-time clock functions).

When the final application is still in design stage, the influence of this parameter on the low-speed oscillator accuracy (and consequently on all the time-keeping functions clocked by this oscillator) is not obvious. This is due to the fact that the designer fine tunes the load capacitors until the desired oscillation frequency is obtained. When the design reaches production stage it is frozen and all the passive components including the load capacitors have their values well defined. Any change of the load capacitance will directly induce a shift of the oscillation frequency.

Changes in the capacitive load (C_L) seen by the crystal may be thought of as due to inadequate operation environment and only happening when the final design is not properly operated. In practice, this is not true since changes of the load capacitance are rather frequent and must be taken into account by the designer. The main contributors to the capacitive load (C_L) seen by the oscillator are:

- the capacitance of the load capacitors C_{L1} and C_{L2}
- the stray capacitance of the PCB paths
- the parasitic capacitance of the oscillator pins.

Any change on the capacitances listed above directly shifts the oscillation frequency. When the design is in production stage, many of these capacitance values cannot be accurately controlled. Selecting a crystal with low-pullability limits the influence of such production uncertainties on the final oscillation frequency accuracy.

Generally speaking, the higher the load capacitance (C_L) of a crystal, the lower its pullability. As an example, let us consider a crystal with a pullability of 45 PPM / pF. To fine tune the oscillation frequency, this crystal is loaded by two C0G ceramic capacitors (having a ± 5% tolerance of their nominal value), C_{L1} and C_{L2}, with the same capacitances of 7 pF.

From crystal point of view, the two load capacitors are mounted in series, which means that their contribution to the C_L is $(C_{L1} = C_{L2}) / 2$. As C_{L1} equals C_{L2}, the tolerance on their contribution to C_L remains the same and is equal to ± 5%. Now if we consider that all the remaining contributors to the C_L are maintained to their nominal values at design stage (to assess the frequency shift magnitude induced only by load capacitor tolerances), then the load capacitance seen by the crystal (C_L) will either decrease by 0.175 pF or increase by the same value. This will induce an oscillation shift of:

$$0.175 \text{ pF} \times 45 \text{ PPM/pF} = ~7.8 \text{ PPM} (~0.7 \text{ s/day for a time-keeping function such as RTC})$$

The above example shows that the lower the pullability, the lower the impact of small load capacitance deviation on the frequency shifting. Crystal pullability is an important factor when defining the final application PPM budget.

$$\text{Pullability (PPM/ pF)} = \frac{C_m \times 10^6}{2 \times (C_0 + C_L)^2}$$
where
- \(C_m \) is the crystal motional capacitance
- \(C_0 \) is the crystal shunt capacitance
- \(C_L \) is the crystal nominal load capacitance

Next sections give a more detailed description on how to calibrate the oscillation frequency and how to estimate the final accuracy uncertainty (PPM) budget.

3.8 Safety factor

3.8.1 Definition

Resonators (such as crystal resonators) are well known to undergo aging effects, that manifest themselves over time in a deviation of resonator parameters from their initial values defined by the specifications. Among the impacted parameters there is the resonator ESR, whose value depends on the environment conditions, such as moisture and temperature. The oscillator transconductance depends on the microcontroller power supply voltage and on the temperature.

The safety factor parameter enables to determine the oscillator safe operation under the operating conditions and during the application life. It measures the ability of the oscillator not to fail under operating conditions.

The safety factor is defined as the ratio between the oscillator negative resistance and the resonator ESR:

\[
S_f = \frac{\text{Oscillator negative resistance}}{\text{Crystal ESR}} = \frac{R_{\text{ADD}} + \text{Crystal ESR}}{\text{Crystal ESR}}
\]
3.8.2 Measurement methodology

To measure the oscillator negative resistance, a resistance is added in series to the resonator as indicated in Figure 8.

![Figure 8. Negative resistance measurement methodology description](image)

The oscillator negative resistance is the value of smallest series resistance R_{ADD} that will prevent the oscillator from starting up successfully.

In practice, this value is set by conducting several experiments in which the value of the series resistance is slightly increased compared to the previous experiment. The sequence stops when the oscillator is unable to start up correctly. The oscillator negative resistance is equal to the value of the added series resistance.

3.8.3 Safety factor for STM32 and STM8 oscillators

Table 4 summarizes the safety factors for the oscillators embedded in STM32 and STM8 microcontrollers. For the LSE oscillator, the oscillation is considered safe for a safety factor higher than or equal to 3, while for the HSE oscillator this is true when the safety factor is higher than or equal to 5.

<table>
<thead>
<tr>
<th>Safety Factor (S_f)</th>
<th>Assurance level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HSE</td>
</tr>
<tr>
<td>$S_f \geq 5$</td>
<td>Safe</td>
</tr>
<tr>
<td>$3 \leq S_f < 5$</td>
<td>Not Safe</td>
</tr>
<tr>
<td>$S_f < 3$</td>
<td>Not Safe</td>
</tr>
</tbody>
</table>

1. Safe and very safe oscillations are shown in green, while unsafe oscillation is show in yellow.
4 Guidelines for selecting a suitable crystal and external components

4.1 Low-speed oscillators embedded in STM32 microcontrollers

The low-speed resonator market provides a wide range of crystal resonators. Selecting the most adequate one for a given design depends on many parameters. Below a list of the most important parameters that must be taken into account (only technical factors are listed):

- Crystal size or footprint
- Crystal load capacitance (C_L)
- Oscillation frequency offset (PPM)
- Startup time.

A trade-off between the above parameters must be found depending on the key design criteria. Figure 9 shows that the resonators available on the market can be divided into two categories, depending on the above mentioned factors and trade-offs.

