
AN910
APPLICATION NOTE

ST7 AND ST9 PERFORMANCE BENCHMARKING
Rev. 2.0

INTRODUCTION

STMicroelectronics has developed a set of test routines related to 8-bit and low-end 16-bit
microcontroller applications to evaluate computing performance and interrupt processing
performance of microcontroller cores. These routines have been implemented on ST7 and
ST9 Microcontroller Units (MCUs) as well as several MCUs available on the market.

The routines have been written in assembler language to optimize their implementation and
focus on core performance, without being dependent upon compiler code transformation.

For each test, the two parameters of interest are execution time and code size. Timings have
been either measured whenever possible, or theoretically calculated when there was no other
alternative. In most cases, programs have really run and execution times have actually been
measured, so that assembly sources should not contain implementation errors and results can
be considered as correct and reliable.

The results of this study point out the capability of the ST9+ to compete with 16-bit MCUs on
8-bit and low-end 16-bit applications and confirms its position of high-end 8/16-bit MCU. It
also confirms the ST7 as an outstanding 8-bit MCU.

The first four sections provide synthetical information:

1. Overview of the Test Routines on page 2

2. Overview of the MCU cores on page 3

3. Benchmark results on page 4

4. Result analysis on page 11

More detailed information is provided in the appendixes:

5. Description of MCU work environments on page 17

6. Complete numerical results on page 21

7. MCU Core architecture analysis on page 25

8. Description of the test routines on page 43

9. Measurement proceeding and calculation on page 46
AN910/1104
 1/51

1

ST7 AND ST9 PERFORMANCE BENCHMARKING
1 OVERVIEW OF THE TEST ROUTINES
Eleven different test routines have been implemented in assembler language.

The first ten routines are oriented at measuring core computing performance. They are
based on known algorithms and represent currently used operations in 8-bit and low-end 16-
bit applications. They mix bit, 8-bit and 16-bit operations as many applications do.

This set of tests is described in Table 1.

Table 1. Test routine overview

Another test routine handling a timer interrupt has been used to measure core interrupt
processing performance:

A more precise description of the test routines is available in section 8.

Abbreviated name Full name Description Features stressed

sieve Eratosthenes sieve
find prime numbers ≥ 3 out of
8189 elements

16-bit data computation
bit manipulation

acker(m,n)1)

1) The couple of values used are (m,n)=(3,5) and (m,n)=(3,6)

Ackermann function
make recursive function calls
number of calls depending upon
two parameters (m,n)

function calls
stack use

string String search
search a 16-byte string in a 128-
character array

8-bit data block manipulation
string manipulation

char Character search search a byte in a 40-byte array
8-bit data manipulation
char manipulation

bubble(n)2)

2) The values used are n=10 (words) and n=600 (words)

Bubble sort
sort of a one-dimension array of
n 16-bit integers

16-bit data manipulation
integer manipulation

blkmov(n)3)

3) The values used are n=64 (bytes) and n=512 (bytes)

Block move
move a n-byte block from a
place in memory to another

8-bit data block manipulation
block move

convert Block translation
translate a 121-byte block in a
different format

8-bit data manipulation
use of a lookup table

16mul 16-bit integer multiplication
multiplication of two unsigned
words giving a 32-bit result

16-bit data computation
integer manipulation

shright 16-bit value right shift
shift a 16-bit value five places to
the right

16-bit data manipulation
bit manipulation

bitsrt Bit manipulation
set, reset, and test of 3 bits in a
128-bit array

bit computation
bit and 8-bit data manipulation

Abbreviated name Full name Description Features stressed

interrupt Timer interrupt
standard timer input capture or/
and output compare interrupt
service routine

interrupt processing
2/51

2

ST7 AND ST9 PERFORMANCE BENCHMARKING
2 OVERVIEW OF THE MCU CORES
The set of MCUs evaluated is composed of various 8-bit, 8/16-bit, and 16-bit
microcontrollers with accumulator, register file or mixed architectures.

Table 2 is an overview of the MCU cores.

Table 2. MCU cores overview

A description of the MCU work environments is available in section 5.

MCU name Architecture Short core description Freq1)

1) As the goal is to obtain the best of each MCU core, the maximum internal frequency (Freq) available, for each MCU, on
development board has been used (unless other specified). Note that results are directly proportional to this frequency.

80C51XA

PHILIPS
16-bit;
register file

eXtended Architecture (XA) of 80C51’s - upward compatible
8/16-bit register bus - 16-bit data/program memory buses
register file programming model with sixteen 16-bit banked registers

20 MHz

68HC16

MOTOROLA

16-bit;
two
accumulators

core architecture superset of 68HC11’s - upward compatible
accumulator programming model with two 16-bit accumulators, and
three 16-bit index registers (all with 4-bit extensions)

16 MHz

68HC12

MOTOROLA

16-bit;
two
accumulators

instruction set is superset of 68HC11’s - upward compatible
programming model identical to 68HC11’s

8 MHz

ST9+

STMicroelectronics
8/16-bit;
register file

evolution of the ST9
enhanced clock speed, instruction cycle time
enlarged memory space

25 MHz

ST9

STMicroelectronics
8/16-bit;
register file

8/16-bit architecture; 8-bit register bus - 16-bit memory bus
register file programming model with 14 groups of sixteen 8-bit
registers, useable as 16-bit registers
modular paged registers for access to peripheral registers

12 MHz

H8/300

HITACHI
8/16-bit;
register file

RISC-like architecture and instruction set
register file programming model with sixteen 8-bit registers

10 MHz

68HC11

MOTOROLA

8-bit;
two
accumulators

market standard 8-bit MCU
accumulator programming model with two 8-bit accumulators or
one 16-bit accumulator, and two 16-bit index registers

4 MHz

68HC08

MOTOROLA
8-bit;
accumulator

superset of the 68HC05 - upward compatible
enhanced performance and instruction set
accumulator programming model with one 8-bit accumulator, and
one 16-bit index register

8 MHz

ST7

STMicroelectronics
8-bit;
accumulator

upward compatible with the 68HC05
accumulator programming model with one 8-bit accumulator, and
two 8-bit index registers

4 MHz
8 MHz

80C51

INTEL, PHILIPS...
8-bit; register file
and accumulator

mixed accumulator and register file programming model with four
banks of eight 8-bit registers (include accumulator), and a 16-bit
data pointer

20 MHz

KS88

SAMSUNG
8-bit;
register file

core architecture superset of SUPER8’s; 8-bit register bus
register file programming model with 192 8-bit prime data registers,
and two register sets with system/peripheral/data registers

8 MHz

78K0

NEC
8-bit; register file
and accumulator

mixed accumulator and register file programming model with four
banks of eight 8-bit or four 16-bit registers (include accumulator)

10 MHz
3/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
3 BENCHMARK RESULTS

3.1 CORE COMPUTING PERFORMANCE

The two following charts show benchmark results for computing performance. Execution time
and code size are presented as global ratios taken the ST9+ as reference.

Preliminary ratios have been calculated for each test. Using those results, a global execution
time ratio and a global code size ratio have been calculated as an average of all ratios. As all
the tests could not have been implemented on all MCUs (see <Italic>9.2.2 Memory
considerations<Italic end>), one or two different results are presented for each MCU. The
first one, available for all the MCUs, has been calculated with the reduced set of tests
performed on all the MCUs. The second one, only available for some MCUs, has been
calculated with the full set of tests.

Refer to section 6 for complete results. Refer to section 9 for measurement proceeding and
calculation description.

Figure 1. presents execution time ratios and Figure 2. shows code size ratios.

Notes: The reduced set of tests is composed of:
string, char, bubble(10 words), blkmov(64 bytes), convert, 16mul, shright, bitrst

The full set of tests is composed of:
string, char, bubble(10 words), blkmov(64 bytes), convert, 16mul, shright, bitrst,

sieve, acker(3,5), acker(3,6), bubble(600 words), blkmov(512 bytes)

The 80C51 results are preliminary results. They may change in later versions.
4/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
be
st

 p
er

fo
rm

an
ce

F
ig

u
re

 1
. C

o
m

p
u

ti
n

g
 p

er
fo

rm
an

ce
 g

lo
b

al
 e

xe
cu

ti
o

n
 t

im
e

ra
ti

o
s

(S
T

9+
 a

s
re

fe
re

n
ce

)

8-bit MCUs16-bit MCUs 8/16-bit MCUs
5/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
be
st

 d
en

si
ty

F
ig

u
re

 2
. C

o
m

p
u

ti
n

g
 p

er
fo

rm
an

ce
 g

lo
b

al
 c

o
d

e
si

ze
 r

at
io

s
(S

T
9+

 a
s

re
fe

re
n

ce
)

8-bit MCUs16-bit MCUs 8/16-bit MCUs
6/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
3.2 CORE INTERRUPT PROCESSING PERFORMANCE

The three following charts show benchmark results for interrupt processing performance.
Execution time results are presented as time values (in microseconds), and also as ratios
taken the ST9+ as reference. Code size results are presented as ratios taken the ST9+ as
reference.

Refer to section 6 for complete results and details on calculation.

Figure 3. presents execution time results in microseconds, showing interrupt latency & return
time.
Figure 4. presents execution time ratios, and Figure 5. presents code size ratios.
7/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
F
ig

u
re

 3
. I

n
te

rr
u

p
t

p
ro

ce
ss

in
g

 p
er

fo
rm

an
ce

 e
xe

cu
ti

o
n

 t
im

e
va

lu
es

8-bit MCUs16-bit MCUs 8/16-bit MCUs

be
st

 p
er

fo
rm

an
ce
8/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
F
ig

u
re

 4
. I

n
te

rr
u

p
t

p
ro

ce
ss

in
g

 p
er

fo
rm

an
ce

 e
xe

cu
ti

o
n

 t
im

e
ra

ti
o

s
(S

T
9+

 a
s

re
fe

re
n

ce
)

8-bit MCUs16-bit MCUs 8/16-bit MCUs

be
st

 p
er

fo
rm

an
ce
9/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
F
ig

u
re

 5
. I

n
te

rr
u

p
t

p
ro

ce
ss

in
g

 p
er

fo
rm

an
ce

 c
o

d
e

si
ze

 r
at

io
s

(S
T

9+
 a

s
re

fe
re

n
ce

)

8-bit MCUs16-bit MCUs 8/16-bit MCUs

be
st

 d
en

si
ty
10/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
4 RESULT ANALYSIS
This section is an analysis of computing performance and interrupt processing
performance results (for execution time and code size). Based on core architecture analysis
(see section 7), two comparisons are presented, pointing out the strong and weak points of
each MCU. The first concerns the high-end to medium-end MCUs versus ST9+. The
second concerns the medium-end to low-end MCUs versus ST7.

