

USB 2.0 advanced protection solutions

Is this presentation suited for you?

Where do you stand with USB protection?

Beginner?

I am not familiar with this subject. I am in the discovery phase and would like an overview and a basic understanding of the technology.

Click here to continue to next slide

Overview

Intermediate?

I have a basic understanding of this subject. I would like to go deeper in details and tackle more aspects of this subject.

Click here to continue to next slide

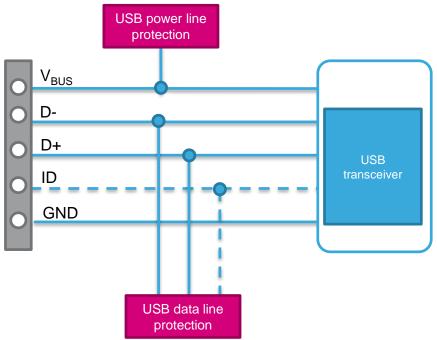
Basic

Advanced?

I am very familiar with this subject. I would like to deepen my knowledge and become an expert.

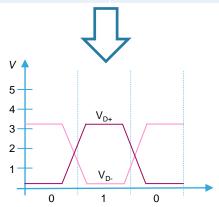
Click here to continue to next slide

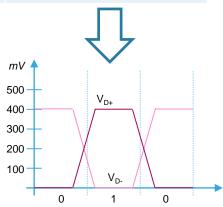
In depth


Basics on USB 2.0 (1) **3**

- USB stands for Universal Serial Bus
- It is very popular and present on most electronic devices
- It is a serial bi-directional bus that is hotpluggable and supports Plug and Play.

- D+
- D-
- ID (for USB On-The-Go only)
- 1 power line: V_{BUS}
- 3 standards:
 - Low speed (1.5 Mbit/s)
 - Full speed (12 Mbit/s)
 - High speed (480 Mbit/s)





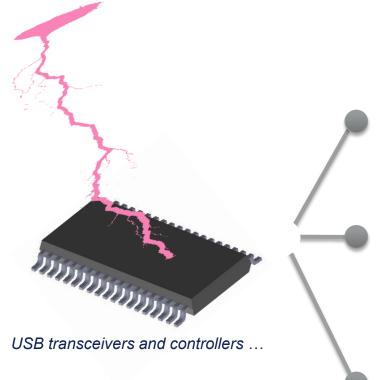
USB 2.0 basics (2) 4

Parameters	Low speed	Full speed	High speed
Data rate	Tate Up to 1.5 Mbit/s		Up to 480 Mbit/s
Termination	Not terminated Not terminated		90 Ω differential 45 Ω to ground
Signaling – Logical low level	$V_{D+} = 0 \text{ to} + 0.3 \text{ V}$ $V_{D-} = 2.8 \text{ to} 3.6 \text{ V}$	$V_{D+} = 0 \text{ to} + 0.3 \text{ V}$ $V_{D-} = 2.8 \text{ to} 3.6 \text{ V}$	$V_{D+} = -10 \text{ to} + 10 \text{ mV}$ $V_{D-} = +360 \text{ to} +440 \text{ mV}$
Signaling – $V_{D+} = 2.8 \text{ to } 3.6 \text{ V}$ Logical high level $V_{D-} = 0 \text{ to } + 0.3 \text{ V}$		$V_{D+} = 2.8 \text{ to } 3.6 \text{ V}$ $V_{D-} = 0 \text{ to } + 0.3 \text{ V}$	$V_{D+} = +360 \text{ to } +440 \text{ mV}$ $V_{D-} = -10 \text{ to } +10 \text{ mV}$
V _{BUS} voltage (standard downstream port)			From 4.4 V to 5.5 V
V _{BUS} max current (standard downstream port)	500 mA	500 mA	500 mA

Focus on power: charging ports _____

- Purpose: Charging batteries through the V_{BUS} pin.
- Need for a current rate higher than 500 mA for the standard downstream port.
- The USB Battery Charging Specification (first release in 2007) defined a new type of port called charging port.
- Even if the maximum current is 5.0 A for safety, most USB cables are rated up to 1.5 A, thus creating a limitation.

	Standard downstream port (SDP)	Charging downstream port (CDP)	Dedicated charging port (DCP)
Standard	USB Battery Charging Specification Revision 1.2 (released in 2010)		
Data transfer enabled	Yes	Yes (max. current 900 mA on V _{BUS} during high speed transfer)	No (D+ and D- shorted)
Maximum current on V _{BUS}	500 mA @ 5V	1.5 A @ 5V (USB cables rated at 1.5A only)	5A with voltage > 2V (USB cables rated at 1.5A only)


Focus on power: USB Power Delivery

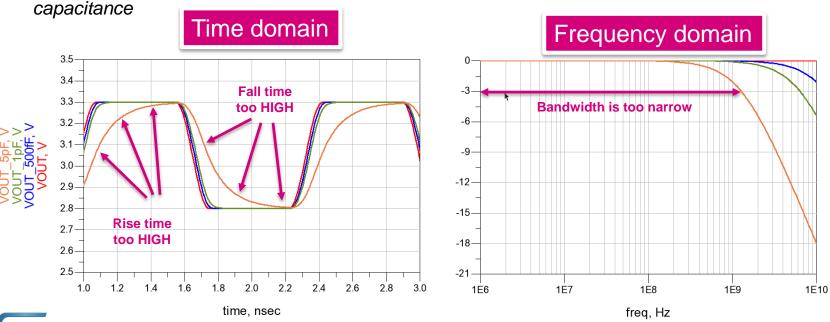
- To further develop the "power" aspect of USB ports, the USB Power Delivery (PD) specification was released in July 2012.
- 6 power profiles are defined extending the supply voltages (Profile 0 is reserved)
- This requires new cables withstanding voltages higher than 5 V and currents higher than 1.5 A.
- Profile 4 is the limit for micro-B/AB connectors.