![Figure 9. Classification of low-speed crystal resonators](image)

A resonator with a relatively high load-capacitance (such as 12.5 pF) will require more power for the oscillator to drive the oscillation loop at the resonator nominal frequency. Designs targeting low power consumption (e.g. RTC application powered by coin-batteries requiring very long autonomy) are consequently more likely to use resonators with relatively small load capacitance. On the other side, big load capacitance resonators have a much smaller pullability compared to resonators with small load capacitance. As a result, designs without severe constraints on power consumption tend to use big load capacitance crystals to reduce pullability.
One of the key areas where crystal resonators are massively used is the hand-held and wearable appliance consumer market (e.g. smart phones, Bluetooth\textregistered kits). For this market segment the crystal size is of critical importance. However it is widely known that small-footprint crystals come always with high crystal ESR. For this kind of designs, the choice may be harder if the target design has severe constraints in terms of power consumption (the usual scenario). In this case, choose a crystal with a load capacitance as small as possible to optimize power consumption even if this compromises pullability. In addition, crystals with high ESR may have a slightly longer startup time. If there are no constraints on crystal size, then it is recommended to choose a crystal with the smallest possible ESR.

In noisy environment (almost always the case for industrial applications), if there are no constraints on power consumption, it is recommended to choose crystals with high load capacitance. These crystals will require a high-drive current from the oscillator while being more robust against noise and external perturbations. Another advantage is that the design pullability will be minimized.

Depending on the microcontroller used, all the resonator families listed below can be compatible with your design, or only some of them. STM32 microcontrollers embed two types of low-speed oscillator (LSE):

- **Constant-gain low-speed oscillators**

 This type of LSE oscillators features a constant gain, which makes them compatible only with a few crystal groups mentioned above. For example, LSE oscillators embedded in STM32F2 and STM32L1 microcontrollers target designs with severe power consumption constraint. The selected crystal should consequently have a low load capacitance and a moderate ESR. LSE oscillators embedded into STM32F1 microcontrollers target crystal resonators with moderate ESR and moderate load capacitance.

- **Configurable-gain low-speed oscillators**

 LSE oscillators belonging to this family have the main advantage to be compatible with a large number of crystals. Almost no constraint will be induced by the STM32 microcontroller embedding this kind of LSE oscillator. This large list of compatible resonator crystals allows to focus only on design constraints (e.g. power consumption, footprint) when selecting a compatible resonator. These LSE oscillators are divided into two categories:

 - Dynamically (on-the-fly) modifiable gain LSE oscillators

 The gain of this type of LSE oscillators can be changed either before starting the oscillator or after enabling it.

 - Statically modifiable gain LSE oscillators

 The gain can be changed only when the LSE oscillator is turned off. If the oscillator transconductance has to be increased or decreased, the LSE must be turned off first.

Table 5 gives the list of low-speed oscillators (LSE) embedded in STM32 microcontrollers.

Caution: When the gain is modified either statically or on-the-fly, the calibration of the oscillation frequency must be re-adjusted to estimate the final accuracy uncertainty (PPM) budget.

Caution: In STM32F0 and STM32F3 MCUs, High drive mode ($g_m = 25 \, \mu A/V$) should be used only with 12.5 pF crystals to avoid saturating the oscillation loop and causing a startup failure. When used with a low C_L crystal (e.g. $C_L = 6 \, pF$), the oscillation frequency jitter and duty cycle may be distorted.
Table 5. LSE oscillators embedded into STM32 microcontrollers

<table>
<thead>
<tr>
<th>Drive level</th>
<th>F0 Series / F3 Series</th>
<th>F1 Series T Series</th>
<th>F2 Series</th>
<th>F4_g1</th>
<th>F4_g2</th>
<th>L0 Series / L4 Series</th>
<th>L1 Series</th>
<th>F7 Series / H7 Series</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
<td>NA</td>
<td>NA</td>
<td>Low</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>gm (min)</td>
<td>5</td>
<td>8</td>
<td>15</td>
<td>25</td>
<td>5</td>
<td>2.8</td>
<td>2.8</td>
<td>7.5</td>
<td>2.5</td>
</tr>
<tr>
<td>G_m crt_max</td>
<td>1</td>
<td>1.6</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
<td>0.56</td>
</tr>
</tbody>
</table>

1. Color code:
 - Yellow: LSE oscillators with transconductance modifiable on the fly (dynamically).
 - Green: LSE oscillators with non-modifiable transconductance.
 - Gray: LSE oscillators with statically-modifiable transconductance.

2. F4_g1: STM32F4 Series with LSE generation 1. This category corresponds to STM32F401/405/407/427/429xx MCUs that feature LSE oscillators with non-modifiable transconductance.

3. F4_g2: STM32F4 Series with LSE generation 2. This category corresponds to STM32F411/446/469/479xx, featuring LSE oscillators with statically-modifiable transconductance.
4.2 Detailed steps to select an STM32-compatible crystal

This section describes the procedure recommended to select suitable crystal/external components. The whole procedure is divided into three main steps:

Step 1: Check the resonator compatibility with the selected STM32 microcontroller

To check the compatibility between the selected crystal and the STM32 microcontroller, first identify which procedure has to be followed among the two procedures described in Section 3.4: Oscillator transconductance. The decision should be made based on the oscillator specification provided in the product datasheet:

- If the oscillator transconductance parameter is specified, then the first procedure should be applied. Ensure that the gain margin ratio is higher than five (x5) to make sure that the crystal is compatible with the selected STM32 microcontroller.
- If $G_{m_crit_max}$ is specified instead, make sure g_{m_crit} for the oscillation loop is smaller than the specified $G_{m_crit_max}$ value.