4.1 PRELIMINARY REMARK

Results show that the two different ratios, for execution time and code size, calculated with full
and reduced sets of tests, are in fact not very different. In most cases, the classification of the
MCUs is kept. Thus we can consider that the reduced set is sufficient to make the MCU
core comparison.

4.2 HIGH-END TO MEDIUM-END MCU ANALYSIS VERSUS ST9+

The Table 3 presents the strong and the weak points for high-end to medium-end MCUs,
compared to the ST9+ MCU.

Notes: ICT means Instruction Cycle Time and IL means Instruction Length.

Refer to paragraph <Italic>7.2.2 Average ICT/CPI and IL<Italic end> for details on
calculation.

Refer to paragraph <Italic>7.3.4 ST9+ MCU core<Italic end> to see the main characteristics of
the ST9+ MCU core.

4.2.1 Computing performance results

Regarding speed, the ST9+ MCU ranks at the top of 8/16-bit MCUs. This new version of the
ST9 has been improved on several points, including clock per instruction and clock speed.
These enhancements have considerably reduced its instruction cycle time. A large and
powerful register file organized in groups allow the ST9+ to perform strong computation
(with many registers), have an easy access to peripheral and i/o port registers (with paged
registers), and manage multitasking (with register group pointers). Addressing modes like
register pair, register indirect with pre/post-increment, and indexed give the ST9+ the ability to
perform 16-bit data computation and manipulation, easily manipulate tables and move
blocks. A new memory management unit enlarges the memory space up to 4 Mbytes. New
instructions have been added to handle this new space and improve the C-language
support.
11/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
Concerning code efficiency, the position of the ST9+ MCU is also among the best MCUs.
The 16-bit MCUs are only a little better, although favoured by their true 16-bit computing and
data manipulation instructions. In the 8/16-bit MCUs, the H8/300 takes a little advantage due
to its special block move instruction. But all 8-bit MCUs, even with shorter instruction lengths,
have longer code size results.

4.2.2 Interrupt processing performance results

Regarding speed, the ST9+ MCU ranks at the first position. The value chart shows that it
has the shortest interrupt latency but also an interrupt routine execution time which is
among the best. These results show that its interruption management and instruction cycle
time have been considerably enhanced. The register groups bring in addition fast context
switching capabilities.

Some 8-bit MCUs, such as the 68HC08, work quite well in this test. But their performance
must be moderated because such MCUs can manage only one interrupt at the time and so
cast off a complex arbitration phase. The interrupt management of the ST9+ is one of the
more advanced, allowing nested interrupts with full software programmable priorities
and program priority level control.

Code efficiency results for interrupt processing performance are not really significant. The
code represents only a very small part of an entire interrupt service routine, and so no
conclusion can be made.

4.2.3 Conclusion

Global results and all its characteristics allow the ST9+ to compete with the true 16-bit
MCUs on 8-bit and low-end 16-bit applications, and confirm its position of high-end 8/16-bit
MCU.
12/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
Table 3. High-end to low-end MCU strong and weak points

MCU Strong points Weak points

80C51XA
(20 MHz)

instruction processing:

fast 8/16-bit ALU:

short average ICT:
special addr. modes:

special instructions:

multitasking:
large memory space:
interrupt processing:

7-byte prefetch queue
predecoding
16-bit datapath
600 ns 8x8 multiplication
250 to 300 ns
indirect with 8/16 offset or

auto-increment
compare & branch like
decrement & branch like
memory-to-memory moves
context switching capabilities
up to 16 Mbytes
nested mode
4-bit program priority register
programmable priority levels

address alignment:

lacking addr. modes:

even jump/branch address
even word operand address
NOP instructions in assembly

code
no indexed addressing

68HC16
(16 MHz)

instruction processing:

fast 8/16/32-bit ALU:

short average ICT:
special addr. modes:

special instructions:
multitasking:
large memory space:

interrupt processing:

3-stage prefetch queue
predecoding
16-bit datapath
625 ns 8x8 multiplication
375 to 440 ns
post-modified indexed

with 8-bitoffset
memory-to-memory moves
context switching capabilities
up to 1 Mbyte
up to 16 Mbytes with memory

expansion module
nested mode
3-bit program priority register
programmable priority levels

address alignment:

instruction lengths:
lacking addr. modes:
lacking instructions:

performance penalty if odd
word operand addresses

only even
no direct addressing
index register manipulation
compare & branch like
decrement & branch like

68HC12
(8 MHz)

instruction processing:

fast 8/16-bit ALU:

short average ICT:
special addr. modes:

special instructions:

large memory space:

2-stage prefetch queue
predecoding
20-bit datapath
375 ns 8x8 multiplication
375 to 500 ns
auto-incr/decrement indexed
accumulator offset indexed
memory-to-memory moves
incr/decrement & branch like
test & branch like
up to 4 Mbytes with memory

expansion module

multitasking:

interrupt processing:

need memory expansion
module

one interrupt at a time
recommended

no program priority register
hardware fixed priorities

H8/300
(10 MHz)

instruction encoding:
short average IL:
special addr. modes:

special instructions:

risc-like encoding
2 to 3 bytes
register indirect, 16-bit offset

or pre/post-increment
block moves

instruction processing:
medium 8/16-bit ALU:
medium average ICT:
lacking instructions:

multitasking:
memory space:
interrupt processing:

standard (no prefetch)
1400 ns 8x8 multiplication
500 to 600 ns
16-bit shifts/rotations
compare & branch like
decrement & branch like
no special capabilities
64 kbytes
one interrupt at a time

recommended
no program priority register
hardware fixed priorities
13/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
Table 3. High-end to low-end MCU strong and weak points (cont’d)

MCU Strong points Weak points

68HC11
(4 MHz)

instruction processing:
medium 8/16-bit ALU:
long average ICT:
lacking instructions:

multitasking:
memory space:
interrupt processing:

standard (no prefetch)
2500 ns 8x8 multiplication
1500 to 1750 ns
compare & branch like
decrement & branch like
no special capabilities
64 kbytes
one interrupt at a time

recommended
no program priority register
hardware fixed priorities

68HC08
(8 MHz)

instruction processing:
fast 8-bit ALU:

special addr. modes:

special instructions:

large memory space:

1-byte prefetch queue
8-bit datapath
625 ns 8x8 multiplication
indexed with 8-bit offset or

post-increment
memory-to-memory moves
compare & branch like
decrement & branch like
up to 4 Mbytes with memory

expansion module

medium average ICT:
lacking addr. modes:
multitasking:
interrupt processing:

500 to 625 ns
no indirect addressing
no special capabilities
one interrupt at a time

recommended
no program priority register
hardware fixed priorities
14/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
4.3 MEDIUM-END TO LOW-END MCU ANALYSIS VERSUS ST7

The Table 4 presents the strong and the weak points for medium-end to low-end MCUs,
compared to the ST7 MCU.

Notes: ICT means Instruction Cycle Time and IL means Instruction Length.
Refer to paragraph <Italic>7.2.2 Average ICT/CPI and IL<Italic end> for details on

calculation.

Refer to paragraph <Italic>7.3.9 ST7 MCU core<Italic end> to see the main characteristics of
the ST7 MCU core.

4.3.1 Computing performance results

Regarding speed, the ST7 MCU takes the second position just below the newly arrived
68HC08. With no prefetch mechanism, it comes even so ahead of all the other MCUs. A short
clock per instruction added to a standard frequency explains its short instruction cycle time
and its advantageous position. The two index registers and the indirect addressing mode
allow the ST7 to easily perform data manipulation like table manipulation and block move.
A direct addressing mode in a 256-byte zero page give a rapid access to important data
and peripheral registers.

Concerning code efficiency, the ST7 MCU ranks among the 8-bit MCUs, very closely above
the 68HC08. A standard instruction length explains its average position.

4.3.2 Interrupt processing performance results

Regarding speed, the ST7 MCU ranks very close to the 68HC08. A longer instruction cycle
time explains this tiny gap. The strong point of its interrupt management is the automatic
stacking of the cpu state, accumulator and index register. This process eliminates software
stacking, and so saves time and space.

Code efficiency results for interrupt processing performance are not really significant. The
code represents only a very small part of an entire interrupt service routine, and so no
conclusion can be made.

4.3.3 Conclusion

Global results and all its characteristics confirm the ST7 as an outstanding 8-bit MCU.
15/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
Table 4. Medium-end to low-end MCU strong and weak points

MCU Strong points Weak points

68HC11
(4 MHz)

medium 8/16-bit ALU:
long average ICT:
lacking instructions:

multitasking:

2500 ns 8x8 multiplication
1500 to 1750 ns
compare & branch like
decrement & branch like
no special capabilities

68HC08
(8 MHz)

instruction processing:
fast 8-bit ALU:

short average ICT:
special addr. modes:

special instructions:

large memory space:

1-byte prefetch queue
8-bit datapath
625 ns 8x8 multiplication
500 to 625 ns
indexed with 8-bit offset or

post-increment
compare & branch like
decrement & branch like
memory-to-memory moves
up to 4 Mbytes with memory

expansion module

lacking addr. modes:
multitasking:

no indirect addressing
no special capabilities

80C51
(20 MHz)

short average IL:
special addr. modes:

special instructions:

multitasking:

1 to 2 bytes
register indirect
stack pointer relative
compare & branch like
decrement & branch like
bit test & bit clear & jump
memory-to-memory moves
context switching capabilities

slow 8-bit ALU:
long average ICT:

2400 ns 8x8 multiplication
900 to 1000 ns

KS88
(8 MHz)

special addr. modes:

special instructions:

multitasking:
interrupt processing:

register pair
indirect register/address
indexed (short/long)
compare & increment &

branch like
decrement & branch like
context switching capabilities
nested mode
level priority control register

slow 8-bit ALU:
long average ICT:
data memory location:

3000 ns 8x8 multiplication
1250 to 1500 ns
off-chip only

78K0
(10 MHz)

special addr. modes:

special instructions:
multitasking:

register indirect
stack pointer relative
indexed with 8-bit offset
decrement & branch like
context switching capabilities

mixed architecture:
slow 8-bit ALU:
long average ICT:

only accumulator oriented
3200 ns 8x8 multiplication
1400 to 1600 ns
16/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
5 DESCRIPTION OF MCU WORK ENVIRONMENTS
This section is a short description of the work environment, with the tools used (hardware and
software tools), for each MCU during the benchmarks.

5.1 80C51XA MCU TOOLS

5.2 68HC16 MCU TOOLS

5.3 68HC12 MCU TOOLS

Hardware tools
P51XAG35 chip
P51XADB/E development board/emulator

Note that no external RAM was available on the development board.

Software tools
A Microsoft Windows based integrated development environment have been elaborated upon by
Macraigor Systems Incorporated. The interesting tools for the benchmarks were a standard
editor, an XA absolute macro assembler, and an emulator interface/debugger.

Hardware tools

MC68HC16Z1 chip
M68HC16Z1EVB evaluation board
Jumpers are set to configure the board.

