Liquid Level Monitoring using ST Time-of-Flight technology

STMicroelectronics
Agenda

1. Liquid level monitoring principle & core Key Performance Indicators
2. ST Solutions and benefits
3. Markets & Applications
4. Support package
Liquid level monitoring principles
Liquid level: The half-full half-empty question

- **Liquid level monitoring**
 - A widespread use-case, present in multiple applications & markets
 - To monitor welcomed liquid, or unwanted liquid to be disposed of
 - A liquid cannot be considered in isolation from its container. Liquid volume is a real time adequation between the container and liquid within the overall system

- **An age-old challenge**
 - From 3000-year-old technologies to daring deployment of the most modern technologies and applied technics

- **Two main liquid level monitoring categories**
 - Point-level measurement
 - 100%
 - 80%
 - 60%
 - 40%
 - 20%
 - Continuous level measurement
 - 78%
 - 43%
Liquid level Monitoring Core KPIs

KPIs may differ, from those in high safety industrial applications to less stringent consumer systems needs.

- Improved reading reliability and liquid volume projections
- Safety improvement
- Cost savings
- User satisfaction
- Contamination risks reduction
- Greener materials
- Power consumption reduction
- Industrial design integration flexibility
ST Solutions and benefits
FlightSense™ introduction

... Making Light work

Time-of-Flight Principle

- **ST proprietary FlightSense™ technology**
- True distance measurement
 - Independent of target size, color & reflectance
- Fast and low power
- Truly invisible 940nm illumination
All-in-one optical modules

All-in-One (illumination & sensor) Time of Flight System → Optimized Size, performance, cost mix

- ToF Pixel Expertise
 SPAD/FPD
- Advanced Photonics
 CMOS Process
 (40nm/3D)
- Micro-Optics
 & Supply Chain
- Illumination Expertise
 & Supply-chain
- Embedded ToF
 Processing
 & Depth ISP
- Advanced Packaging
 know-how
 & manufacturing
- Monolithic ToF SoC,
 SPAD Array,
 RAM/ROM & high safety Class1 VCSEL driver
- Advanced optics with integrated IR filters
- State-of-art assembly & testing
 ST manufacturing line in Shenzhen
- Full Class 1 safety
 high efficiency VCSEL
Improving liquid level monitoring

What exists

- **Point level Measurements**
 - 100% • Conductivity
 - 80% • Float switch
 - 60% • Rotating paddle
 - 40% • Vibrating (tuning fork)
 - 20% •

- **Continuous level Measurements**
 - 78% • Capacitance
 - 43% • Optical (Laser, LED)
 - • Cable base (yo-yo)
 - • Ultrasound
 - • Radar (microwave)

Two ST Solutions

- **Single-zone ToF sensors**
- **Multi-zone ToF sensors**

Core Benefits

- **Not “intrusive”**
 - No moving part offering high reliability
 - Contactless
 - No physical part in contact with liquid
 - No risk of contamination
 - Non-ecology friendly materials free
 - Cost saving
 - BOM, operational time, maintenance

- **Works with all liquids**
 - Water, fuel, oil...

- **Small size**
 - Compatible with challenging industrial designs
 - Easy to retrofit in existing systems
VL53L4CD vs VL53L5CX

A dual throng solution portfolio for best end-system integration adequation

VL53L4CD – High accuracy proximity sensor

- Single-zone sensor
- Narrow 18° FoV
- Max distance ranging: 130cm
- Very high-performance proximity sensor
- Ambient light immunity: 60cm (under 5Klux)
- Fast ranging frequency (up to 100Hz)
- Easy to use UltraLite Driver

VL53L5CX – First multi-zone ToF sensor

- Parallel multi-zone ranging output (4x4 or 8x8)
- Wide FoV: 45° x 45° (63° diagonal)
- Up to 400 cm ranging
- Immunity to cover glass cross-talk beyond 60cm
- Autonomous mode available (down to 1.3mA)
- High ambient immunity: 170cm (under 5Klux)
- 60Hz (4x4 zones) frame rate capability

Package size : 4.4 x 2.4 x 1 mm
FoV : 18°
Single zone

Package size : 6.4 x 3.0 x 1.5 mm
Square FoV : 45° x 45° (63° diagonal)
Multi-zone (8x8)
VL53L5CX multi-zones solution

VL53L5CX liquid level monitoring solution uses 12 perpendicular center zones

Step 1 – Extract signal strength and distance from center zones

Step 2 – Take the highest signal strength zone

Step 3 – Extract the distance of this zone
VL53L4CD single-zone solution

VL53L4CD Liquid Level Monitoring solution characterization & preset process

Step 1 – Characterize your setup conditions

<table>
<thead>
<tr>
<th>Step</th>
<th>Expected</th>
<th>Offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>42mm</td>
<td>+15mm</td>
</tr>
<tr>
<td>80%</td>
<td>84mm</td>
<td>+8mm</td>
</tr>
<tr>
<td>60%</td>
<td>126mm</td>
<td>±2mm</td>
</tr>
<tr>
<td>40%</td>
<td>168mm</td>
<td>±3mm</td>
</tr>
<tr>
<td>20%</td>
<td>204mm</td>
<td>-16mm</td>
</tr>
<tr>
<td>0%</td>
<td>234mm</td>
<td>-12mm</td>
</tr>
</tbody>
</table>

