

STH85N15F4-2 STP85N15F4

N-channel 150 V, 0.015 Ω, 85 A TO-220, H²PAK STripFET™ DeepGATE™ Power MOSFET

Preliminary data

Features

Туре	V _{DSS}	R _{DS(on)} max	I _D
STH85N15F4-2	150 V	< 18.6 mΩ	85 A
STP85N15F4	150 V	< 19 mΩ	85 A

- Extremely low on-resistance R_{DS(on)}
- 100% avalanche tested

Application

■ Switching applications

Description

This STripFETTM DeepGATETM Power MOSFET technology is among the latest improvements, which have been especially tailored to minimize on-state resistance, with a new gate structure, providing superior switching performance.

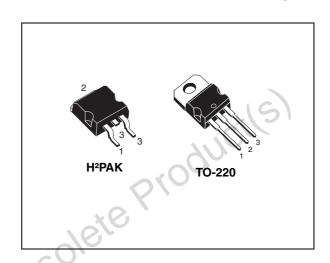


Figure 1. Internal schematic diagram

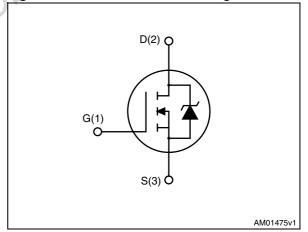


Table 1. Device summary

ipsolete Pro

Order codes	Order codes Marking		Packaging
STH85N15F4-2	85N15F4	H ² PAK	Tape and reel
STP85N15F4	STP85N15F4 85N15F4		Tube

Contents

1	Electrical ratings 3
2	Electrical characteristics 4
3	Test circuits 6
4	Package mechanical data 7
5	Revision history
0050	Electrical characteristics

Electrical ratings 1

Table 2. **Absolute maximum ratings**

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	150	V
V _{GS}	Gate-source voltage	± 20	V
I _D	Drain current (continuous) at T _C = 25 °C	85	Α
I _D	Drain current (continuous) at T _C = 100 °C	60	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	340	Α
P _{TOT}	Total dissipation at T _C = 25 °C	300	W
	Derating factor	2.0	W/°C
E _{AS} (2)	Single pulse avalanche energy	TBD	mJ
T _{stg}	Storage temperature	– 55 to 175	°C
T _j	Max. operating junction temperature	× C = 55 to 175	
1. Pulse wi	dth limited by safe operating area	3	
2. Starting	T _j = 25 °C, I _D = 50 A, V _{DD} =25 V		
	0/03		

^{1.} Pulse width limited by safe operating area

Table 3. Thermal data

Symbol	Parameter	Val	Unit	
Syllibol	Parameter	TO-220	H ² PAK	Oill
R _{thj-case}	Thermal resistance junction-case max	0.5		°C/W
R _{thj-pcb}	Thermal resistance junction-pcb max	35 ⁽¹⁾		°C/W
R _{thj-a}	Thermal resistance junction-ambient max	62.5		°C/W
Tı	Maximum lead temperature for soldering purpose	300		°C

^{1.} When mounted on 1inch² FR-4 board, 2 oz Cu.