Note that, to access the I/O pin used for execution time measuring, a context switch is needed
and add to each test routine 6 bytes and 375 ns. This length and time have been subtracted from
measured results, in order not to disadvantage this MCU. If they are taken into account, the
computing performance results are just a little worse (1.40) but code efficiency decreases down
to 1.45.
Note that the external RAM of the evaluation board needs wait states and so was not use.

Software tools

MASM16 (DOS environment) is an integrated environment for writing, editing assembling and
debugging source code. It also allows to set the assembler options which are:

masm -I'name'.lst -o'name'.o -a -b 'name'.asm >_masm16.err

EVB16 is a DOS debugger for 68HC16Z1EVB.

Hardware tools

MC68HC812A4 chip
M68HC12A4EVB evaluation board
Jumpers have been left as configured in factory.

Note that the external RAM of the evaluation board needs wait states and so was not use.

Software tools

The development of the routines is performed within an Integrated Development Environment
(IDE) : Motorola MCU software. In a Windows environment, this software brings a project
manager (MCU project), a macro-assembler (MCU asm), and a Motorola S-record generator
(hex). The compilation options are:

masm -y -W3 -I'name'.lst -a -o'name'.o 'name'.asm

hex -F'name'.hex 'name'.o

A communications program is then necessary to connect the PC to the evaluation board through
a RS232 serial link. We have used PROCOMM PLUS for Windows, but any other
communications program can suit the link to the Evaluation Board and its D-Bug12 monitor/
debugger program, resident in external EPROM.

Note that the ‘TBNE’, ‘TBEQ’, ‘DBNE’, ‘DBEQ’, ‘IBNE’, and ‘IBEQ’ instructions were not usable
without problems with the board used.
17/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
5.4 ST9+ MCU TOOLS

5.5 ST9 MCU TOOLS

5.6 H8/300 MCU TOOLS

Hardware tools
ST90R192 chip
Circuit Real Time Emulation System ST9+ HDS2 (Hardware Development System 2)
The PLL clock has been used (see configuration in assembly codes)

Software tools

The GNU C Toolchain (GCC9) for the ST9+ is used to assemble the code sources (in assembler
language). The command line with its options is:

gcc9 -v -g -c -o 'name'.o 'name'.st9

Then it is linked with the linker LD9:

ld9 -I -i -m -Tdata 0x10000300 -o 'name'.u 'name'.o

To debug the program, the Windows Debugger WGDB9xxx for ST9+ is used together with the
emulator. Here, the configuration file hardware.gdb is the following one:

clear_map

map 0x000000 32 sw

map 0x008000 16 sr

Hardware tools
ST90R50 chip
Circuit Real Time Emulation System ST9 HDS2 (Hardware Development System 2)

Software tools

The GNU C Toolchain for ST9 is used. The options are the following ones:

gcc9 -v -g -c -o 'name'.o 'name'.st9

ld9 -I -i -m -Tdata 0x10000300 -o 'name'.u 'name'.o

The Windows Debugger WGDB9xxx is used with the configuration file hardware.gdb :

bankswitch off

pd_signal used

sdb sr ea 3<<2
sdb sr fc 08
sdb sr fd 08
sdb sr fe 00

Mapping of memory
map p:0x0000 0x7FFF SR
map D:0x0000 0x7FFF SW

Hardware tools

H8/330 chip
LEV8330 evaluation board
Default jumpers’ settings have been kept.

Note that the code was placed on external memory (the size of internal RAM is limited to 512
bytes). As the access to external memory is 3 times longer than the access to internal memory,
the measured execution time results have been corrected. For each test, a value, equals to
(200ns x number of bytes executed), has been subtracted (200ns for each byte of code).
Actually, only the instruction fetch was wrong, and it lasted 300ns instead of 100ns for each byte.

Software tools
The Eurodesc H-series Interface Software (INTFC3) allows the user to communicate with the
Hitachi's Executive Monitor System (EMS) located on the development board. It uses a DOS
environment.
18/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
5.7 68HC11 MCU TOOLS

5.8 68HC08 MCU TOOLS

5.9 ST7 MCU TOOLS

Hardware tools

MC68HC11A8 chip
MC68HC11A8EVM evaluation board

Note that the internal chip frequency on evaluation board was 2 MHz, but as 4 MHz versions are
available, this frequency was used for results (execution time values have been divided by 2).
Note that it was not possible to emulate external RAM.

Software tools
The integrated assembler IASM11 (DOS environment) allows to blend an editor and a cross
assembler into one single environment.
A DOS environment is used to debug programs.

Hardware tools

MC68HC708XL36 chip
EML08XL36 emulator module plugged in the M68MMEVS05 modular evaluation system
(platform board for EML08XL36)
Jumpers configure both.

Software tools

Rapid, a software development tool in a DOS environment allows to execute all the operations.
It consists of a configuration program (Rinstall) and a cross assembler (CASM). Rinstall contains
a serie of data entry screens. Only CASM and the MMEV08X DOS debugger were configured
as follows:

• Cross assembler configuration: “CASM assembler” entry screen

Name and fully path: 'path_of_CASM08.exe'

Primary options: S L D

Secondary options: S L D I

 • Debugger configuration: “Debugger” entry screen

Fully path: 'path_of_MMEVS08.exe'

Options: -B

Note that the assembler does not seem to manage the zero page addressing mode. Thus, the
results have been modified to take this addressing mode into account. Without zero page
addressing mode, the execution time result changes to 0.61 and the code size result increases
up to 1.43.

Hardware tools

ST7275 chip
ST7 HDS (Hardware Development System) emulator with ST7275 DBE (Dedicated Board
Emulator)

Note that measures have been made with a 4 MHz MCU, but as 8 MHz versions exist, two values
are presented with the two frequencies (for the 8 MHz version, execution time values have been
divided by 2).

Software tools

The toolchain used for the ST7 includes a meta-assembler (ASM), a generic linker (LYN), and a
generic formatter (OBSEND). These software tools are used with the following options :

asm -sym -li 'name'

lyn 'name'

asm 'name' -fi = 'name'.map

obsend 'name', f, 'name'.s19, srec

The Windows environment is used by the debugger: Windows Debugger WGDB7.
19/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
5.10 80C51 MCU TOOLS

5.11 KS88 MCU TOOLS

5.12 78K0 MCU TOOLS

Hardware tools

P80C32GBPN chip
MicroTek EASYPACK 8051 serial emulator

Note that the internal chip frequency on evaluation board was 12 MHz, but as 20 MHz versions
are available, this frequency was used for results (execution time values have been divided by
20/12).

Software tools IAR 8051 assembler

Hardware tools

KS880504 and KS880116 chips
SMDS II in-circuit emulator (Samsung Microcontroller Development System 2) with target boards
TB880504A and TB880116A
A function generator has been used to reach the 8 MHz frequency. It has been connected to the
Personality Board in the SMDS2 emulator after having selected the EXTRA clock source with the
switches in the front panel.

Note that this MCU do not own any internal RAM - register file space excepted. It was also
impossible to emulate external memory. Tests have been performed using register file only.

Software tools

Everything is done from the SMDS operating program software (DOS environment). SAMA
(Samsung Assembler) is used to assemble the programs with the following command line and
options:

SAMA.EXE %S /K /LST

Then, the program is loaded to SMDS2 memory (emulation memory) and a work file is made ([M]
key). The debugging screen is accessed with the [D] key.

Hardware tools
µPD78P014 chip
78K0 starter kit

Note that it was not possible to emulate external RAM.

Software tools

The µPD78P014 toolchain consists of a Micro Series assembler (A78000) and a Micro Series
generic linker (XLINK). The command lines are as follows:

A78000 'name'.asm 'name'.lst

xlink 'name' -o 'name'.o -f bench.xcl

The file bench.xcl extends the length of xlink command line. The extra options included in
bench.xcl are:

-c78000

-Fnec

-Z(CODE)INTVEC=8000

-Z(CODE)CODE=8080

-Z(DATA)DATA=FB00

-Z(DATA)WRKSEG,SHORTAD=FE20-FEDF

-Z(BIT)BITVARS=0

-Y2

The 78K0 starter kit has a DOS environment.
20/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
6 COMPLETE NUMERICAL RESULTS
Here are the tables with the complete numerical results.

6.1 CORE COMPUTING PERFORMANCE

The first two tables (Table 5 and Table 6) concern execution time with the values measured
in milliseconds and the ratios calculated with ST9+ MCU as reference. The next two tables
(Table 7 and Table 8) concern code size with the values measured in bytes and the ratios
calculated with ST9+ MCU as reference. The last two tables (Table 9 and Table 10) present
global execution time ratios and global code size ratios with reduced and full set of tests.

Refer to section 9 for measurement proceeding and calculation description.

Notes: The reduced set of tests includes string, char, bubble(10 words), blkmov(64 bytes),
convert, 16mul, shright, bitrst tests. They are in boldface characters.

Numbers with parenthesis have been judged out of range and have not been taken
into account. In fact, it means that this specific test was absolutely unadapted to this
specific MCU. Only some tests, which are not include in the reduced set, are
concerned.

6.2 CORE INTERRUPT PROCESSING PERFORMANCE

Table 11 concerns execution time with the values measured in microseconds, showing
interrupt latency & return time, the total time, and the ratios calculated with ST9+ MCU as
reference. Table 12 concerns code size with the values measured in bytes and the ratios
calculated with ST9+ MCU as reference.

The execution time has only been calculated theoretically with the assembly code, like
computing performance theoretical execution time (see <Italic>9.1.1 Execution time
measure<Italic end>). The result is the sum of the interrupt latency (execution time of the
longest instruction and interrupt entry time) and the execution time of the interrupt service
routine. The code size has been calculated with the assembly code.

Legend: ▲ x.xx best results

▼ x.xx worst results

Legend: ▲ x.xx best results

▼ x.xx worst results
21/51

ST7 AND ST9 PERFORMANCE BENCHMARKING

7

z)

80C51(1)

(20 MHz)

690 ▼ 1.17

140 0.142

.18 1.99

560

305 0.233

.67 (8.61)

904 0.584

037 0.035

020 ▼ 0.031

183 0.203

z)

80C51(1)

(20 MHz)

.23 ▼ 0.14

.34 0.34

.14 0.15

.14

.19 0.25

.17 (0.052)

.25 0.38

.19 0.20

.17 ▼ 0.11

.32 0.29
Table 5. Computing performance execution time measures

(1) The 80C51 results are preliminary results. They may changed in later versions.