Step 2: Determine the capacitance value of the load capacitors C_L1 and C_L2

To determine the right capacitance values for C_L1 and C_L2 load capacitors, apply the formula specified in Section 3.3: C_L load capacitance. The values obtained are approximations of the exact capacitances to be used. In a second phase, to fine tune the values of the load capacitors, a series of experimental iterations should be performed until the right capacitance values are found.

During the experimental phase, use an etalon crystal. An etalon crystal is a characterized crystal whose PPM drift is well known when it is loaded by the crystal nominal load capacitance (C_L). This kind of crystals can be provided by the crystal manufacturer upon request. After the etalon crystal has been chosen, calculate its oscillation frequency (F_{etalon}) when the crystal is loaded by its nominal load capacitance. This frequency is given by the formula:

$$F_{etalon} = F_{nominal} \times \left(\frac{PPM_{etalon}}{10^6} \right)$$

where:

- F_{etalon} is the etalon crystal oscillation frequency when the crystal is loaded by its nominal load capacitance.
- $F_{nominal}$ is the oscillation nominal frequency specified in the crystal datasheet.
- PPM_{etalon} is the oscillation frequency drift of the etalon crystal as it characterized by the crystal manufacturer.
When F_{etalon} is computed, go through the sequence below:

1. The first experimental iteration should be made with C_{L1} and C_{L2} capacitance values determined by calculation:
 - If the oscillation frequency is equal to F_{etalon}, then C_{L1} and C_{L2} are the correct capacitances. User can therefore skip sub-steps 2 and 3.
 - If the oscillation frequency is slower than F_{etalon} then go to sub-step 2.
 - Otherwise execute sub-step 3.

2. For this experimental iteration, decrease C_{L1} and C_{L2} capacitance values, measure again the oscillation frequency and compare it to F_{etalon}:
 - If the oscillation frequency is slower than F_{etalon}, execute sub-step 2.
 - Otherwise execute sub-step 3.
 - If the oscillation frequency is almost equal to F_{etalon} then the latter C_{L1} and C_{L2} capacitance values should be used.

3. For this experimental iteration, increase C_{L1} and C_{L2} capacitance values, measure again the oscillation frequency and compare it to F_{etalon}:
 - If the oscillation frequency is slower than F_{etalon} then execute sub-step 2.
 - Otherwise execute sub-step 3.
 - If the oscillation frequency is almost equal to F_{etalon} then the latter C_{L1} and C_{L2} capacitance values should be used.

Step 3: Check the Safety Factor of the oscillation loop

The safety factor should be assessed as described in Section 3.8: Safety factor to ensure a safe oscillation of the oscillator under operating conditions.

Note: Many crystal manufacturers can check microcontroller/crystal pairing compatibility upon request. If the pairing is judged valid, they can provide a report including the recommended C_{L1} and C_{L2} values as well as the oscillator negative resistance measurement. In this case steps 2 and 3 can be skipped.

Step 4: Calculate the drive level and external resistor

Compute the drive level (DL) (see Section 3.5: Drive level (DL) and external resistor (R_{Ext}) calculation) and check if it is greater or lower than DL_{crystal}:

- If $DL < DL_{\text{crystal}}$, no need for an external resistor (a suitable crystal has been found).
- If $DL > DL_{\text{crystal}}$, user should calculate R_{Ext} in order to have: $DL < DL_{\text{crystal}}$. User should then recalculate the gain margin taking R_{Ext} into account.

If gain margin > 5, a suitable crystal has been found. If not, then this crystal will not work another one must be chosen. Return to step 1 to run the procedure for the new crystal.

Step 5 (optional): Calculate the PPM accuracy budget

Finally, use the formula below to estimate the PPM accuracy budget for the application:

$$PPM_{\text{Budget}} = PPM_{\text{crystal}} \times \text{Deviation}(C_L) \times \text{Pullability}_{\text{crystal}}$$

where:

- PPM_{Budget} is the estimated accuracy for the oscillation frequency.
- PPM_{crystal} is the crystal PPM accuracy specified in the datasheet.
Deviation (C_L) is expressed in pF. It measures the deviation of the load capacitance (C_L) due to tolerances on load capacitor values and the variation of the stray capacitance (C_S) due to PCB manufacturing process deviation.

Pullability is expressed in PPM / pF (refer to Section 3.7: Crystal pullability).

Note: The PPM budget calculated above does not take into account the temperature variation that may make the PPM budget bigger.
5 Some recommended resonators for STM32 microcontrollers

5.1 STM32-compatible high-speed resonators

The high-speed oscillator (HSE) embedded into all STM32 microcontrollers are compatible with almost all the resonators available on the market. They are provided by a wide range of manufacturers, including:

- ABRACON
- EPSON (http://www5.epsondevice.com)
- KYOCERA
- MICROCRYSTAL
- MURATA (refer to the Murata part-number selector tool available at http://ds.murata.com)
- NDK (http://www.ndk.com)
- RIVER (http://www.river-ele.co.jp/index_en)

Compatible resonators have various frequencies and technologies (ceramic resonator and quartz-crystal resonator are all compatible with the HSE oscillator embedded in STM32 MCUs, Table 6 summarizes the supported frequency ranges.