^{2.} Starting T_i = 25 °C, I_D = 50 A, V_{DD} =25 V

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 4. On/off states

Parameter	Test conditions		Min.	Тур.	Max.	Unit
Drain-source Breakdown voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$		150			٧
Zero gate voltage Drain current (V _{GS} = 0)	V_{DS} = max rating V_{DS} = max rating, T_{C} = 125 °C				1 100	μA μA
Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			1,10	100	nA
Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$		2	Ç	4	٧
Static drain-source on resistance	V _{GS} = 10 V, I _D = 40 A	TO220		15.5 15.0	19 18.6	mΩ
	Drain-source Breakdown voltage Zero gate voltage Drain current (V _{GS} = 0) Gate-body leakage current (V _{DS} = 0) Gate threshold voltage Static drain-source on	Drain-source Breakdown voltage	$\begin{array}{ll} \text{Drain-source} \\ \text{Breakdown voltage} \\ \text{Zero gate voltage} \\ \text{Drain current } (V_{GS} = 0) \\ \text{Gate-body leakage} \\ \text{current } (V_{DS} = 0) \\ \text{Gate threshold voltage} \\ \text{Static drain-source on} \\ \end{array} \begin{array}{ll} V_{DS} = \max \text{ rating} \\ V_{DS} = \max \text{ rating}, \\ T_{C} = 125 \text{ °C} \\ \\ V_{GS} = \pm 20 \text{ V} \\ \\ \text{V}_{DS} = V_{GS}, I_{D} = 250 \mu\text{A} \\ \\ \text{TO220} \\ \end{array}$	Drain-source Breakdown voltage $I_D = 250 \; \mu\text{A}, \; V_{GS} = 0 \qquad 150$ $Zero \; \text{gate voltage} \qquad V_{DS} = \text{max rating} \qquad V_{DS} = \text{max rating}, \qquad V_{C} = 125 \; ^{\circ}\text{C}$ $Gate-body \; leakage \qquad V_{GS} = \pm 20 \; V \qquad V_{GS} = \pm 20 \; V$ $Gate \; threshold \; voltage \qquad V_{DS} = V_{GS}, \; I_D = 250 \; \mu\text{A} \qquad 2$ $Static \; drain-source \; on \qquad V_{GS} = 10 \; V, \qquad TO220$	Drain-source $I_D = 250 \mu A$, $V_{GS} = 0$ 150 Zero gate voltage $V_{DS} = \max_{x = 100} x$ rating Drain current ($V_{GS} = 0$) $V_{DS} = \max_{x = 100} x$ rating, $V_{CS} = 125 ^{\circ}C$ Gate-body leakage current ($V_{DS} = 0$) $V_{GS} = \pm 20 V$ Gate threshold voltage $V_{DS} = V_{GS}$, $V_{DS} = 0$ Static drain-source on $V_{GS} = 10 V$, TO220 15.5	Drain-source Breakdown voltage

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	8320	-	pF
C _{oss}	Output capacitance	$V_{DS} = 25 \text{ V}, f = 1 \text{ MHz},$	-	600	-	pF
C _{rss}	Reverse transfer capacitance	V _{GS} = 0	-	230	-	pF
Q_g	Total gate charge	$V_{DD} = 80 \text{ V}, I_D = 85 \text{ A},$	-	140	-	nC
Q_{gs}	Gate-source charge	V _{GS} = 10 V	-	TBD	-	nC
Q_{gd}	Gate-drain charge	(see Figure 3)	-	TBD	-	nC

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on delay time Rise time	V_{DD} = 75 V, I_D = 40 A R_G = 4.7 Ω V _{GS} = 10 V (see Figure 2)	-	TBD TBD	-	ns ns
t _{d(off)}	Turn-off-delay time Fall time	V_{DD} = 75 V, I_D = 40 A, R_G = 4.7 Ω , V_{GS} = 10 V (see Figure 2)	-	TBD TBD	-	ns ns

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Tvn	Max	Unit
-		rest conditions		Тур.		
I _{SD}	Source-drain current		-		85	A
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		340	Α
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 85 \text{ A}, V_{GS} = 0$	-		TBD	V
t _{rr}	Reverse recovery time	$I_{SD} = 85 \text{ A}, V_{DD} = 25 \text{ V}$ di/dt = 100 A/µs,		TBD		ns
Q_{rr}	Reverse recovery charge	· ·	-	TBD		nC
I_{RRM}	Reverse recovery current	(see Figure 4)		TBD		Α
2. Pulsed: F	Reverse recovery current Oth limited by safe operating area. Pulse duration = 300 µs, duty cycle 1.5	9%	.0	40		<i>)</i> ۱
		*EP	40			
		coleir				
	C	05				
	*(5)					
	AUCL					
	(OO,					
10						