Table 6. Computing performance execution time ratios

Execution time
measures (ms)

80C51XA

(20 MHz)

68HC16

(16 MHz)

68HC12

(8 MHz)

ST9+

(25 MHz)

ST9

(12 MHz)

H8/300

(10 MHz)

68HC11

(4 MHz)

68HC08

(8 MHz)

ST7

(8 MHz)

ST

(4 MH

1 sieve ▲ 25.1 27.8 47.5 41.4 142 147

2 acker(3,5) ▲ 148 224 230 268 868 916 950

3 acker(3,6) ▲ 602 920 936 1,090 3,530 3,720 3,850

4 string 0.178 0.157 ▲ 0.15 0.160 0.514 0.369 0.54 0.264 0.345 0.

5 char 0.042 0.039 ▲ 0.037 0.048 0.149 0.071 0.140 0.039 0.0070 0.

6 bubble(10 words) ▲ 0.170 0.223 0.328 0.306 0.988 0.741 1.33 1.14 1.09 2

7 bubble(600 words) ▲ 638 968 1,280 1,190 3,830 3,750 5,130 4,280 ▼ 8,

8 blkmov(64 bytes) ▲ 0.025 0.035 0.037 0.057 0.174 0.036 0.259 0.078 0.153 0.

9 blkmov(512 bytes) ▲ 0.167 0.272 0.289 0.452 1.36 0.261 2.05 1.34 2

10 convert ▲ 0.146 0.227 0.288 0.223 0.766 0.397 0.82 0.265 0.452 0.

11 16mul 0.0019 0.0017 ▲ 0.0016 0.0068 0.020 0.012 0.029 0.013 0.018 0.

12 shright ▲ 0.0013 0.0038 0.0046 0.0034 0.011 0.010 0.017 0.0072 0.010 0.

13 bitsrt ▲ 0.047 0.050 0.055 0.059 0.178 0.071 0.215 0.086 0.092 0.

Execution time
ratios

80C51XA

(20 MHz)

68HC16

(16 MHz)

68HC12

(8 MHz)

ST9+

(25 MHz)

ST9

(12 MHz)

H8/300

(10 MHz)

68HC11

(4 MHz)

68HC08

(8 MHz)

ST7

(8 MHz)

ST7

(4 MH

1 sieve ▲ 1.65 1.49 0.87 1.00 0.29 0.28

2 acker(3,5) ▲ 1.81 1.20 1.16 1.00 0.31 0.29 0.28

3 acker(3,6) ▲ 1.81 1.18 1.16 1.00 0.31 0.29 0.28

4 string 0.90 1.02 ▲ 1.05 1.00 0.31 0.43 0.30 0.61 0.46 0

5 char 1.14 1.23 ▲ 1.28 1.00 0.32 0.67 0.34 1.23 0.68 0

6 bubble(10 words) ▲ 1.80 1.37 0.93 1.00 0.31 0.41 0.23 0.27 0.28 0

7 bubble(600 words) ▲ 1.87 1.23 0.93 1.00 0.31 0.32 0.23 0.28 ▼ 0

8 blkmov(64 bytes) ▲ 2.30 1.65 1.56 1.00 0.33 1.57 0.22 0.74 0.38 0

9 blkmov(512 bytes) ▲ 2.71 1.66 1.56 1.00 0.33 1.73 0.22 0.34 0

10 convert ▲ 1.54 0.98 0.78 1.00 0.29 0.56 0.27 0.84 0.49 0

11 16mul 3.60 3.92 ▲ 4.22 1.00 0.35 0.56 0.23 0.52 0.37 0

12 shright ▲ 2.67 0.92 0.75 1.00 0.30 0.35 0.20 0.48 0.34 0

13 bitsrt ▲ 1.25 1.18 1.08 1.00 0.33 0.83 0.27 0.69 0.65 0
22/51

ST7 AND ST9 PERFORMANCE BENCHMARKING

7

z)

80C51(1)

(20 MHz)

53 ▼ 76

22 ▼ 61

88 ▼ 155

64)

14 ▲ 12

 44 ▲ 12

22 16

 66 55

15 14

290 219

7

z)

80C51(1)

(20 MHz)

.06 ▼ 1.52

.76 ▼ 2.10

.00 ▼ 3.52

7.4)

.82 ▲ 0.71

.60 ▲ 0.71

.96 0.70

.50 1.25

.50 1.40

.11 0.84
Table 7. Computing performance code size measures

(1) The 80C51 results are preliminary results. They may changed in later versions.

Table 8. Computing performance code size ratios

Code size
measures (bytes)

80C51XA

(20 MHz)

68HC16

(16 MHz)

68HC12

(8 MHz)

ST9+

(25 MHz)

ST9

(12 MHz)

H8/300

(10 MHz)

68HC11

(4 MHz)

68HC08

(8 MHz)

ST7

(8 MHz)

ST

(4 MH

1 sieve 49 68 73 ▲ 48 ▲ 48 54

2 acker(3,5) 73 68 ▲ 62 88 88 86 80

3 acker(3,6) 73 68 ▲ 62 88 88 86 80

4 string 57 52 ▲ 43 50 50 52 54 61 53

5 char 31 26 21 29 29 28 ▲ 20 22 22

6 bubble(10 words) 41 44 ▲ 40 44 44 42 57 106 88

7 bubble(600 words) 41 44 ▲ 40 44 44 42 57 (764) (7

8 blkmov(64 bytes) 18 20 15 17 17 12 13 13 14

9 blkmov(512 bytes) 18 20 19 17 17 24 13 ▼ 44 ▼

10 convert 24 ▼ 32 22 23 23 22 29 ▲ 14 22

11 16mul 10 10 ▲ 7 44 44 40 62 ▼ 66 ▼ 66 ▼

12 shright ▲ 8 14 11 10 10 12 14 ▼ 16 15

13 bitsrt 340 304 310 261 261 ▲ 138 233 260 290

Code size
ratios

80C51XA

(20 MHz)

68HC16

(16 MHz)

68HC12

(8 MHz)

ST9+

(25 MHz)

ST9

(12 MHz)

H8/300

(10 MHz)

68HC11

(4 MHz)

68HC08

(8 MHz)

ST7

(8 MHz)

ST

(4 MH

1 sieve 1.02 1.42 1.52 ▲ 1.00 ▲ 1.00 1.13

2 acker(3,5) 0.80 0.77 ▲ 0.71 1.00 1.00 0.98 0.91

3 acker(3,6) 0.83 0.77 ▲ 0.71 1.00 1.00 0.98 0.91

4 string 1.14 1.04 ▲ 0.86 1.00 1.00 1.04 1.08 1.22 1.06 1

5 char 1.07 0.90 0.720 1.00 1.00 0.97 ▲ 0.69 0.76 0.76 0

6 bubble(10 words) 0.93 1.00 ▲ 0.91 1.00 1.00 0.96 1.30 2.41 2.00 2

7 bubble(600 words) 0.93 1.00 ▲ 0.91 1.00 1.00 0.96 1.30 (17.4) (1

8 blkmov(64 bytes) 1.06 1.18 0.88 1.00 1.00 0.71 0.77 0.77 0.82 0

9 blkmov(512 bytes) 1.06 1.18 1.12 1.00 1.00 1.41 0.77 ▼ 2.60 ▼ 2

10 convert 1.04 1.40 0.96 1.00 1.00 0.96 1.26 ▲ 0.61 0.96 0

11 16mul 0.23 0.23 ▲ 0.16 1.00 1.00 0.91 1.41 ▼ 1.50 ▼ 1.50 ▼ 1

12 shright ▲ 0.80 1.40 1.10 1.00 1.00 1.20 1.40 ▼ 1.60 1.50 1

13 bitsrt 1.30 1.17 1.19 1.00 1.00 ▲ 0.53 0.89 1.00 1.11 1
23/51

ST7 AND ST9 PERFORMANCE BENCHMARKING

7

Hz)

80C51(1)

(20 MHz)

0.23 0.23

7

Hz)

80C51(1)

(20 MHz)

1.21 ▼ 1.50

7

Hz)

80C51

(20 MHz)

7.75 8.40

3.00 10.80

0.31 0.38

7

Hz)

80C51

(20 MHz)

16.5 19.5

0.85 1.00
Table 9. Computing performance global execution time ratios

(1) The 80C51 results are preliminary results. They may changed in later versions.

Table 10. Computing performance global code size ratios

(1) The 80C51 results are preliminary results. They may changed in later versions.

Table 11. Interrupt processing performance execution time values and ratios

Table 12. Interrupt processing performance code size values and ratios

Global execution time
ratios

80C51XA

(20 MHz)

68HC16

(16 MHz)

68HC12

(8 MHz)

ST9+

(25 MHz)

ST9

(12 MHz)

H8/300

(10 MHz)

68HC11

(4 MHz)

68HC08

(8 MHz)

ST7

(8 MHz)

ST

(4 M

with reduced set of tests ▲ 1.90 1.54 1.46 1.00 0.32 0.67 0.26 0.67 0.46

with full set of tests ▲ 1.92 1.47 1.33 1.00 0.32 0.64

Global code size
ratios

80C51XA

(20 MHz)

68HC16

(16 MHz)

68HC12

(8 MHz)

ST9+

(25 MHz)

ST9

(12 MHz)

H8/300

(10 MHz)

68HC11

(4 MHz)

68HC08

(8 MHz)

ST7

(8 MHz)

ST

(4 M

with reduced set of tests 0.95 1.04 ▲ 0.85 1.00 1.00 0.98 1.10 1.24 1.21

with full set of tests 0.94 1.03 ▲ 0.90 1.00 1.00 1.04

Execution time
values (µs) and ratios

80C51XA

(20 MHz)

68HC16

(16 MHz)

68HC12

(8 MHz)

ST9+

(25 MHz)

ST9

(12 MHz)

H8/300

(10 MHz)

68HC11

(4 MHz)

68HC08

(8 MHz)

ST7

(8 MHz)

ST

(4 M

interrupt latency & return 3.15 4.19 3.75 ▲ 2.40 7.17 3.90 ▼ 21.75 2.88 3.88

execution time values 4.70 7.56 6.25 ▲ 4.08 12.00 8.70 ▼ 17.25 5.25 6.50 1

execution time ratios 0.87 0.54 0.65 ▲ 1.00 0.34 0.47 ▼ 0.19 0.78 0.63

Code size
values and ratios

80C51XA

(20 MHz)

68HC16

(16 MHz)

68HC12

(8 MHz)

ST9+

(25 MHz)

ST9

(12 MHz)

H8/300

(10 MHz)

68HC11

(4 MHz)

68HC08

(8 MHz)

ST7

(8 MHz)

ST

(4 M

code size values (bytes) 28.5 ▼ 36 16.5 19.5 19.5 33 ▲ 13.5 16 16.5

code size ratios 1.46 ▼ 1.85 0.85 1.00 1.00 1.70 ▲ 0.69 0.82 0.85
24/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
7 MCU CORE ARCHITECTURE ANALYSIS
This section presents, for the different MCUs, the main parameters of the core architecture
which are significant for benchmark result analysis.