<table>
<thead>
<tr>
<th>Series</th>
<th>STM32F0</th>
<th>STM32F1</th>
<th>STM32F3</th>
<th>STM32F2</th>
<th>STM32F4</th>
<th>STM32F7</th>
<th>STM32L0</th>
<th>STM32L1</th>
<th>STM32L4</th>
<th>STM32H7</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency range</td>
<td>4 - 32</td>
<td>4 - 16</td>
<td>4 - 25</td>
<td>4 - 26</td>
<td>4 - 26</td>
<td>1 - 25</td>
<td>1 - 24</td>
<td>4 - 48</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g_m (min)</td>
<td>10</td>
<td>25</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3,5</td>
<td>3,5</td>
<td>7,5</td>
<td>mA/V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G_m crit_max</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0,7</td>
<td>0,7</td>
<td>1,5</td>
<td>mA/V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.2 STM32-compatible low-speed resonators

Table 7 lists a set of low-speed quartz-crystal resonators that are either compatible with the whole STM32 microcontroller families or with a subset. It shows the STM32 microcontrollers compatible with each resonator part-number. A set of STM32-compatible resonators with different footprints is provided to facilitate crystal selection even if there are geometric constraints for the final application.

Note: The list of the STM32-compatible resonators is not exhaustive. Only the compatible resonator part-numbers checked by STMicroelectronics are listed.
<table>
<thead>
<tr>
<th>Package</th>
<th>Manufacturer</th>
<th>Quartz ref / Part number</th>
<th>ESR Max (kΩ)</th>
<th>Frequency (Hz)</th>
<th>C₀ (pF)</th>
<th>C_L (pF)</th>
<th>G_m_crit_max (µA/V)</th>
<th>STM32 Series compatibility(1)(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6x1.0 mm</td>
<td>RIVER</td>
<td>TFX04</td>
<td>90</td>
<td>32768</td>
<td>1</td>
<td>5</td>
<td>0.5494</td>
<td>F0, F1, F2, F3, F4, F7, L0, L1, L4</td>
</tr>
<tr>
<td></td>
<td>EPSON</td>
<td>FC1610AN</td>
<td>90</td>
<td>32768</td>
<td>1.2</td>
<td>5</td>
<td>0.5866</td>
<td>F0, F1, F3, F4, F7, L0, L1, L4</td>
</tr>
<tr>
<td></td>
<td>NDK</td>
<td>NX1610SA</td>
<td>90</td>
<td>32768</td>
<td>1.5</td>
<td>6</td>
<td>0.8584</td>
<td>F0, F1, F3, F4, F7, H7, L0, L4</td>
</tr>
<tr>
<td></td>
<td>KYOCERA</td>
<td>ST1610SB32768C0</td>
<td>90</td>
<td>32768</td>
<td>1.5</td>
<td>7</td>
<td>1.1026</td>
<td>F0, F3, F4, F7, H7, L0, L4</td>
</tr>
<tr>
<td></td>
<td>RIVER</td>
<td>TFX04</td>
<td>90</td>
<td>32768</td>
<td>1</td>
<td>9</td>
<td>1.5260</td>
<td>F0, F3, F7, L0, L4</td>
</tr>
<tr>
<td></td>
<td>ECS</td>
<td>ECS-.327-9-16-TR</td>
<td>90</td>
<td>32768</td>
<td>1.3</td>
<td>9</td>
<td>1.6190</td>
<td>F0, F3, F7, H7, L0, L4</td>
</tr>
<tr>
<td></td>
<td>SII</td>
<td>SC-16S</td>
<td>90</td>
<td>32768</td>
<td>1.5</td>
<td>12.5</td>
<td>2.9910</td>
<td>F0, F3</td>
</tr>
<tr>
<td>2.0x1.25 mm</td>
<td>EPSON</td>
<td>FC-12M</td>
<td>90</td>
<td>32768</td>
<td>1</td>
<td>5</td>
<td>0.5494</td>
<td>F0, F1, F2, F3, F4, F7, L0, L1, L4</td>
</tr>
<tr>
<td>2.0x1.2 mm</td>
<td>MicroCrystal</td>
<td>CM8V-T1A</td>
<td>75</td>
<td>32768</td>
<td>1.1</td>
<td>4</td>
<td>0.3308</td>
<td>F0, F1, F2, F3, F7, L0, L1, L4</td>
</tr>
<tr>
<td></td>
<td>ABRACON</td>
<td>ABS06-107-32.768kHz-T</td>
<td>80</td>
<td>32768</td>
<td>1.7</td>
<td>4</td>
<td>0.4407</td>
<td>F0, F1, F2, F3, F4, F7, L0, L1, L4</td>
</tr>
<tr>
<td></td>
<td>ECS</td>
<td>ECS-.327-CDX-1082</td>
<td>80</td>
<td>32768</td>
<td>1.5</td>
<td>4</td>
<td>0.4103</td>
<td>F0, F1, F2, F3, F4, F7, H7, L0, L1, L4</td>
</tr>
<tr>
<td></td>
<td>ABRACON</td>
<td>ABS06W-32.768kHz</td>
<td>110</td>
<td>32768</td>
<td>2</td>
<td>3</td>
<td>0.4663</td>
<td>F0, F1, F2, F3, F4, F7, H7, L0, L1, L4</td>
</tr>
<tr>
<td></td>
<td>KYOCERA</td>
<td>ST2012SB32768A0</td>
<td>80</td>
<td>32768</td>
<td>1.3</td>
<td>5</td>
<td>0.5384</td>
<td>F0, F1, F2, F3, F4, F7, L0, L1, L4</td>
</tr>
<tr>
<td></td>
<td>RIVER</td>
<td>TFX03/TFX03L</td>
<td>90</td>
<td>32768</td>
<td>1</td>
<td>5</td>
<td>0.5494</td>
<td>F0, F1, F2, F3, F4, F7, L0, L1, L4</td>
</tr>
<tr>
<td></td>
<td>MicroCrystal</td>
<td>CM8V-T1A</td>
<td>75</td>
<td>32768</td>
<td>1.1</td>
<td>9</td>
<td>1.2972</td>
<td>F0, F3, F4, g2, F7, F8, L0, L4</td>
</tr>
<tr>
<td></td>
<td>KYOCERA</td>
<td>ST3215SB32768E0</td>
<td>80</td>
<td>32768</td>
<td>1.3</td>
<td>9</td>
<td>1.4391</td>
<td>F0, F3, F4, g2, F7, L0, L4</td>
</tr>
<tr>
<td></td>
<td>NDK</td>
<td>NX2012SA - EXS00A-MU00524</td>
<td>80</td>
<td>32768</td>
<td>1.3</td>
<td>7</td>
<td>0.9345</td>
<td>F0, F1, F3, F4, g2, F7, L0, L4</td>
</tr>
<tr>
<td></td>
<td>NDK</td>
<td>NX2012SA - EXS00A-MU00528</td>
<td>80</td>
<td>32768</td>
<td>1.3</td>
<td>12.5</td>
<td>2.5833</td>
<td>F0, F3, F7, L0, L4</td>
</tr>
<tr>
<td></td>
<td>SII</td>
<td>SC-20S</td>
<td>70</td>
<td>32768</td>
<td>1.5</td>
<td>12.5</td>
<td>2.3263</td>
<td>F0, F3, F7, H7, L0, L4</td>
</tr>
</tbody>
</table>
Table 7. Recommended crystal resonators for the LSE oscillator in STM32 microcontrollers (continued)