Step 2 – Apply the ST algorithms

<table>
<thead>
<tr>
<th>Step</th>
<th>Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>High deviation</td>
</tr>
<tr>
<td>80%</td>
<td>Apply offset value</td>
</tr>
<tr>
<td>60%</td>
<td>Low deviation</td>
</tr>
<tr>
<td>40%</td>
<td>Take measure as it</td>
</tr>
<tr>
<td>20%</td>
<td>High deviation</td>
</tr>
<tr>
<td>0%</td>
<td>Apply offset value</td>
</tr>
</tbody>
</table>

Step 3 – Measure the liquid level

<table>
<thead>
<tr>
<th>Step</th>
<th>Measured</th>
<th>Real</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>Example 1</td>
<td>High dev. 110mm</td>
</tr>
<tr>
<td>80%</td>
<td>Example 1 102mm</td>
<td>110mm</td>
</tr>
<tr>
<td>60%</td>
<td>Example 2 151mm</td>
<td>Low dev. 151mm</td>
</tr>
<tr>
<td>40%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Live demo using VL53L5CX
FlightSense Benefits

<table>
<thead>
<tr>
<th>Not “intrusive”</th>
<th>Small size</th>
<th>Cost Saving</th>
<th>Works with all type of liquids</th>
<th>Connected</th>
</tr>
</thead>
</table>
| • No moving parts, offering high reliability
• Contactless
• No physical part in contact with liquid
• No risk of contamination (drinking water, milk)
• Non-ecology friendly materials free (Neodyme for example) | • Compatible with challenging industrial designs
• Easy to retrofit in existing systems & invisible illumination | • No moving parts saving BOM
• Increase of the operational time
• Reduced maintenance costs | • Water
• Fuel
• Oil
• Milk
• Coffee
• Juice
• … | • Monitoring in real-time |

Not “intrusive” Features
- No moving parts, offering high reliability
- Contactless
- No physical part in contact with liquid
- No risk of contamination (drinking water, milk)
- Non-ecology friendly materials free (Neodyme for example)

Small Size Features
- Compatible with challenging industrial designs
- Easy to retrofit in existing systems & invisible illumination

Cost Saving Features
- No moving parts saving BOM
- Increase of the operational time
- Reduced maintenance costs

Works with all type of liquids
- Water
- Fuel
- Oil
- Milk
- Coffee
- Juice
- …

Connected Features
- Monitoring in real-time
Markets & Applications
Real time liquid level measurement allowing end user to anticipate replenishment

<table>
<thead>
<tr>
<th>Coffee machine</th>
<th>Smart bottle</th>
<th>Steam iron</th>
<th>Other applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple use-cases using ST Time-of-Flight sensors:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Water level monitoring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Empty capsule container control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Coffee cup shape identification</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Smart water bottle liquid level

Steam iron remaining water level

• Water level monitoring
• Empty capsule container control
• Coffee cup shape identification
Real time liquid level monitoring enabling efficient replenishment cycle & enhanced user satisfaction

- **Soap dispensers**: Real time stock management enabling efficient replenishment cycle and user satisfaction
- **Smart toilets (flush)**: Reduce system corrosion risk
- **Cosmetic containers**: Cosmetic containers liquid level
Combine liquid level monitoring with other ST ToF enabled use-cases

Home automation and Smart building

Beverage dispenser

ST released a video presenting all applications for a beverage dispenser:
• Liquid level monitoring
• Gesture recognition
• Cup detection

Rainwater tank

Home rainwater tank liquid level

0.1-3m

Other applications

Smart pet feeder

Pet feeder water level

0 - 30 cm
ST ToF solutions addressing multiple applications in the diversified Industrial market

Oil tank
Home oil tank level

Storage tank
Industrial storage tank liquid level

Medical
Transfusion bag or smart breast pump liquid level monitoring

Other applications
Smart Farming

Unlimited markets, ST ToF solutions supporting smart-farming for cattle satisfaction & beyond

- **Milking machine**
 - Milk machine liquid level
 - 0.1 – 1m

- **Drinking trough**
 - Drinking trough liquid level
 - 25 cm

- **Water tower**
 - Water tower liquid level
 - 0.1 – 4m
Support package
• Evaluation boards available
• Software package:
 • CubeIDE projects
 • Characterization tool (for VL53L4CD only)
 • Source code
• Technical documentation:
 • Application Notes
 • User Manual