7.1 PARAMETER DESCRIPTION

The significant parameters of core architecture are the following ones:

On-chip/Off-chip buses

- on-chip buses
address bus size

data/program memory bus sizes

register bus size (if any)

- off-chip buses (if any)
address bus size

data/program memory bus size

multiplexing

Memory Spaces

Harvard organization

Von Neumann organization

- special register space (if any)

- data/program memory spaces

- interrupt vector table location and size

Arithmetic Logic Unit

datapath size

- standard operations

- special functions and performance

Instruction processing

Standard

Prefetch mechanism

- queue size
- predecoding (if any)

- address alignment

Cpu internal buses address bus size, data bus size
register bus (if any)

Instruction set

Cisc/Risc encoding

- Clock Per Instruction (CPI)

- average Clock Per Instruction

- Instruction Length (IL)

- average Instruction Length

- special addressing modes

- special instructions

Programming model

Register file

Accumulator(s)

Mixed register file/accumulator

- list of registers (they may be outside the cpu)

- multitasking capabilities

MOVE Rd,Rs
ADD Rd,#2

+ / x

LDAA #8, X
ADDA #A0

CPU
25/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
7.2 REMARKS ON SOME PARAMETERS

7.2.1 Instruction processing

Only two different instruction processings exist:

• standard processing: current instruction is completely processed before next one is fetched
• prefetch mechanism: some next opcodes are prefetched as current instruction is processed

The prefetch mechanism is best described as a queue rather than as a pipeline. Queue
logic fetches program information and positions it for execution, but instructions are executed
sequentially. A typical pipelined CPU executes more than one instruction at the same time.
The queue size is given, but performance is not precised because no value is given by
databooks. Nevertheless, general statistics on instruction processing mechanisms give an
usual average 20%-25% gain for one stage, and this gain is not more than 25%-30% for two
stages. Additional stages without complex mechanisms do not give higher gain. Anyway, the
instruction processing mechanism has a leading role in general performance.

7.2.2 Average ICT/CPI and IL

The average ICT (Instruction Cycle Time) is a currently used parameter. But it is linked to the
frequency f, then we prefer the average CPI (Clock Per Instruction) to describe the
instruction set. On the other hand, to compare MCU core performance, the frequency has
to be considered, and so the average ICT is used in result analysis (section 4). Charts with
ICT and IL ranges are presented at the end of this section (see <Italic>7.4 Instruction Cycle
Time chart<Italic end> and <Italic>7.5 Instruction Length chart<Italic end>).

Remark that the average ICT (in µs) is the inverse of the MIPS parameter (Million Instruction
Per Second), and so we have the formula:

(f is in MHz and ICT is in µs)

The average ICT/CPI and average IL have been calculated considering all available
instructions and all possible addressing modes, favouring mostly used ones in the test
routines. Ranges are presented instead of decimal values, to take the subjectivity of the
calculation into account. Thus the values can be considered as reliable.

f 1
MIPS = =

CPI ICT
26/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
7.2.3 Special addressing modes and instructions

Test routines assembly code analysis has pointed out that some addressing modes and
instructions can reduce significantly the code size. To a minor extent, execution time may also
be decreased. The addressing modes and instructions concerned are usually those which
allow to make two operations within a single instruction.

Indirect with pre/post-increment addressing mode is an example. This mode is very useful for
loops and block moves. Modes allowing memory-to-memory transfers are another example
for block moves. In the same way, instructions such as bit test & set, decrement & branch, or
compare & branch have stood out for the same reasons.

These addressing modes and instructions are mentioned in tables as special addressing
modes and special instructions.

7.3 MCU CORE ANALYSIS

The following paragraphs are synthetical diagrams presenting the main parameters of core
architecture for each MCU. Those parameters have been synthesized from the databooks.
Some special characteristics are also mentioned, even if they are not really significant for the
benchmark result analysis.
27/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
7.3.1 80C51XA MCU core

On-chip/Off-chip buses

- on-chip buses
16-bit address bus (up to 24-bit)

8/16-bit data memory bus

8/16-bit program memory bus

8/16-bit sfr bus

- off-chip buses
8/16-bit address bus (up to 24-bit)

8/16-bit multiplexed sfr/data/program mem. bus

the two buses may be multiplexed

the two buses are multiplexed with ports

Memory Spaces

Harvard organization

- segmented data/program memory spaces
data memory space

up to 255 segments of 64 kbytes each = 16 Mbytes

1-Kbyte zero page/segment (32 bytes bit addr.)

special function register space (logically separate)

 512 bytes of on-chip registers (64 bytes bit addr.)

 512 bytes of off-chip registers

program memory space

up to 255 segments of 64 kbytes each = 16 Mbytes

first 284-byte interrupt vector table = 71 interrupts

Arithmetic Logic Unit

16-bit datapath

- 8/16-bit operations

- special functions
8x8 unsigned multiplication 12 cycles

16x16 (un)signed multiplications 12 cycles

8/8 unsigned division 12 cycles

16/8 (un)signed divisions (12)14 cycles

32/16 (un)signed divisions (22)24 cycles

32-bit shifts 6 cycles

Instruction processing

Prefetch mechanism

- 7-byte queue
- predecoding

- jump/branch address even alignment
addition of some 1-byte NOP instructions

- word operand even alignment
addition of some 1-byte NOP instructions

Cpu internal buses 16-bit mux. address/data/control bus
8/16-bit sfr bus (special function register)

Instruction set

Cisc encoding

- CPI 2 cycles to 24 cycles

- average CPI between 5 and 6 cycles

- IL 2 bytes to 6 bytes

- average IL between 3 and 4 bytes

- special addressing modes
register access as bit, word, or doubleword

immediate with 11-bit addresses

indirect with 8/16-bit offset or auto-increment

- special instructions
exchange register contents

push/pull multiple registers

memory-to-memory moves

register indirect to reg. ind., both auto-increment

compare & branch like

decrement & branch like

Programming model

Register file

- banked registers
4 banks of four 16-bit registers

- global registers
four 16-bit registers (up to 12)

- others registers
16-bit program counter (up to 24-bit)

two 8-bit segment registers

16-bit system and user stack pointers

- special function registers
program status word, system configuration register

segment select register

data/extra/code segment registers

on-chip/off-chip peripheral and i/o port registers

- multitasking capabilities
context switching with banked registers

system and user modes

MOVE Rd,Rs
ADD Rd,#2

+ / x

80C51XA CPU
28/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
7.3.2 68HC16 MCU core

Memory Spaces

Harvard organization

- pseudo-linear data/program memory space
data memory space

16 banks of 64 kbytes each = 1 Mbyte

peripheral registers in last segment

program memory space

16 banks of 64 kbytes each = 1 Mbyte

first 512-byte interrupt vector table = 207 interrupts

On-chip/Off-chip buses

- on-chip buses
16-bit address bus + 4-bit extension (= 20 bits)

extensible up to 24 bits

8/16-bit multiplexed data/program memory bus

- off-chip buses
16-bit address bus + 4-bit extension (= 20 bits)

extensible up to 24 bits

8/16-bit multiplexed data/program memory bus

the two buses are multiplexed with ports

Arithmetic Logic Unit

16-bit datapath

- 8/16/32-bit operations

- special functions
8x8 unsigned multiplication 10 cycles

16x16 (un)signed multiplications (8)10 cycles

16x16 fractional signed multiplication8 cycles

32/16 (un)signed divisions (24)38 cycles

16/16 fractional unsigned division 22 cycles

16/16 integer division 22 cycles

mac signed 16-bit fractions 12 cycles

r(epeat) mac signed 16-bit fractions 6+12n cycles

Instruction processing

Prefetch mechanism

- 3-stage queue
stage A : latched opcode

stage B : executing opcode

stage C : hold opcode

- predecoding

- word operand even/odd alignment
substantial performance penalty if odd alignment

Cpu internal buses 16-bit address bus, 16-bit data bus
(to be confirmed)

Instruction set

Cisc encoding

- CPI 2 cycles to 38 cycles

- average CPI between 6 and 7 cycles

- IL 2 bytes to 6 bytes (even)

- average IL between 3 and 4 bytes

- special addressing modes
accumulator offset

indexed with 8/16/20-bit offset

post-modified indexed mode with 8-bit offset

- special instructions
32-bit long integer manipulations

exchange register contents

push/pull multiple registers

memory-to-memory moves

extended ↔ post-modified indexed

extended ↔ extended

mac and r(epeat)mac instructions

LDAA #8, X
ADDA #A0

+ / x

Programming model

Accumulators

- two 16-bit accumulators
useable as one 32-bit accumulator

first addressable as two 8-bit registers

- three 16-bit index registers
with 4-bit extension

- others registers
16-bit program counter (with 4-bit extension)

16-bit stack pointer (with 4-bit extension)

condition code register

two 16-bit & one 36-bit & one 16-bit mac registers

operand registers, result register, mask register

- extension fields
four 4-bit index address extension fields

one 4-bit stack address extension fields

- multitasking capabilities
context switching with extension fields

68HC16 CPU
29/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
7.3.3 68HC12 MCU core

Memory Spaces

Von Neumann organization

- linear data/program memory space
64 kbytes with first 256-byte zero page

peripheral registers in zero page

upper 128-byte interrupt vector table = 64 interrupts

- memory extension (Harvard organization)
program/data/extra mem. windows in linear space

up to 4-Mbyte memory space/window

On-chip/Off-chip buses

- on-chip buses
16-bit address bus

8/16-bit data/program memory bus

- off-chip buses
16-bit address bus

up to 22 bits with memory expansion module

8/16-bit data/program memory bus

the two buses are multiplexed with ports

Arithmetic Logic Unit

20-bit datapath

- 8/16-bit operations

- special functions
8x8 unsigned multiplication 3 cycles

16x16 (un)signed multiplications 3 cycles

32/16 (un)signed divisions (11)12 cycles

16/16 unsigned fractional division 12 cycles

16/16 (un)signed integer divisions 12 cycles

min/max of two 16-bit values 4 to 7 cycles

mac signed 16x16 to 32-bit mem. 13 cycles

8/16-bit table lookup and interpolate 10 cycles

(un)weighted product sum 8n cycles

Instruction processing

Prefetch mechanism

- 2-stage queue
2-word instruction queue

16-bit holding buffer if queue is full

- predecoding

- word operand even/odd alignment
no performance penalty if odd alignment

Cpu internal buses 16-bit address bus, 16-bit data bus
(to be confirmed)