Profile	5 V	12 V	20 V
1	2.0 A, 10 W		
2		1.5 A, 18 W	
3		3.0 A, 36 W	
4			3.0 A, 60 W
5		5.0 A, 60 W	5.0 A, 100 W

The need for ESD protection devices

Advanced technology with very thin lithography and gate oxides are highly vulnerable to ESD

Integrated electronics systems with highcomponent-density PCBs facilitate ESD coupling and propagation


IC manufacturers are reluctant to make robust embedded ESD protection diodes that would take up a significant active area of their advanced and expensive technology.

Why ultra-low capacitance?

- The parasitic capacitance of ESD protection devices must be low enough to allow USB 2.0 high-speed signals (maximum data rate: 480 Mbit/s) to be transmitted without degradation.
- A high parasitic capacitance of the ESD protection devices would increase too much the signal rise/fall time and prevent communications.

Example of the impact of parasitic capacitance on high-speed signal simulated with discrete

EMI filtering & ESD protection for USB datalines

Data rate (Gbit/s)

System-level ESD protection (IEC 61000-4-2 Level 4)

+ Common-mode filter (ECMF)

10

0.48

0.012

1-line ESD ST0201 0.6 x 0.3 x 0.3 mm

USBULC6-2N4

2-line ESD QFN 1.0 x 0.8 x 0.5 mm

USBLC6-2P6

2-line ESD + VBUS 6V SOT-666 1.6 x 1.6 x 0.53 mm

USBLC6-2SC6

2-line ESD + VBUS 6V SOT23 2.92 x 1.62 x 1.17 mm

HSP051-4N10

4-line ESD OFN 1.85 x 0.95 x 0.32 mm

HSP051-4M10

4-line ESD QFN 2.50 x 1.00 x 0.47 mm

USBLC6-4SC6

4-line FSD + VBUS 6V SOT23 2.92 x 1.62 x 1.17 mm

ECMF02-2HSMX6

2xESD + 2xCMF OFN 1.70 x 1.50 x 0.5 mm

ECMF02-3HSM6

3xESD + 2xCMF QFN 1.60 x 1.35 x 0.5 mm

ECMF02-2AMX6

3xESD + 2xCMF OFN 1.70 x 1.50 x 0.5 mm

USBDF01W5 / USBUF01W6

4xESD + Serial / Pull-up Resistor SOT323 2.00 x 1.25 x 0.95 mm

ECMF04-4HSWM10

4xESD + 2xCMF QFN 2.60 x 1.35 x 0.5mm

ECMF04-4HSM10

4xESD + 2xCMF QFN 2.60 x 1.35 x 0.5mm

ECMF02-4CMX8

3xESD + CMF + V_{BUS} TVS 16V QFN 2.60 x 1.35 x 0.5mm

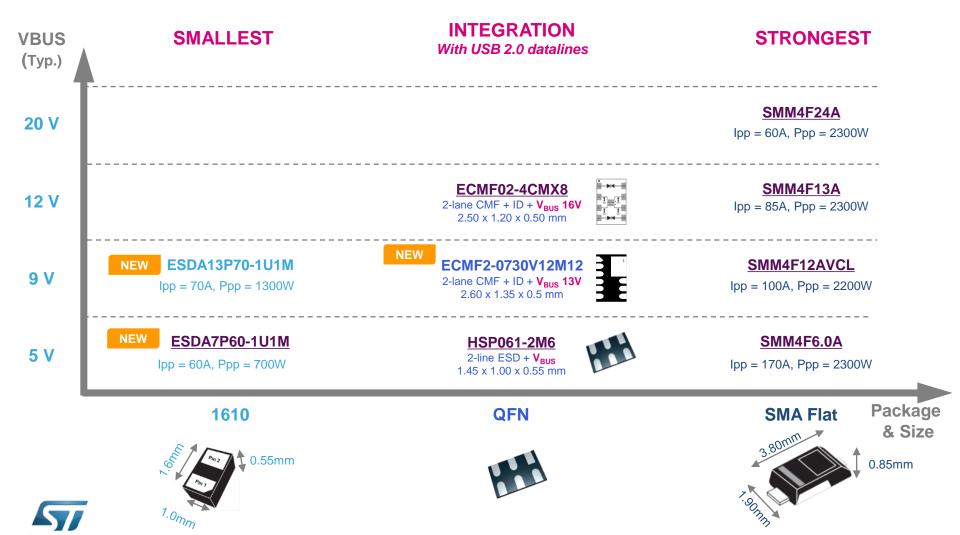
EMIF02-USB03F2

7xESD + Serial and Pull-up Resistor CSP 1.44 x 1.94 x 0.65 mm

1 or 2 lines


4 lines

2 lines


4 lines

ECMF = Common-mode filter with integrated ESD protection

Power Delivery - ESD & EOS protection 10

Let's go further

Basic information ECMF™ series portfolio overview: common-mode filters embedding ESD protection - Product presentation

HSP series portfolio overview: High-speed port ESD protection - Product presentation

In-depth information

TVS short-pulse dynamic resistance measurements... Application note AN4022

IEC 61000-4-2 standard testing - Application note AN3353

Pspice models: <u>ESD protection</u> and <u>ECMF™</u>

Selection & sampling

Our <u>Protection devices & Integrated EMI filtering</u> selection guide Our <u>USB port protection</u> product selector Our <u>USB IPAD™ (including ECMF™)</u> product selector