<table>
<thead>
<tr>
<th></th>
<th>VL53L4CD</th>
<th>VL53L5CX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software code</td>
<td>STSW-IMG039_L4CD</td>
<td>STSW-IMG039_L5CX</td>
</tr>
<tr>
<td>Application Note</td>
<td>AN5851</td>
<td>AN5843</td>
</tr>
<tr>
<td>Evaluation boards</td>
<td>X-NUCLEO-53L4A1</td>
<td>X-NUCLEO-53L5A1</td>
</tr>
<tr>
<td></td>
<td>P-NUCLEO-53L4A1</td>
<td>P-NUCLEO-53L5A1</td>
</tr>
<tr>
<td></td>
<td>SATEL-VL53L4CD</td>
<td>VL53L5CX-SATEL</td>
</tr>
</tbody>
</table>

* Standard, widely available product related boards and tools
VL53L5CX multizone solution

VL53L5CX Liquid Level Monitoring solution provides highly accurate measurement

Step 1 – Prepare your monitoring
- Take VL53L5CX 12 center zones as displayed
- Center zones must cover the water and not the tank sides

Step 2 – Liquid level measurement
- Take highest signal rate center zone
- Extract this zone distance
- To obtain liquid level, subtract measured distance from container height

FoV covers tank sides

FoV does not cover tank sides

Center zones

Full FoV

Container height 100mm

Measured distance 90mm

Software reference: STSW-IMG039_L5CX

Application Note AN5843

23
Step by step VL53L4CD Liquid Level Monitoring solution implementation

Step 1 – Use the characterization tool

- Define liquid level indicator count
- For each characterization (min = 4), measure liquid level for each indicator
- Characterization tool creates a lookup table of which offset to apply per level indicator
- Define which zones to apply offset to be integrated in system algorithm

<table>
<thead>
<tr>
<th>Indicator level</th>
<th>Expected liquid level (mm)</th>
<th>OC_val</th>
</tr>
</thead>
<tbody>
<tr>
<td>C9</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>C8</td>
<td>42</td>
<td>4</td>
</tr>
<tr>
<td>C7</td>
<td>63</td>
<td>2</td>
</tr>
<tr>
<td>C6</td>
<td>84</td>
<td>1.6</td>
</tr>
<tr>
<td>C5</td>
<td>105</td>
<td>4.8</td>
</tr>
<tr>
<td>C4</td>
<td>126</td>
<td>13.5</td>
</tr>
<tr>
<td>C3</td>
<td>147</td>
<td>24.8</td>
</tr>
<tr>
<td>C2</td>
<td>168</td>
<td>30</td>
</tr>
<tr>
<td>C1</td>
<td>189</td>
<td>20.3</td>
</tr>
</tbody>
</table>

Step 2 – Use the ST algorithm

- Measure liquid level
- If measurement is non-linear
- Then, apply offset from lookup table to measured distance
- Else, use ranging as is
- To obtain liquid level, subtract measured distance from container height

Software reference: STSW-IMG039_L4CD

Application Note AN5851

VL53L4CD single-zone solution
Support on st.com

www.st.com/en/embedded-software/stsw-img039

Liquid Level Monitoring Code Example using Time-of-Flight sensors

Documentation

Videos

https://bit.ly/3iZSsx1

https://bit.ly/3z7aapN

Liquid Level Monitoring using the L4CD example with STM32CubeIDE

Liquid Level Monitoring using the L5CX example with STM32CubeIDE

Contactless Beverage Dispenser
<table>
<thead>
<tr>
<th>Item</th>
<th>Picture</th>
<th>Commercial Product (= Order Code)</th>
<th>Comments</th>
</tr>
</thead>
</table>
| VL53L4CD sensor | | VL53L4CDV0DH/1 | Delivery in T&R
MOQ: 4.5ku
With protective liner |
<p>| VL53L4CD Nucleo™ Expansion board | | X-NUCLEO-53L4A1- | To go along with STM32F401 Nucleo board. Comes with cover-glass holder, 2x cover-window samples |
| VL53L4CD Breakout boards | | SATEL-VL53L4CD | 2x Breakout boards delivered |</p>
<table>
<thead>
<tr>
<th>Item</th>
<th>Picture</th>
<th>Commercial Product (= Order Code)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL53L5CX sensor</td>
<td></td>
<td>VL53L5CXV0GC/1</td>
<td>Delivery in T&R MOQ: 3.6ku With protective liner</td>
</tr>
<tr>
<td>VL53L5CX Expansion board</td>
<td></td>
<td>X-NUCLEO-53L5A1/</td>
<td>To go along with STM32F401 Nucleo board. Comes with cover-glass holder, cover-window sample, 3x spacers</td>
</tr>
<tr>
<td>STM32F401 NUCLEO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VL53L5CX Breakout boards</td>
<td></td>
<td>VL53L5CX-SATEL/1</td>
<td>2x Breakout boards delivered</td>
</tr>
</tbody>
</table>
FlightSense™ Summary

Leader on Direct ToF

1st

Two liquid level monitoring solutions

- Not “intrusive”
- Works with all type of liquids
- Small size

FlightSense benefits

Continuous improvement

Unlimited markets & applications
Our technology starts with You