Instruction set

Cisc encoding

- CPI 1 cycle to 13 cycles

- average CPI between 3 and 4 cycles

- IL 1 byte to 5 bytes

- average IL between 3 and 4 bytes

- special addressing modes
auto pre/post-increment/decrement indexed

stack pointer and program counter indexed

indexed-indirect with 16-bit offset

accumulator offset indexed

- special instructions
exchange register contents

increment/decrement/test & branch like

memory-to-memory moves

extended ↔ extended

mac & min/max instructions

fuzzy logic support, table lookup and interpolate

+ / x

Programming model

Accumulators

- two 8-bit accumulators
useable as one 16-bit accumulator

- two 16-bit index registers

- others registers
16-bit program counter

16-bit stack pointer

condition code register

- multitasking capabilities
with memory expansion module

context switching with program page register

and program/data/extra windows

specific call and rtc instructions

68HC12 CPU

LDAA #8, X
ADDA #A0
30/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
7.3.4 ST9+ MCU core

On-chip/Off-chip buses

- on-chip buses
16-bit address bus

8/16-bit data/program memory bus

8-bit register bus

- off-chip buses
8/16-bit address bus

up to 22-bit with memory management unit

8-bit multiplexed data/program memory bus

the two buses may be multiplexed

the two buses are multiplexed with ports

Memory Spaces

Harvard organization

- register file space
224 bytes of general purpose registers

system, on-chip peripheral, and i/o port registers

- linear data/program memory space
data memory space

up to 256 segments of 16 kbytes each = 4 Mbytes

program memory space

up to 64 segments of 64 kbytes each = 4 Mbytes

256-byte interrupt vector table = 128 interrupts

 user-programmable location

Cpu internal buses 16-bit address
8-bit data multiplexed bus

Instruction set

Cisc encoding

- CPI 2 cycles to 26 cycles

- average CPI between 10 and 12 cycles

- IL 1 byte to 6 bytes

- average IL between 3 and 4 bytes

- special addressing modes
bit access to whole register file

register pair (two 8-bit registers as one 16-bit)

register direct/indirect

indirect with pre/post-increment

indexed (short, long, register, memory)

- special instructions
exchange register contents

bit test & set

decrement & branch like

memory-to-memory moves

register indirect to reg. ind., both post-increment

Instruction processing

Prefetch mechanism

- next byte prefetching
as soon as instruction register is available

and address is known

Arithmetic Logic Unit

8-bit datapath

- 8/16-bit operations

- special functions
8x8 unsigned multiplication 22 cycles

16/8 unsigned divisions 26/14 cycles

32/16 stepped unsigned divisions 26 cycles

+ / x

Programming model

Register file

- general purpose registers
14 groups of sixteen 8-bit registers

- system registers
one group of sixteen 8-bit registers

flags, central interrupt control register

user/system stack pointers

mode register, page pointer

2 register group pointers

i/o port data registers

- paged registers
on-chip peripheral data and control registers

up to 64 pages of sixteen 8-bit registers

- 16-bit program counter

- multitasking capabilities
context switching with register group pointers

LDW RRd,rrs
ADD Rd,#2

ST9+ CPU
31/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
7.3.5 ST9 MCU core

On-chip/Off-chip buses

- on-chip buses
16-bit address bus

8/16-bit data/program memory bus

8-bit register bus

- off-chip buses
8/16-bit address bus

8-bit multiplexed data/program memory bus

the two buses may be multiplexed

the two buses are multiplexed with ports

Cpu internal buses 16-bit address
8-bit data multiplexed bus

Instruction set

Cisc encoding

- CPI 6 cycles to 38 cycles

- average CPI between 16 and 18 cycles

- IL 1 byte to 6 bytes

- average IL between 3 and 4 bytes

- special addressing modes
bit access to whole register file

register pair (two 8-bit registers as one 16-bit)

register direct/indirect

indirect with pre/post-increment

indexed (short, long, register, memory)

- special instructions
exchange register contents

bit test & set

decrement & branch like

memory-to-memory moves

register indirect to reg. ind., both post-increment

Instruction processing

Prefetch mechanism

- next byte prefetching
as soon as instruction register is available

and address is known

Arithmetic Logic Unit

8-bit datapath

- 8/16-bit operations

- special functions
8x8 unsigned multiplication 22 cycles

16/8 unsigned divisions 28/20 cycles

32/16 stepped unsigned divisions 28 cycles

+ / x

Programming model

Register file

- general purpose registers
14 groups of sixteen 8-bit registers

- system registers
one group of sixteen 8-bit registers

flags, central interrupt control register

user/system stack pointers

mode register, page pointer

2 register group pointers

i/o port data registers

- paged registers
on-chip peripheral data and control registers

up to 64 pages of sixteen 8-bit registers

- 16-bit program counter

- multitasking capabilities
context switching with register group pointers

ST9 CPU

LDW RRd,rrs
ADD Rd,#2

Memory Spaces

Harvard organization

- register file space
224 bytes of general purpose registers

system, on-chip peripheral, and i/o port registers

- linear data/program memory space
data memory space

up 64 kbytes

program memory space

up to 64 kbytes

first 256-byte interrupt vector table = 128 interrupts
32/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
7.3.6 H8/300 MCU core

On-chip/Off-chip buses

- on-chip buses
16-bit address bus

8/16-bit data/program memory bus

- off-chip buses
8/16-bit address bus

8-bit data/program memory bus

the two buses are multiplexed with ports

Memory Space

Von Neumann organization

- linear data/program memory space
64 kbytes

upper 176-byte on-chip register field

additional 16-byte on-chip register field

first 48-byte interrupt vector table = 21 interrupts

Arithmetic Logic Unit

8-bit datapath

- 8/16-bit operations

- special functions
8x8 unsigned multiplication 14 cycles

16/8 unsigned division 14 cycles

Instruction processing

Standard

- sequential processing

Cpu internal buses 16-bit address bus, 16-bit data bus
8-bit register bus (to be confirmed)

Instruction set

Risc encoding

- CPI 2 cycles to 24 cycles

- average CPI between 5 and 6 cycles

- IL 2 bytes or 4 bytes (even)

- average IL between 2 and 3 bytes

- special addressing modes
register access as bit, 4-bit, byte, or word

register indirect

with 16-bit offset

with pre/post-increment

- special instructions
block moves

Programming model

Register file

- general registers
sixteen 8-bit registers

useable as eight 16-bit registers

include one 16-bit stack pointer

- others registers
16-bit program counter

condition code register

MOVE Rd,Rs
ADD Rd,#2

+ / x

H8/300 CPU
33/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
7.3.7 68HC11 MCU core

On-chip/Off-chip buses

- on-chip buses
16-bit address bus

8-bit data/program memory bus

- off-chip buses
8/16-bit address bus

8-bit data/program memory bus

the two buses are multiplexed with ports

Memory Space

Von Neumann organization

- linear data/program memory space
64 kbytes

256-byte zero page

64-byte peripheral register space

upper 41-byte interrupt vector table 18 interrupts

Arithmetic Logic Unit

8-bit datapath

- 8/16-bit operations

- special functions
8x8 unsigned multiplication 10 cycles

16/16 unsigned integer division 41 cycles

16/16 unsigned fractional division 41 cycles

Instruction processing

Standard

- sequential processing

Cpu internal buses 16-bit address bus, 8-bit data bus
(to be confirmed)

Instruction set

Cisc encoding

- CPI 2 cycles to 41 cycles

- average CPI between 6 and 7 cycles

- IL 1 byte to 3 bytes

- average IL between 2 and 3 bytes

- special instructions
exchange register contents

Programming model

Accumulators

- two 8-bit accumulators
useable as one 16-bit accumulator

- two 16-bit index registers

- other registers
16-bit program counter

16-bit stack pointer

condition code register

+ / x

68HC11 CPU

LDAA #8, X
ADDB #A0
34/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
7.3.8 68HC08 MCU core

On-chip/Off-chip buses

- on-chip buses
16-bit address bus

8-bit data/program memory bus

- off-chip buses
8/16-bit address bus

up to 22-bit with memory expansion module

8-bit data/program memory bus

the two buses are multiplexed with ports

Memory Space

Von Neumann organization

- linear data/program memory space
64 kbytes

up to 4 Mbytes with memory expansion module

256-byte zero page

58-byte peripheral register space

direct addressable

upper 256-byte interrupt vector table = 128 interrupts

Arithmetic Logic Unit

8-bit datapath

- 8-bit operations

- special functions
8x8 unsigned multiplication 5 cycles

16/8 unsigned integer division 7 cycles

Instruction processing

Prefetch mechanism

- 1-byte queue
opcode lookahead register

Cpu internal buses 16-bit address bus, 8-bit data bus
(to be confirmed)

Instruction set

Cisc encoding

- CPI 1 cycle to 9 cycles

- average CPI between 4 and 5 cycles

- IL 1 byte to 4 bytes

- average IL between 2 and 3 bytes

- special addressing modes
indexed with 8-bit offset and post-increment

stack pointer relative (8/16-bit offset)

- special instructions
compare & branch like

decrement & branch like

memory-to-memory moves

direct to direct

direct ↔ indexed with post-increment

Programming model

Accumulator

- one 8-bit accumulator

- one 16-bit index register

- other registers
16-bit program counter

16-bit stack pointer

condition code register

+ / x

68HC08 CPU

LDA #8, X
ADD #A0
35/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
7.3.9 ST7 MCU core

On-chip/Off-chip buses

- on-chip buses
16-bit address bus

8-bit data/program memory bus

Memory Space

Von Neumann organization

- linear data/program memory space
64 kbytes

256-byte zero page

128-byte peripheral register space

direct addressable

upper 32-byte interrupt vector table = 14 interrupts

Arithmetic Logic Unit

8-bit datapath

- 8-bit operations

- special functions
8x8 unsigned multiplication 11 cycles

Instruction processing

Standard

- sequential processing

Cpu internal buses 16-bit address bus, 8-bit data bus
(to be confirmed)

Instruction set

Cisc encoding

- CPI 2 cycles to 12 cycles

- average CPI between 4 and 5 cycles

- IL 1 byte to 4 bytes

- average IL between 2 and 3 bytes

- special addressing modes
indirect (short/long)

Programming model

Accumulator

- one 8-bit accumulator

- two 8-bit index registers

- other registers
16-bit program counter

16-bit stack pointer

condition code register

+ x

ST7 CPU

LD (X),A
ADD A,#A0
36/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
7.3.10 80C51 MCU core

On-chip/Off-chip buses

- on-chip buses
8/16-bit address bus

8-bit data memory bus

8-bit program memory bus

- off-chip buses
8/16-bit address bus

8-bit data/program memory bus

the two buses are multiplexed

the two buses are multiplexed with ports

Memory Spaces

Harvard organization

- linear data/program memory space
data memory space

64 kbytes

first 128-byte zero page

 lowest 32-byte banked register space

 16-byte bit addressable space

special function register space (logically separate)

 128-byte special function register space

 direct addressable only

program memory space

64 kbytes

first 128-byte zero page

first 24-byte interrupt vector table = 5 interrupts

Arithmetic Logic Unit

8-bit datapath

- 8-bit operations

- special functions
8x8 unsigned multiplication 48 cycles

16/8 unsigned division 48 cycles

Instruction processing

Standard

- sequential processing

Core internal buses 16-bit address bus, 8-bit data bus
(to be confirmed)

Instruction set

Cisc encoding

- CPI 12 cycles to 48 cycles

- average CPI between 18 and 20 cycles

- IL 1 byte to 3 bytes

- average IL between 1 and 2 bytes

- special addressing modes
16-bit addressing with data pointer register

register/stack pointer/data pointer register indirect

stack pointer relative

- special instructions
exchange accumulator and register/direct byte

compare/decrement & branch like

bit test & bit clear & jump

memory-to-memory moves

direct to direct

direct to indirect

Programming model

Register file &
Accumulator

- general registers
4 banks of eight 8-bit registers

they are mapped in data memory

- special function registers
one 8-bit accumulator

16-bit program counter

16-bit data pointer register

useable as two 8-bit registers

8-bit stack pointer

condition code register

peripheral registers

they are mapped in data memory

- multitasking capabilities
context switching with banked registers

+ / x

80C51 CPU

MOV A,(R1)
ADD A,#A0
37/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
7.3.11 KS88 MCU core

On-chip/Off-chip buses

- on-chip buses
8/16-bit address bus

8-bit program memory bus

8-bit register bus

- off-chip buses
8/16-bit address bus

8-bit data/program memory bus

the two buses are multiplexed

the two buses are multiplexed with ports

Memory Spaces

Von Neumann organization

- register file space
192-byte prime data register space (all addr. modes)

64-byte register set 1

16-byte working register space (working reg. addr.)