3 Test circuits

Figure 2. Switching times test circuit for resistive load

Figure 3. Gate charge test circuit

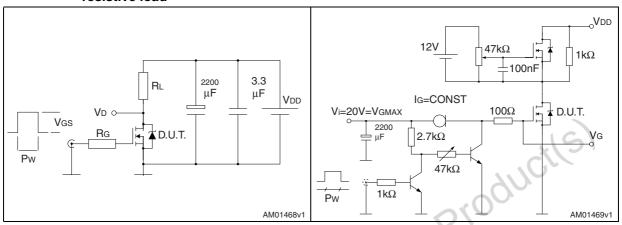


Figure 4. Test circuit for inductive load switching and diode recovery times

Figure 5. Unclamped inductive load test circuit

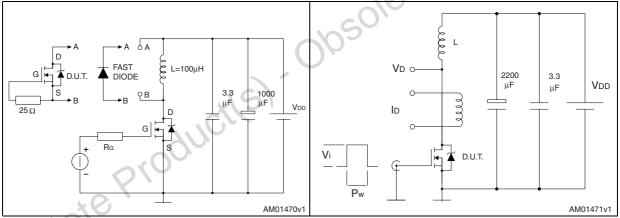
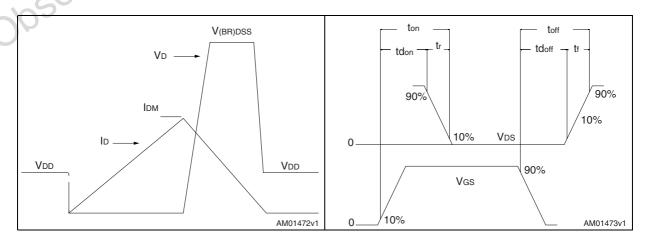



Figure 6. Unclamped inductive waveform

Figure 7. Switching time waveform

577

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 8. TO-220 mechanical data

D:	mm		
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1,27	
Е	10	0/6	10.40
е	2.40	105	2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
	3.75		3.85
Q	2.65		2.95

Figure 8. TO-220 drawing

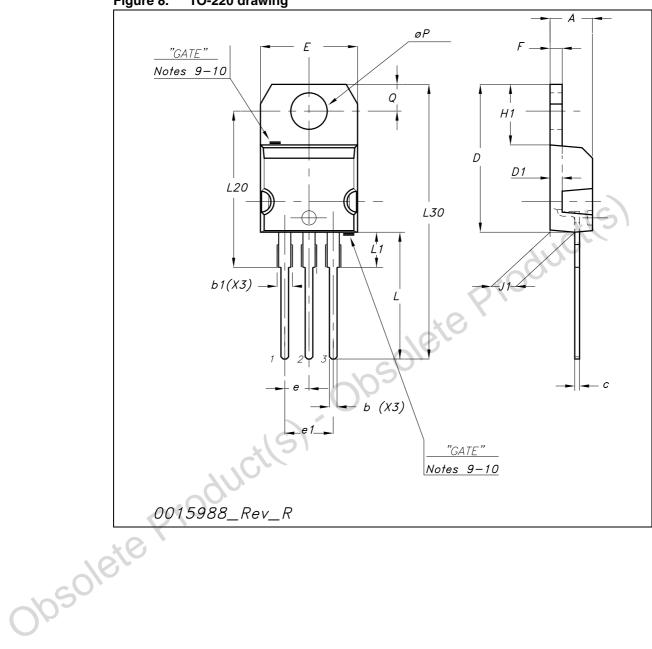
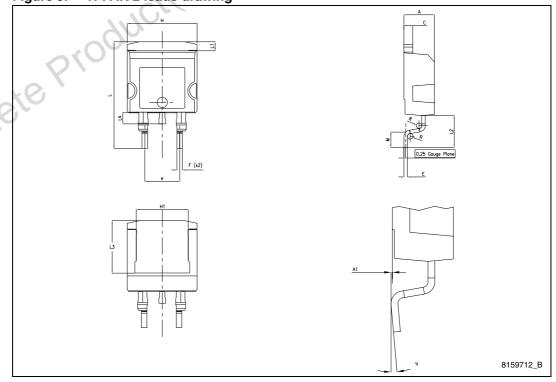



Table 9. H²PAK 2 leads mechanical data

Dim.		mm		
Dim.	Min.	Тур.	Max.	
А	4.30	-	4.80	
A1	0.03	-	0.20	
С	1.17	-	1.37	
е	4.98	-	5.18	
E	0.50	-	0.90	
F	0.78	-	0.85	
Н	10.00	-	10.40	
H1	7.171	-	7.971	
L	15.30	-	15.80	
L1	1.27	- 01	1.40	
L2	4.93	- 7	5.23	
L3	7.45	10/0	7.85	
L4	1.5	0/0	1.7	
М	2.6	W2 -	2.9	
R	0.20	-	0.60	
V	0°	-	8°	

Figure 9. H²PAK 2 leads drawing

Obsolete Product(s)

2.54 2.54 1.00

Figure 10. H²PAK 2 recommended footprint

10/12 Doc ID 15290 Rev 3

5 Revision history

Table 10. Document revision history

Date	Revision	Changes
12-Jan-2009	1	First release
03-Jul-2009	2	Substituted D²PAK with H²PAK
07-Jul-2009	3	Status promoted from target specification to preliminary data

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

12/12 Doc ID 15290 Rev 3