<table>
<thead>
<tr>
<th>Package</th>
<th>Manufacturer</th>
<th>Quartz ref / Part number</th>
<th>ESR Max (kΩ)</th>
<th>Frequency (Hz)</th>
<th>C0 (pF)</th>
<th>CL (pF)</th>
<th>Gm_crit_max (µA/V)</th>
<th>STM32 Series compatibility(1)(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABRACON</td>
<td>ABS07-120-32.768kHz-T</td>
<td>60</td>
<td>32768</td>
<td>1.2</td>
<td>6</td>
<td>0.5274</td>
<td>F0, F1, F2, F3, F4, F7, L0, L4, L1</td>
<td></td>
</tr>
<tr>
<td>ABRACON</td>
<td>ABS07W-32.768kHz</td>
<td>60</td>
<td>32768</td>
<td>1.3</td>
<td>3</td>
<td>0.1881</td>
<td>F0, F1, F2, F3, F4, F7, H7, L0, L1, L4</td>
<td></td>
</tr>
<tr>
<td>ECS</td>
<td>ECS-.327-6-34RR</td>
<td>40</td>
<td>32768</td>
<td>1.6</td>
<td>6</td>
<td>0.3917</td>
<td>F0, F1, F2, F3, F4, F7, H7, L0, L1, L4</td>
<td></td>
</tr>
<tr>
<td>EPSON</td>
<td>FC135R</td>
<td>50</td>
<td>32768</td>
<td>1.1</td>
<td>6</td>
<td>0.4274</td>
<td>F0, F1, F2, F3, F4, F7, L0, L1, L4</td>
<td></td>
</tr>
<tr>
<td>EPSON</td>
<td>FC135</td>
<td>70</td>
<td>32768</td>
<td>1</td>
<td>6</td>
<td>0.5816</td>
<td>F0, F1, F2, F3, F4, F7, L0, L1, L4</td>
<td></td>
</tr>
<tr>
<td>KYOCERA</td>
<td>ST3215SB32768A0</td>
<td>70</td>
<td>32768</td>
<td>0.9</td>
<td>5</td>
<td>0.4132</td>
<td>F0, F1, F2, F3, F4, F7, L0, L1, L4</td>
<td></td>
</tr>
<tr>
<td>KYOCERA</td>
<td>ST3215SB32768E0</td>
<td>70</td>
<td>32768</td>
<td>0.9</td>
<td>9</td>
<td>1.1633</td>
<td>F0, F3, F4_g2, F7, L0, L4</td>
<td></td>
</tr>
<tr>
<td>MicroCrystal</td>
<td>CM7V-T1A</td>
<td>50</td>
<td>32768</td>
<td>1.2</td>
<td>7</td>
<td>0.5701</td>
<td>F0, F1, F2, F3, F4, F7, L0, L1, L4</td>
<td></td>
</tr>
<tr>
<td>NDK</td>
<td>NX3215SA-EXS00A-MU00525</td>
<td>50</td>
<td>32768</td>
<td>1</td>
<td>6</td>
<td>0.4154</td>
<td>F0, F1, F2, F3, F4, F7, L0, L1, L4</td>
<td></td>
</tr>
<tr>
<td>NDK</td>
<td>NX3215SA-EXS00A-MU00523</td>
<td>50</td>
<td>32768</td>
<td>1</td>
<td>7</td>
<td>0.5426</td>
<td>F0, F1, F2, F3, F4, F7, L0, L1, L4</td>
<td></td>
</tr>
<tr>
<td>NDK</td>
<td>NX3215SA-EXS00A-MU00526</td>
<td>70</td>
<td>32768</td>
<td>1</td>
<td>12.5</td>
<td>2.1631</td>
<td>F0, F3, F7, L0, L1, L4</td>
<td></td>
</tr>
<tr>
<td>CITIZEN</td>
<td>CM315D</td>
<td>50</td>
<td>32768</td>
<td>1.2(3)</td>
<td>4</td>
<td>0.2292</td>
<td>F0, F1, F2, F3, F4, F7, H7, L0, L1, L4</td>
<td></td>
</tr>
<tr>
<td>CITIZEN</td>
<td>CM315DL, CM315E, CM315G</td>
<td>50</td>
<td>32768</td>
<td>1.2(3)</td>
<td>6</td>
<td>0.4395</td>
<td>F0, F1, F2, F3, F4, F7, H7, L0, L1, L4</td>
<td></td>
</tr>
<tr>
<td>RIVER</td>
<td>TFX02</td>
<td>70</td>
<td>32768</td>
<td>1</td>
<td>7</td>
<td>0.7596</td>
<td>F0, F1, F3, F4_g2, F7, L0, L4</td>
<td></td>
</tr>
<tr>
<td>SII</td>
<td>SC-32S</td>
<td>70</td>
<td>32768</td>
<td>1.3(3)</td>
<td>12.5</td>
<td>2.2604</td>
<td>F0, F3, F7, H7, L0, L4</td>
<td></td>
</tr>
<tr>
<td>CITIZEN</td>
<td>CM200C</td>
<td>50</td>
<td>32768</td>
<td>1.35(3)</td>
<td>6</td>
<td>0.4580</td>
<td>F0, F1, F2, F3, F4, F7, H7, L0, L1, L4</td>
<td></td>
</tr>
<tr>
<td>EPSON</td>
<td>MC306</td>
<td>50</td>
<td>32768</td>
<td>0.9</td>
<td>6</td>
<td>0.4036</td>
<td>F0, F1, F2, F3, F4, F7, L0, L1, L4</td>
<td></td>
</tr>
<tr>
<td>ECS</td>
<td>ECS-.327-6-17X-TR</td>
<td>50</td>
<td>32768</td>
<td>1.35</td>
<td>6</td>
<td>0.4580</td>
<td>F0, F1, F2, F3, F4, F7, H7, L0, L1, L4</td>
<td></td>
</tr>
<tr>
<td>EPSON</td>
<td>MC306</td>
<td>50</td>
<td>32768</td>
<td>0.9</td>
<td>12.5</td>
<td>1.5223</td>
<td>F0, F3, F7, L0, L4</td>
<td></td>
</tr>
<tr>
<td>ABRACON</td>
<td>ABS26</td>
<td>50</td>
<td>32768</td>
<td>1.35</td>
<td>12.5</td>
<td>1.6263</td>
<td>F0, F3, F7, L0, L4</td>
<td></td>
</tr>
</tbody>
</table>