16-byte system register space (register addressing)

32-byte system & peripheral control register space

 (register addressing)

64-byte register set 2

64-byte data register space (indirect, indexed, stack)

- linear data/program memory space
64 kbytes

first 16-Kbyte program memory only

first 256-byte interrupt vector table = 128 interrupts

Arithmetic Logic Unit

8-bit datapath

- 8-bit operations

- special functions
8x8 unsigned multiplication 24 cycles

16/8 unsigned division 28 cycles

Instruction processing

Standard

- sequential processing

Core internal buses 16-bit address bus, 8-bit data bus
8-bit register bus (to be confirmed)

Instruction set

Cisc encoding

- CPI 6 cycles to 28 cycles

- average CPI between 10 and 12 cycles

- IL 1 byte to 3 bytes

- average IL between 2 and 3 bytes

- special addressing modes
register pair (two 8-bit registers as one 16-bit)

indirect address/register

indexed (short/long)

- special instructions
compare & increment & branch like

decrement & branch like

Programming model

Register file

- prime registers
192 8-bit prime data registers

- two register sets
register set 1

sixteen 8-bit working registers

sixteen 8-bit system registers

32 8-bit system & peripheral control registers

register set 2

64 registers

- other registers
16-bit program counter

system and user stack pointers

- multitasking capabilities
context switching with register sets

system and user modes

+ / x

KS88 CPU

MOVE Rd,Rs
ADD Rd,#2
38/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
7.3.12 78K0 MCU core

On-chip/Off-chip buses

- on-chip buses
8/16-bit address bus

8-bit data memory bus

8-bit program memory bus

- off-chip buses
8/16-bit address bus

8-bit data/program memory bus

the two buses are multiplexed

the two buses are multiplexed with ports

Memory Space

Von Neumann organization

- linear data/program memory space
64 kbytes

upper 256-byte special function register space

peripheral registers

sfr addressing

following 32-byte general register space

register addressing

256-byte zero page straddle sfr/register/ram spaces

first 64-byte interrupt vector table = 14 interrupts

Arithmetic Logic Unit

8-bit datapath

- 8-bit operations

- special functions
8x8 unsigned multiplication 32 cycles

16/8 unsigned division 50 cycles

Instruction processing

Standard

- sequential processing

Core internal buses 16-bit address bus, 8-bit data bus
(to be confirmed)

Instruction set

Cisc encoding

- CPI 4 cycles to 50 cycles

- average CPI between 14 and 16 cycles

- IL 1 byte to 4 bytes

- average IL between 2 and 3 bytes

- special addressing modes
register indirect

indexed with 8-bit offset

stack pointer relative

- special instructions
decrement & branch like

+ / x

78K0 CPU

Programming model

Register file &
Accumulator

- general registers
4 banks of eight 8-bit registers

useable as four 16-bit registers

second register is the accumulator

they are memory mapped

- cpu special function registers
16-bit program counter

16-bit stack pointer

program status word

- multitasking capabilities
context switching with banked registers

MOV A,(R1)
ADD A,#A0
39/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
7.4 INSTRUCTION CYCLE TIME CHART

The following chart (Figure 6.) presents complete and average Instruction Cycle Time (ICT)
ranges for the different MCUs.

The complete range goes from the minimum to the maximum complete ICT. The average ICT
range goes from the minimum to the maximum average ICT. For explanation on calculation,
see <Italic>7.2.2 Average ICT/CPI and IL<Italic end>.

7.5 INSTRUCTION LENGTH CHART

The following chart (Figure 7.) presents complete and average Instruction Length (IL) ranges
for the different MCUs.

The complete range goes from the minimum to the maximum complete IL. The average ICT
range goes from the minimum to the maximum average IL. For explanation on calculation, see
<Italic>7.2.2 Average ICT/CPI and IL<Italic end>.
40/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
F
ig

u
re

 6
. C

o
m

p
le

te
 a

n
d

 a
ve

ra
g

e
In

st
ru

ct
io

n
 C

yc
le

 T
im

e
ra

n
g

es

8-bit MCUs16-bit MCUs 8/16-bit MCUs

be
st

 p
er

fo
rm

an
ce
41/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
F
ig

u
re

 7
. C

o
m

p
le

te
 a

n
d

 a
ve

ra
g

e
In

st
ru

ct
io

n
 L

en
g

th
 r

an
g

es

8-bit MCUs16-bit MCUs 8/16-bit MCUs

be
st

 d
en

si
ty
42/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
8 DESCRIPTION OF THE TEST ROUTINES
This section is a more precise description of the test routines. For each test, are detailed the
algorithm, its implementation and the features which it stresses.

8.1 ERATOSTHENES SIEVE

8.2 ACKERMANN FUNCTION

8.3 STRING SEARCH

Algorithm
The Eratosthenes sieve is a well-known algorithm which searches the prime numbers greater
than or equal 3 out of n elements (n=8189 has been chosen arbitrary).

Implementation

The even numbers greater than 3 are not prime numbers, so that this algorithm only looks for
prime numbers among an array of odd numbers.

We have chosen an array of 8189 elements. It represents the odd numbers from 3 to 16379. The
array is initialized with the value 'true' ('true' = 0), and is then filled with 1 (false) if the
corresponding number is not a prime number or is not modified (it keeps the value 0='true') if it
is a prime number. Don't forget that it is an array of odd numbers: array[j] ↔ 2j+3

At the beginning of the routine, each number is a potential prime number (initialization value is
'true'). The algorithm consists in setting (to 'false') the odd multiples of every prime number found
in the array skimmed through in the ascending order.

Features stressed
This test measures the elementary computational capability and the ability to manipulate
data in an array.

Algorithm
The Ackermann function is a two parameter function -acker(m,n)- which induces several
recursive calls.

Implementation
This test routine is performed with two different pairs of parameters: acker(3,5) and acker(3,6).
For instance, with the parameters m=3 and n=6, the function induces 172, 233 procedure calls.

Features stressed It tests the efficiency in recursive procedure calls and in stacks usage.

Algorithm The String search consists in searching a 16-byte string in a 128-character array.

Implementation

The data are predefined with the following contents:

for the 128-character array,

“xxxxxxxxpatterxx” (64 bytes)

“xxxxxxxxxxxxxxxxxpattern is here!xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx” (64 bytes)

and for the 16-byte string,

“pattern is here!” (16 bytes)

The searching algorithm looks for the first matching character in the array and then compares
the rest of the string. If the searched string has been found, it returns the address of the first
character of the string in the array.

Features stressed This program measures the efficiency in data comparison and string manipulation.
43/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
8.4 CHARACTER SEARCH

8.5 BUBBLE SORT

8.6 BLOCK MOVE

8.7 BLOCK TRANSLATION

8.8 16-BIT INTEGER MULTIPLICATION

Algorithm The Character search consists in searching a byte in a 40-byte block.

Implementation
The data are also predefined. The algorithm searches the byte “o” in the 40-byte block
“-------------------------------o--------”, where the character 'o' is the 32nd character of the block.

Features stressed As the string search, this program measures the efficiency in data comparison.

Algorithm The Bubble sort benchmark manages the sorting of a one dimension array of 16-bit integers.

Implementation

The test is performed with 10 words and then with 600 words. The array is initialized with 10 or
600 words (16-bit integers) in reverse order.

The algorithm is a classic bubble sort which arranges the 10 words (or the 600 words) in the
ascending order of magnitude.

Note that the routine used is intentionally almost the same for the two values (as though it could
have been optimized for the first value). Few differences may exist, but they do not modify the
way the test is done.

Features stressed
This benchmark demonstrates the efficiency in data comparison and data manipulation but
especially in 16-bit value comparison and 16-bit value manipulation.

Algorithm The Block move test routine aims at transferring a block from a place to another place in memory.

Implementation

This program is tested with a 64-byte block and with a 512-byte block.

Note that the routine used is intentionally almost the same for the two values (as though it could
have been optimized for the first value). Few differences may exist, but they do not modify the
way test is done.

Features stressed It shows the data blocks manipulation ability.

Algorithm The Convert test routine aims at transferring a block from a place to another place in memory.

Implementation
It uses a table to convert the source block into the destination block. The table contains the
translation of the source block elements. This benchmark is useful to convert for example from
an ASCII code to an EBCDIC code...

Features stressed
As the block move test program, it shows the data blocks manipulation ability, but also the
ability to use a lookup table.

Algorithm
The 16-bit integer multiplication program performs a multiplication of two unsigned words (16-bit
integers), giving a 32-bit result.

Implementation
The two operands chosen here are 256, so that the multiplication performed is:

256 x 256 = 65536 (=10000h hexadecimal value)

Features stressed This test measures the computational capability of the microcontroller with 16-bit integers.
44/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
8.9 16-BIT VALUE RIGHT SHIFT

8.10 BIT MANIPULATION

8.11 TIMER INTERRUPT

Algorithm The 16-bit value right shift routine shifts a 16-bit value five places to the right.

Implementation
The operand to be shifted is 40h (hexadecimal value). It is taken into account as a 16-bit integer
and it is the 16-bit value which is shifted.

Features stressed It is a test measuring the word (16-bit) and bit manipulation capability.

Algorithm
The Bit manipulation benchmark performs the set, the reset, and the test of 3 bits in a 128-bit
array.

Implementation

The memory where some bits will be set, reset, and tested, is initialized with the 'Ah' value
(hexadecimal value). It is composed of 8 words '0AAAAh', which represents a 16-byte memory
area, that is to say a 128-bit array.

