1 INTRODUCTION

When powering up any microcontroller, before the power supply voltage reaches its final state, it goes through voltage ranges, where the device is not guaranteed to operate. Since some device’s cells will start operating at voltage levels lower than others, the device may power-up in an unknown state. To guarantee that the device starts up in a known state, it is necessary to control the reset phase. This can be achieved using either external reset circuitry or in ST6 revision C devices, using the internal Low Voltage Detector (LVD) and with the reset pin left unconnected.

The first part of this application note describes low-cost reset circuits for ST6 microcontrollers. These circuits range from a very simple solution, which is only effective during power-up, to a circuit providing power-up and power-down monitoring with a delay at power-on. When used with the watchdog timer and by implementing some software, an efficient and reliable reset of the ST6 can be implemented.

The second part of this note presents a program which makes use of the ST6 microcontroller watchdog to prevent malfunctioning that could be caused by a bad or noisy reset input signal.

2 HARDWARE IMPLEMENTATIONS

2.1 EXTERNAL POWER-ON RESET

The Figures 1 & 2 present simple circuits which only provide power-on reset. They use an external RC to generate the reset pulse. The time constant of the RC should be long enough to guarantee that the reset pulse is still present until \(V_{DD} \) reaches \(V_{DD \text{ min}} \).

These two circuits however, do not protect against brown-out situations where power does not drop to zero, but merely dips below \(V_{DD \text{ min}} \). In such situations, voltage at the \(\text{RESET} \) pin will not go low enough to guarantee a reset pulse.
Figure 1. Simple power-on reset circuit

Figure 2. Advanced power-on reset circuit

Figure 2 presents an advanced power-on reset. The 1N4148 diode is used to rapidly discharge the C capacitor on power-down. This is very important as a power-up reset pulse is needed after a short power-down (less than the time constant of RC) or after a power spike. Due to the internal structure of the ST6 I/O port, the external 1N4148 diode is not mandatory. The two 100nF capacitors allow the reset pin level to follow voltage variations that appear on either VDD or ground.
2.2 BROWN-OUT PROTECTION

In many applications, it is necessary to guarantee a reset pulse whenever V_{DD} is less than $V_{DD\min}$. This can be achieved using a brown-out protection circuit such as the one described in Figure 3. This simple circuit causes a reset whenever V_{DD} drops below the zener diode voltage plus the V_{BE}.

![Figure 3. External brown-out protection circuit](image.png)

3 SOFTWARE IMPLEMENTATION

To prevent a loss of functionality caused by a bad or noisy reset input, a software loop lasting approximately 20ms can be implemented immediately after the reset. In this loop, within the first few instructions, the Watchdog Timer is activated with a short time-out delay.

If, during this loop, the ST6 program hangs up due to an incorrect reset, the watchdog will time-out and generate a new reset signal. This will continue until the program correctly exits the delay loop.
Reset routine example:

```assembly
; Software
start  ldi  wdt, 10000011b ; start watchdog for 384uS
      ldi  count, 0

n1    ldi  wdt, 10000011b
      ldi  a, 0

n2    inc  a             ; 19 x 16.25uS = 338uS
      cpi  a, 19
      jrc  n2

      inc  count
      ld  a, count
      cpi  a, 59         ; 59 x 338us = 19.9mS
      jrc  n1

; program starts here
; CAUTION, watchdog is now activated forever

      ldi  wdt, 11111111b ; reload the watchdog counter
      ...
      ...
      ...
      ldi  wdt, 11111111b ; reload the watchdog counter
      ...
      ...
      ...
      ldi  wdt, 11111111b ; reload the watchdog counter
      ...
      ...
      ...
```
"THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS."

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

©1999 STMicroelectronics - All Rights Reserved.

Purchase of IC Components by STMicroelectronics conveys a license under the Philips IC Patent. Rights to use these components in an IC system is granted provided that the system conforms to the IC Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com