1. F4_g1: STM32F4 Series with LSE generation 1, corresponds to STM32F401/405/407/427/429xx MCUs featuring LSE oscillators with non-modifiable transconductance.
2. F4_g2: STM32F4 Series with LSE generation 2, corresponds to STM32F411/446/469/479xx MCUs, featuring LSE oscillators with statically-modifiable transconductance.
3. Not specified, hence worst value shown.
4. Value specified for the 40 to 105 °C temperature range.
6 Some recommended crystals for STM8AF/AL/S microcontrollers

6.1 Part numbers of recommended crystal oscillators

<table>
<thead>
<tr>
<th>Part number</th>
<th>Frequency</th>
<th>ESR</th>
<th>(C_L)</th>
<th>Drive level (DL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX5032GA08000H0QSWZZ</td>
<td>8 MHz</td>
<td>300 Ω max</td>
<td>12 pF</td>
<td>500 µW max</td>
</tr>
<tr>
<td>CX5032GA16000H0QSWZZ</td>
<td>16 MHz</td>
<td>100 Ω max</td>
<td>12 pF</td>
<td>300 µW max</td>
</tr>
<tr>
<td>CX8045GA08000H0QSWZZ</td>
<td>8 MHz</td>
<td>200 Ω max</td>
<td>12 pF</td>
<td>500 µW max</td>
</tr>
<tr>
<td>CX8045GA16000H0QSWZZ</td>
<td>16 MHz</td>
<td>50 Ω max</td>
<td>12 pF</td>
<td>300 µW max</td>
</tr>
</tbody>
</table>

Table 8. KYOCERA compatible crystals (not exhaustive list)

<table>
<thead>
<tr>
<th>Part number</th>
<th>Frequency</th>
<th>ESR</th>
<th>(C_L)</th>
<th>Drive level (DL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX3225GD EXS00A-CG04874</td>
<td>8 MHz</td>
<td>500 Ω max</td>
<td>8 pF</td>
<td>200 µW max</td>
</tr>
</tbody>
</table>

Table 9. NDK compatible crystals (not exhaustive list)

6.2 Part numbers of recommended ceramic resonators

Table 10 and Table 11 give the references of recommended CERALOCK® ceramic resonators for the STM8A microcontrollers provided and certified by Murata.

<table>
<thead>
<tr>
<th>Part number</th>
<th>Frequency</th>
<th>ESR</th>
<th>(C_L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSTCR4M00G55B-R0</td>
<td>4 MHz</td>
<td>(C_{L1} = C_{L2} = 39) pF</td>
<td></td>
</tr>
<tr>
<td>CSTCE8M00G55A-R0</td>
<td>8 MHz</td>
<td>(C_{L1} = C_{L2} = 33) pF</td>
<td></td>
</tr>
<tr>
<td>CSTCE16M0V53-R0</td>
<td>16 MHz</td>
<td>(C_{L1} = C_{L2} = 15) pF</td>
<td></td>
</tr>
</tbody>
</table>

Table 10. Recommendable conditions (for consumer)