The test consists in setting, resetting, and then testing the 10th bit of the array, then the 13th bit
of the array, and then the 123rd bit of the array. Setting a bit is setting it to 1. Resetting a bit is
resetting it to 0. And testing a bit is testing it and setting it to 1 if zero (with the zero flag Z also
set if zero).

Features stressed
This benchmark measures the computational capability and the efficiency in bit
manipulation.

Algorithm
The Timer interrupt benchmark is composed of two routines performing an input capture interrupt
and an input capture/output compare interrupt.

Implementation

The first routine is the body of an interrupt service routine handling a timer input capture.

The second is the body of an interrupt service routine handling a timer input capture or a output
compare; as interrupt vectors can be separate, this routine may be composed of two different
parts.

The routines include:

• the average instruction (that is an instruction lasting the average instruction cycle time)
which is interrupted and the interrupt entry process (they represent the interrupt latency)

• the body of a typical interrupt service routine including the following operations:

- stack two registers or change register bank (if not done by interrupt processing)

- read timer register

- call to a subroutine with input capture register content as input parameter or output
compare register content as output parameter

- return from subroutine

- unstack registers or restore register bank (if not done by interrupt processing)

- return from interrupt

It is true that each MCU has its specific own manner of handling interrupts. Reading the timer
register and using the input capture/output compare as a parameter for a function call has been
judged as a satisfying way to do so. Thus, it has been chosen as routine body.

Features stressed This benchmark measures the interrupt processing performance.
45/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
9 MEASUREMENT PROCEEDING AND CALCULATION
This section describes measurement proceeding and calculation for computing performance
test routines only. Interrupt processing performance test routines are not concerned
(see <Italic>6.2 Core interrupt processing performance<Italic end> for details on measure
and calculation).

9.1 MEASUREMENT PROCEEDING

The parameters measured are execution time and code size. The first has been measured
on MCU boards (thanks to an oscilloscope) whenever possible, or with the assembly code.
The second has been measured on the assembly code.

To facilitate execution time measurement, assembly code has been divided in two parts. The
first, called Assignments & Initializations in the source code, contains the initialization of the
MCU and data and then a call to the test routine; which is included in the second part, called
Test Loop. The first part ends with an infinite loop. The execution time and code size will
obviously be measured on Test Loop part.

9.1.1 Execution time measure

An I/O pin is used to make the measure, thanks to a digital oscilloscope. This I/O pin is
configured as an output, with a push-pull, and interrupts are disabled in the initialization part.
The pin used for each MCU is detailed in Table 13.

Table 13. I/O pins for execution time measuring

The Test Loop routine begins with the set of the I/O pin. This marks the beginning of the test

MCU name I/O pin for measure

80C51XA pin 0 of port 2

68HC16 pin 2 of port E

68HC12 pin 7 of port E

ST9+ pin 0 of port 4

ST9 pin 0 of port 4

H8/300 pin 0 of port 6

68HC11 pin 0 of port B

68HC08 pin 0 of port A

ST7 pin 0 of port B

80C51 pin 0 of port 1

KS88
pin 0 of port 2 (for 88C0504)
pin 0 of port 4 (for 88C0116)

78K0 pin 0 port 2
46/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
routine and so the start of the measure on the oscilloscope (trigger on positive edge). The
following lines are the implementation of the algorithm. This part ends with the reset of the I/O
pin and a return of the call.

The execution time is the length of the pulse triggered with the oscilloscope. Figure 8. shows
the diagram of the way of execution time measurement proceeding.

Note that it was sometimes not possible to implement all the tests on an MCU (see
<Italic>9.2.2 Memory considerations<Italic end>). In some of these cases, test routines have
even been written and execution time has been calculated theoretically. The theoretical
execution time is simply given by dividing the number of clock cycles, calculated the assembly
source, by the internal processing frequency:

Note that experience has shown the accuracy of these theoretical calculations in front of real
measures. Thus results of both types can be compared.

Figure 8. Execution time measurement proceeding

number of clock cycles
Theoretical execution time =

internal clock frequency

Oscilloscope screen

Test routine

pulse

Execution time

Assignments &
Initializations

.....
reset I/O pin

.....

.....

Infinite Loop

Infinite Loop

Test Loop

set I/O pin
.....
.....
.....
.....

reset I/O pin
47/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
9.1.2 Code size measure

Code size is measured with the assembly code. The result is the number of bytes used to
code the test routine (in Test Loop part) without the set and reset instructions for the I/O pin.

Here is an example of a Test Loop:

0000 C290 test: setb p1.0 ; set I/O pin

0002 7809 mov r0, #srcpointer ; beginning of test routine
 0004 7982 mov r1, #destpointer
 0006 900200 mov dptr, #200h
 0009 7F79 mov r7, #121

000B E6 loop: mov a, @r0
 000C 93 movc a, @a+dptr
 000D F7 mov @r1, a
 000E 08 inc r0
 000F 0A inc r2
 0010 DFF9 djnz r7, loop ; end of test routine

0012 D290 finish: clr p1.0 ; reset I/O pin
0014 22 ret

The code size of this assembly code equals (12h-2h) = 10h = 16d, thus 16 bytes.

9.2 CALCULATION

9.2.1 Execution time and code size ratios

From execution time and code size measures, preliminary ratios with ST9+ MCU as
reference have been calculated for each test. Using those results, a global execution time
ratio and a global code size ratio have been calculated as an average of all ratios.

As all the tests could not have been implemented on all MCUs (see <Italic>9.2.2 Memory
considerations<Italic end>), one or two different results are presented for each MCU. The
first one, available for all the MCUs, has been calculated with the reduced set of tests
performed on all the MCUs (Table 14). The second one, only available for some MCUs, has
been calculated with the full set of tests (Table 15).

Table 14. Reduced set of tests

Tests concerned string, char, bubble(10 words), blkmov(64 bytes), convert, 16mul, shright, bitrst

Resulting ratio formulas

ET = execution time
CS = code size

sum(ET ratios of reduced set)
Global ET ratio for reduced set =

number of tests of reduced set

sum(CS ratios of reduced set)
Global CS ratio for reduced set =

number of tests of reduced set
48/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
Table 15. Full set of tests

9.2.2 Memory considerations

The “place” of the memory (internal or external) of the MCU used for stack, has indirectly
a consequence on the results. As all the MCUs own internal memory and do not own external
memory, internal memory has been used for most of the tests. But because some tests
(especially Ackermann function) require an important stack capacity, alternative solutions
have been elaborated.

Here is a synthesis of the different cases:

• for tests with a limited memory need, internal memory has been used as stack
• for tests with important memory need,

- for MCUs with important internal memory available, internal memory has been used

- for MCUs with limited internal memory but with external memory (with identical access time)
available, external memory has been used

- for MCUs with limited internal memory and external memory with longer access time, no real
measure has been made in order not to disfavour some MCUs; in some of these cases,
theoretical measures have been calculated based on the assembly code - note that
theoretical results are closed to practical results with internal memory

A small number of tests for some MCUs could not have been implemented due to various
reasons.

Tests concerned
string, char, bubble(10 words), blkmov(64 bytes), convert, 16mul, shright, bitrst
sieve, acker(3,5), acker(3,6), bubble(600 words), blkmov(512 bytes)

Resulting ratio formulas

ET = execution time
CS = code size

sum(ET ratios of full set)
Global ET ratio for full set =

number of tests of full set

sum(CS ratios of full set)
Global CS ratio for full set =

number of tests of full set
49/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
As theoretical results are close to actual results with internal memory (see <Italic>9.1.1
Execution time measure<Italic end>), there are only two main cases (for each MCU):

• tests which have been performed (theoretically or practically with internal or external memory)
• tests which have not been implemented (due to various reasons)

As a matter of facts, there are two different sets of tests:

• the reduced set of tests performed on all the MCUs
• the full set of tests performed only on some MCUs

A rapid view on results show that the ratios obtained using both set of tests are not very
different (see <Italic>4.1 Preliminary remark<Italic end>).
50/51

ST7 AND ST9 PERFORMANCE BENCHMARKING
“THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.”

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.

All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia – Belgium - Brazil - Canada - China – Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com
51/51

	INTRODUCTION
	1 Overview of the Test Routines
	2 Overview of the MCU cores
	3 Benchmark results
	3.1 Core computing performance
	3.2 Core interrupt processing performance

	4 Result analysis
	4.1 Preliminary remark
	4.2 High-end to medium-end MCU analysis versus ST9+
	4.2.1 Computing performance results
	4.2.2 Interrupt processing performance results
	4.2.3 Conclusion

	4.3 Medium-end to low-end MCU analysis versus ST7
	4.3.1 Computing performance results
	4.3.2 Interrupt processing performance results
	4.3.3 Conclusion

	5 Description of MCU work environments
	5.1 80C51XA MCU tools
	5.2 68HC16 MCU tools
	5.3 68HC12 MCU tools
	5.4 ST9+ MCU tools
	5.5 ST9 MCU tools
	5.6 H8/300 MCU tools
	5.7 68HC11 MCU tools
	5.8 68HC08 MCU tools
	5.9 ST7 MCU tools
	5.10 80C51 MCU tools
	5.11 KS88 MCU tools
	5.12 78K0 MCU tools

	6 Complete numerical results
	6.1 Core computing performance
	6.2 Core interrupt processing performance

	7 MCU Core architecture analysis
	7.1 Parameter description
	7.2 Remarks on some parameters
	7.2.1 Instruction processing
	7.2.2 Average ICT/CPI and IL
	7.2.3 Special addressing modes and instructions

	7.3 MCU core analysis
	7.3.1 80C51XA MCU core
	7.3.2 68HC16 MCU core
	7.3.3 68HC12 MCU core
	7.3.4 ST9+ MCU core
	7.3.5 ST9 MCU core
	7.3.6 H8/300 MCU core
	7.3.7 68HC11 MCU core
	7.3.8 68HC08 MCU core
	7.3.9 ST7 MCU core
	7.3.10 80C51 MCU core
	7.3.11 KS88 MCU core
	7.3.12 78K0 MCU core

	7.4 Instruction Cycle Time chart
	7.5 Instruction Length chart

	8 Description of the test routines
	8.1 Eratosthenes sieve
	8.2 Ackermann function
	8.3 String search
	8.4 Character search
	8.5 Bubble sort
	8.6 Block move
	8.7 Block translation
	8.8 16-bit integer multiplication
	8.9 16-bit value right shift
	8.10 Bit manipulation
	8.11 Timer interrupt

	9 Measurement proceeding and calculation
	9.1 Measurement proceeding
	9.1.1 Execution time measure
	9.1.2 Code size measure

	9.2 Calculation
	9.2.1 Execution time and code size ratios
	9.2.2 Memory considerations