<table>
<thead>
<tr>
<th>Part number</th>
<th>Frequency</th>
<th>(C_L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSTCR4M00G15C--R0</td>
<td>4 MHz</td>
<td>(C_{L1} = C_{L2} = 39) pF</td>
</tr>
<tr>
<td>CSTCR8M00G15C--R0</td>
<td>8 MHz</td>
<td>(C_{L1} = C_{L2} = 33) pF</td>
</tr>
<tr>
<td>CSTCE16M0V13C--R0</td>
<td>16 MHz</td>
<td>(C_{L1} = C_{L2} = 15) pF</td>
</tr>
</tbody>
</table>

Table 11. Recommendable conditions (for CAN-BUS)
Tips for improving oscillator stability

7.1 PCB design guidelines

The 32 kHz crystal oscillator is an ultra-low-power oscillator (transconductance of a few μA/V). The low oscillator transconductance affects the output dynamics since smaller transconductance values generates a smaller oscillating current. This results in a lower peak-to-peak voltage on the oscillator outputs (from a few dozen to a few hundred mV).

Keeping the signal-to-noise ratio (SNR) below acceptable limits for a perfect operation of the oscillator means more severe constraints on the oscillator PCB design in order to reduce its sensitivity to noise.

Therefore, great care must be taken when designing the PCB to reduce as much as possible the SNR. A non-exhaustive list of precautions that should be taken when designing the oscillator PCB is provided below:

- High values of stray capacitance and inductances should be avoided as they might lead to uncontrollable oscillation (e.g. the oscillator might resonate at overtones or harmonics frequencies). Reducing the stray capacitance also decreases startup time and improves oscillation frequency stability.

- To reduce high frequency noise propagation across the board, the microcontroller should have a stable power supply source to ensure noiseless crystal oscillations. This means that well-sized decoupling capacitor should be used for powering the microcontroller.

- The crystal should be mounted as close as possible to the microcontroller to keep short tracks and to reduce inductive and capacitive effects. A guard ring around these connections, connected to the ground, is essential to avoid capturing unwanted noise which might affect oscillation stability.

- Long tracks/paths might behave as antennas for a given frequency spectrum thus generating oscillation issues when passing EMI certification tests. Refer to Figure : and Figure 13: Signals around the oscillator.

- Any path conveying high-frequency signals should be routed away from the oscillator paths and components. Refer to Figure :.

- The oscillator PCB should be underlined with a dedicated underneath ground plane, distinct from the application PCB ground plane. The oscillator ground plane should be connected to the nearest microcontroller ground. It prevents interferences between the oscillator components and other application components (e.g. crosstalk between paths). Note that if a crystal in a metallic package is used, it should not been connected to the oscillator ground. Refer to Figure 10: Recommended layout for an oscillator circuit, Figure : and Figure 12: GND plane.

- Leakage current might increase startup time and even prevent the oscillator startup. If the microcontroller is intended to operate in a severe environment (high moisture/humidity ratio) an external coating is recommended.
Warning: It is highly recommended to apply conformal coatings to the PCB area shown in Figure 10, especially for the LSE quartz, CL1, CL2, and paths to the OSC_IN and OSC_OUT pads as a protection against moisture, dust, humidity, and temperature extremes that may lead to startup problems.
7.2 PCB design examples

Example 1

Figure 11. PCB with separated GND plane and guard ring around the oscillator

Figure 12. GND plane

Figure 13. Signals around the oscillator
Example 2

Figure 14 is an example of a PCB that does not respect the guidelines provided in *Section 7.1*, for the following reasons:

- no ground planes around the oscillator component
- too long paths
- no symmetry between oscillator capacitances
- high crosstalk / coupling between paths
- too many test points.

Figure 14. Preliminary design (PCB design guidelines not respected)
The PCB design has been improved according to the guidelines (see Figure 15):
- guard ring connected to the GND plane around the oscillator
- symmetry between oscillator capacitances
- less test points
- no coupling between paths.

Figure 15. Final design (design guidelines followed)
Example 3

Figure 18 is another example of PCB that does not respect the guidelines provided in *Section 7.1* (EMC tests likely to fail):

- no guard ring around oscillator components
- long paths

Figure 18. PCB guidelines not respected
The layout has been improved to respect the guidelines (see Figure 19), EMC tests are likely to be passed:

- ground planes around the oscillator component
- short paths that link the STM32 to the oscillator
- symmetry between oscillator capacitances.

Figure 19. PCB guidelines respected

7.3 **Soldering guidelines**

In general, soldering is a sensitive process, especially for low-frequency crystals. To reduce the impact of such process on the crystal parameters user should consider that

- Exposing crystals to temperatures above their maximum ratings can damage the crystal and affect their ESR value. Refer to the crystal datasheet for the right reflow temperature curve (if not provided, ask the manufacturer).
- PCB cleaning is recommended to obtain the maximum performance by removing flux residuals from the board after assembly (even when using “no-clean” products in ultra-low-power applications).
8 Reference documents

9 FAQs

Question
How can I know if my crystal is compatible with a given STM32 MCU?

Answer
Refer to Section 4: Guidelines for selecting a suitable crystal and external components.

Question
Can I use a 32.768 kHz crystal compatible with STM32 MCUs but not mentioned in Table 7: Recommended crystal resonators for the LSE oscillator in STM32 microcontrollers?

Answer
Yes, you can. Table 7 is not exhaustive, it is given as a reference for some selected crystal manufacturers, footprint size and crystal load capacitance.

Question
In my application, 32.768 kHz frequency very-low drift and high accuracy are mandatory to obtain an accurate clock without calibration. Which crystal load capacitance (C_L) should I choose?

Answer
First, you should be sure that your crystal is compatible with the selected STM32 LSE. Then, it is highly recommended to use a crystal with low pullability, that is with C_L ≥ 6 pF:
- 7 pF is a good compromise between low drift and moderate power consumption
- 9 and 12.5 pF can be used in noisy environments, but will impact the power consumption.
10 Conclusion

The most important parameter is the gain margin of the oscillator, which determines if the oscillator will start up or not. This parameter has to be calculated at the beginning of the design phase to choose the suitable crystal for the application. The second parameter is the value of the external load capacitors that have to be selected in accordance with the C_L specification of the crystal (provided by the manufacturer). This determines the frequency accuracy of the crystal. The third parameter is the value of the external resistor used to limit the drive level. In the 32 kHz oscillator part, however, it is not recommended to use an external resistor.

Because of the number of variables involved, in the experimentation phase user should select components that have exactly the same properties as those that will be used in production, and operate with the same oscillator layout and in the same environment to avoid unexpected behavior.

Recently, MEMS oscillators have emerged on the market. They are a good alternative to resonators-based oscillators thanks to their reduced power consumption, small size (they do not require additional passive components such as external load capacitors) and competitive cost. This kind of oscillators are compatible with the all STM32 microcontrollers, except for the STM32F1 and STM32L1 Series. When a MEMS oscillator is paired with an STM32 embedded oscillator, the latter should be configured in bypass mode.
11 Revision history

Table 12. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-Jan-2009</td>
<td>1</td>
<td>Initial release.</td>
</tr>
<tr>
<td>27-Apr-2010</td>
<td>3</td>
<td>Added Section 7: Some recommended crystals for STM8A/S microcontrollers.</td>
</tr>
<tr>
<td>25-Nov-2010</td>
<td>4</td>
<td>Updated Section 5.2: STM32-compatible low-speed resonators: removed Table 7: Recommendable condition (for consumer) and Table 8: Recommendable conditions (for CAN bus); added Table 8: Recommendable conditions (for consumer); updated Murata resonator link. Updated Section 5.2: STM32-compatible low-speed resonators: removed Table 13: EPSON TOYOCOM, Table 14: JFVNY®, and Table 15: KDS; Added Table 6: Recommendable crystals NEW LANDSCAPE TABLE. Added Warning after Figure 10.</td>
</tr>
<tr>
<td>30-Mar-2011</td>
<td>5</td>
<td>Section 5.2: STM32-compatible low-speed resonators: updated “STM32” with “STM8”. Table 16: Recommendable conditions (for consumer): replaced ceramic resonator part number “CSTSE16M0G55A-R0” by “CSTCE16M0V53-R0”.</td>
</tr>
<tr>
<td>17-Jul-2012</td>
<td>6</td>
<td>Whole document restricted to STM32 devices.</td>
</tr>
<tr>
<td>19-Sep-2014</td>
<td>7</td>
<td>Changed STM32F1 into STM32 throughout the document. Added STM8AL Series in Table 1: Applicable products. Replace STM8 by STM32 in Section 5.2: STM32-compatible low-speed resonators and updated hyperlink. Added Section 7: Tips for improving oscillator stability. Remove section Some PCB hints.</td>
</tr>
</tbody>
</table>
Table 12. Document revision history (continued)

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>19-Dec-2014</td>
<td>8</td>
<td>Updated Section 2: Oscillator theory. Updated Section 3: Pierce oscillator design. Renamed section “Gain margin of the oscillator” into Section 3.4: Oscillator transconductance and content updated. Updated Section 3.6: Startup time. Updated Section 3.7: Crystal pullability. Updated Section 4: Guidelines for selecting a suitable crystal and external components. Updated Section 5: Some recommended resonators for STM32 microcontrollers. Added Section 8: Reference documents. Updated Section 10: Conclusion.</td>
</tr>
<tr>
<td>19-Feb-2015</td>
<td>9</td>
<td>Updated Section 2.3: Negative-resistance oscillator principles to specify the ratio between negative resistance and crystal ESR for STM8 and STM32 microcontrollers. Added Section 3.8: Safety factor. Added Check the Safety Factor of the oscillation loop step in Section 4.2: Detailed steps to select an STM32-compatible crystal. Note moved from step 2 to 3 and updated. Renamed Table 7: Recommended crystal resonators for the LSE oscillator in STM32 microcontrollers.</td>
</tr>
<tr>
<td>17-Aug-2015</td>
<td>10</td>
<td>Updated Figure 9: Classification of low-speed crystal resonators. Added caution notes in Section 4.1: Low-speed oscillators embedded in STM32 microcontrollers. Added STM32F7, STM32F446xx, STM32F469/479xx and STM32L4 microcontrollers in Table 5: LSE oscillators embedded into STM32 microcontrollers. Added STM32F411xx, STM32F446xx, STM32F469/479xx and STM32L4xx microcontrollers in Table 6: HSE oscillators embedded in STM32 microcontrollers. Updated Table 7: Recommended crystal resonators for the LSE oscillator in STM32 microcontrollers. Added Section 9: FAQs.</td>
</tr>
<tr>
<td>31-May-2017</td>
<td>11</td>
<td>Updated document title, Introduction, Section 9: FAQs, Section 10: Conclusion, title of Section 6: Some recommended crystals for STM8AF/AL/S microcontrollers, and revision of text across the whole document. Updated Table 5: LSE oscillators embedded into STM32 microcontrollers, Table 6: HSE oscillators embedded in STM32 microcontrollers and Table 7: Recommended crystal resonators for the LSE oscillator in STM32 microcontrollers. Updated caption of Table 8: KYOCERA compatible crystals (not exhaustive list), and added Table 9: NDK compatible crystals (not exhaustive list). Updated Figure 9: Classification of low-speed crystal resonators.</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved