STM32 PMSM FOC SDK 4.3
Getting Started
Rev 1.6
The purpose of this document is to:

• Help developers get started with the STM32 PMSM FOC SDK using the ST MC Workbench with the final purpose of running a Permanent Magnet Synchronous Motor (PMSM) with ST Evaluation boards.

• Show where to find technical documentation, firmware libraries and other related materials.

• How to obtain additional technical support
• What is needed:
 • Windows laptop (Win 7)
 • ST-LINK dongle (optional)
 • USB to RS-232 dongle and a null modem cable (optional)
 • A permanent magnet motor
 • Multimeter (optional)
 • An oscilloscope with current probe (optional)
 • An insulated DC and or AC power supply
Motor control – SDK workflow
Motor control – SDK – Workflow

Set up the HW

Use motor specs or identify the motor using Motor Profiler

Send commands with serial communication

Finalize the project with Workbench
Motor control – SDK – Workflow 1/4

• First step → **Set up the hardware.** Depending on the targeted application, it is possible to choose the most suitable hardware configuration from among the different “ready-to-start” ST evaluation boards presented in **Steps 1 to 5.**

• Set up the selected board according the specification stated in each of the related user manuals.

• Connect the board (if required) to the power supply and your motor.
Motor control – SDK – Workflow 2/4

• When the hardware is ready, if the user does not know the motor parameters, he can identify the motor.
• How? Using the **Motor Profiler**!!
 • Follow the instruction in **Step 6**.
• If want to measure the Motor parameter in the lab **Step 8**
• When using the Motor Profiler, the motor is running but the user can develop his own code!

• **Finalize the MC project** using Workbench according to the instructions in **Step 7**.

• Use your favorite IDE to develop your code.

MC Workbench

![Motor control – SDK – Workflow 3/4](image-url)
• Finally, the user can **send commands** (e.g. start, stop, execRamp, ...) via serial communication.

• Use the Workbench as explained in **Step 13**.
Hardware setup
Step #1 – Hardware setup

- It is possible to choose one of the following offers:
 - Complete Motor Control Kit.
 - One of the complete inverters currently in stock.
 - Any STM32 evaluation board combined with one of the ST evaluation power stages which include the MC connector.

- The following slides cover the boards in the *ST Evaluation Tools Portfolio* that can be used to arrange a motor control system.
 - Follow the instructions in the related user manual to set up each board.
Flexible motor control platforms

STM32 PMSM FOC SDK
(Firmware library)

Flexible Motor Control platform
based on ST MC connector
Control stages
Power stages

Complete Motor Control drives

STM32 ODE: Nucleo + X-NUCLEO

Motor Control Kit

Board List
Software setup
Step #2 – Software setup

Download and install the STM32 PMSM FOC SDK from www.st.com.

It contains both the firmware package and the ST MC Workbench (PC GUI).

After installation, you will have the following new folders:
Step #3 – IDE setup

- An IDE (Integrated development environment) is required to compile, flash and debug the application.

- Several IDEs are supported:
 - IAR Embedded Workbench for ARM - IAR Systems [http://www.iar.com/]
 - Keil Embedded Development Tools for ARM, Cortex-M ... [http://www.keil.com/]
 - SW4STM32 : free IDE for STM32 on Windows, Linux and OS X [http://www.st.com/]
Step #4 – ST-LINK installation

• If the control board or the complete system doesn’t embed the ST-LINK, a stand-alone dongle is required.

• In any case, you must install the ST-LINK driver that can be found in the ST website searching for part number ST-LINK/V2 or ST-LINK/V2-ISOL

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST-LINK/V2</td>
<td>Active</td>
<td>ST-LINK/V2 in-circuit debugger/programmer for STM8 and STM32</td>
</tr>
</tbody>
</table>

• Click on Design Resources, download and install the STSW-LINK009

<table>
<thead>
<tr>
<th>Related Tools and Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>STSW-LINK004</td>
</tr>
<tr>
<td>STSW-LINK005</td>
</tr>
<tr>
<td>STSW-LINK009</td>
</tr>
</tbody>
</table>
Step #4 – ST-LINK installation

- On the same page, download and install also the **STSW-LINK004 – STM32 ST-LINK utility**

 (This will be required to flash the LCD FW code into the MCU).
Step #5 – Connect ST-LINK (1/6)

• Using the USB cable, connect the control board with ST-LINK embedded (or the ST-LINK dongle) to the A male connector into your laptop.

• Wait for Windows to recognize the ST-Link device and follow any steps required to install the driver.

• Upon successful driver recognition, the ST-Link device should be fully enumerated in the Windows Device Manager as shown:
Step #5 – Driver trouble-shooting (2/6)

1. Open Device Manager.
2. Right-click on the “STM32 STLink” Driver icon.
3. Select “Update Driver Software”.
4. Select “Browse my computer for driver software”.

5. Select “Let me pick from a list of device drivers of my computer”.

6. Click “Next”.
Step #5 – Driver trouble-shooting (4/6)

• The “STMicroelectronics ST-Link dongle” should be listed.

7. Click “Next”.

![Image of driver selection dialog box with STMicroelectronics ST-Link dongle selected and warning about unsigned driver]
Step #5 – Driver trouble-shooting (5/6)

- A warning message may appear.

8. Select “Install this driver software anyway”.

![Windows Security Warning]

- Don't install this driver software
 You should check your manufacturer's website for updated driver software for your device.

- Install this driver software anyway
 Only install driver software obtained from your manufacturer's website or disc. Unsigned software from other sources may harm your computer or steal information.
Step #5 – Driver trouble-shooting (6/6)

- You should receive a message: “Windows has successfully updated your driver software”.

- Re-check Device Manager to ensure “STMicroelectronics STLink dongle” is functioning normally.
Step #6 – Set up motor parameters

- ST MC Workbench – Motor section contains:
 - Motor parameters
 - Motor sensor parameters

- In this hands-on session, we will configure the system for sensor-less control using a motor with a surface-mounted magnet.

- For a custom project, the user can set all the parameters individually.
Step #6 – Set up motor parameters

- If motor parameters are unknown (or the instrumentation to measure them is missing), it is possible to use the new **Motor Profiler** feature with the supported ST hardware.

- Two ways to open the Motor Profiler:
 - From the Home page of the ST Motor Control Workbench
 - From the “STMotorProfiler” installation folder
Step #6 – Set up the Motor Profiler

- Click “Select Boards” to display a list of supported boards. The Motor Profiler feature can be used only in the systems listed.
Board Configuration in Motor Control Mode

Example

Open Board configuration window

Control Board

Step 1
2. Plug in jumper JP6 as shown for power supply from USB connector of ST-LINK/V2.
3. Check that LED is turned ON.

Step 2

Power Board

Step 1
1. Plug in jumpers J1 and J2 as shown for three-shot configuration.

Power Board

Step 2
1. Remove jumper J4.
Step #6 – Set up the Motor Profiler

Parameters set by the user:

- Motor pole pairs (mandatory)
- Maximum application speed
- Maximum peak current
 - The maximum peak current delivered to the motor
- Expected bus voltage provided to the system.
- Type of motor
 - Surface-mounted permanent magnet synchronous motor (SM-PMSM)
 - Internal permanent magnet motor (I-PMSM). In this case, the Ld/Lq ratio as input is required.
Step #6 – Set up the Motor Profiler

- Connect the selected hardware to the PC.
 - Remember to properly configure the boards in Motor Control mode.

- Click the “Connect” button.
 - If communication with the board is successful.

- Click the “Start Profile” button.
Step #6 – Run the Motor Profiler

- Procedure will end in about 60 seconds.

Motor stopped
- Rs measurement
- Ls measurement
- Current regulators set-up

Open loop
- Ke measurement
- Sensorless state observer set-up
- Switch over

Closed loop
- Friction coefficient measurement
- Moment of inertia measurement
- Speed regulator set-up
Step #6 – Motor Profiler complete

- At the end of the procedure, the measured parameters will be displayed in a dedicated window.

- It is possible to import them into the Workbench project and save them for later use.
Step #6 – Motor Profiler complete

Play Mode

• At the end of the procedure, it is possible to run and control the motor’s speed.
Step #6 – Motor Identified

• Motor Identified: users can switch the motor on or off using the “Start” and “Stop” buttons.

• It is possible to create a new ST MC Workbench project with the profiled motor by clicking “New Project” in the Motor section.
Step #6 – Motor Profiler Disclaimer

• The Motor Profiler algorithm is intended to quickly evaluate the ST 3-phase motor control solution (PMSM)

• The Motor Profiler can be used only when using compatible ST evaluation boards. Choose the best ST hardware according to the motor characteristics.

• The precision of the measurement is not like when using proper instrumentation.

• In certain cases, Motor Profiler measurements may not be reliable. Please see the limits reported in the software tool.
Set up workbench project
Step #7 – Create a new Workbench project based on the ST evaluation board

Choose: New Project
Step #7 – Create a new Workbench project based on the ST evaluation board

Choose:

1. Applications
Step #7 – Create a new Workbench project based on the ST evaluation board

Choose:

2. Single or dual motor
Step #7 – Create a new Workbench project based on the ST evaluation board

Choose:

3. **Board approach:**
 - Choose if you are using Inverter, MC Kit or Power plus Control boards.
 - Select the board used or create your own custom board.
Step #7 – Create a new Workbench project based on the ST evaluation board

4. Motor: Choose the motor from a motor database. (You can save your motor parameters from your project.)
Step #7 – Create a new Workbench project based on the ST evaluation board

- Choose the example Workbench project that best fits your needs.
 - Choose the one with the same name of the ST evaluation board you are using, or
 - choose the one with the same microcontroller you are using.
Step #7 – Create a new Workbench project

- Starting from the board selection or example project, the control stage parameters will be populated with the correct values.

- For a custom project, the user can set all the parameters.
Step #7 – Set up power stage

• Starting from the board selection or example project, the power stage parameters will be populated with the correct values.

• For a custom project, the user can set all the parameters.
Step #7 – Set up drive parameters

- Starting from the board selection according to the chosen application, drive parameters will be populated with the correct values.

- For a custom project, the user can set all the parameters.
Step #7 – Drive Parameter

- In Drive settings, choose a correct PWM frequency and torque and flux execution rate in such a way that the $FOC\ rate = \frac{PWM\ freq}{Execution\ rate}$ is compatible with the maximum FOC rate according to the microcontroller used.
Step #7 – Drive parameter tricks

- In Drive settings, decrease cut-off frequency of torque and flux regulator down to 2000 rad/s if power stage → current reading topology is single shunt.
- In Sensing enabling and FW protections, uncheck the sensing options not supported by power stage and check any “Set intervention threshold to power stage xxx” buttons.
- In Drive settings, initially set default target speed to at least 20% of maximum application speed.
- In additional features, start without any additional method (possible to add them later).
Step #7 – Drive parameter tricks

- **If motor profiler is not used**, in Start-up parameters, select the *basic* profile.
- Set *current ramp initial and final values* equal to the motor nominal current value / 2 (if load is low at low speed, otherwise it can be set up to 0.8-1.0 times the nominal current value).
- Set *speed ramp final value* to approximately 30% of the maximum application speed.
- Depending on the motor inertia, it may be required to increase the *speed ramp duration*.
- Set *minimum start-up output speed* to 15% of the maximum application speed (if required, decrease it later).
- Set *estimated speed band tolerance lower limit* to 93.75%
- Enable the alignment at the beginning of your development (duration 2000 ms, final current ramp value from 0.5 to 1 times the motor nominal current depending on the load)
Step #7 – Example of configuration
Digital PFC
Advantages of implementing active power-factor-correction (PFC) using the same microcontroller which is driving the motor with ST FOC algorithm:

- **Performance optimization** because the microcontroller knows information on the load (for instance the power requested by the motor) and can improve the performance of the PFC

- Cost saving (reduction of components count)

Note. In the library’s current version, the digital PFC FW is available for the STM32F103 line (**STM32F103xC, STM32F103xD, STM32F103xE, STM32F103xF** and **STM32F103xG**) or for the STM32F303 line (**STM32F303xB** and **STM32F303xC**).
Step #7 – Digital PFC Enabling

- Digital “Power-factor-correction” algorithm working together with the ST motor control FOC firmware is included in the ST MC FOC SDK and can be enabled using the ST MC Workbench.
Step #7 – Digital PFC where to set parameters

- To enable the digital PFC, go in the Drive Management -> Additional Features and PFC settings and click PFC Parameters.
Step #7 – Digital PFC SW settings

- Select “Enabling feature” to enable the PFC in the firmware.
Set the Physical hardware parameters according to the selected power stage.
Step #7 – Digital PFC
Real Time monitoring

It is possible to enable, disable or make on-the-fly modifications on the PFC variable using the WB monitor feature.
Step #7 - Digital PFC Real-time monitoring

- The PFC section must be enabled.
- To switch off the PFC, click “PFC Disable”.
- Click “PFC Fault Ack” to clear the PFC faults.
- The PFC status and register can be viewed and/or modified using the direct access in the “Register” tab.

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x4D</td>
<td>PFC Status</td>
<td>0</td>
</tr>
<tr>
<td>0x4E</td>
<td>PFC Flags</td>
<td>0</td>
</tr>
<tr>
<td>0x4F</td>
<td>PFC DC bus reference</td>
<td>Volt 0</td>
</tr>
<tr>
<td>0x50</td>
<td>PFC DC bus measured</td>
<td>Volt 0</td>
</tr>
<tr>
<td>0x51</td>
<td>AC Mains frequency</td>
<td>Hz</td>
</tr>
<tr>
<td>0x52</td>
<td>AC Mains voltage 0-to-pk</td>
<td>Volt 0</td>
</tr>
<tr>
<td>0x53</td>
<td>PFC Current loop Kp</td>
<td>0</td>
</tr>
<tr>
<td>0x54</td>
<td>PFC Current loop Ki</td>
<td>0</td>
</tr>
<tr>
<td>0x55</td>
<td>PFC Current loop Kd</td>
<td>0</td>
</tr>
<tr>
<td>0x56</td>
<td>PFC Voltage loop Kp</td>
<td>0</td>
</tr>
<tr>
<td>0x57</td>
<td>PFC Voltage loop Ki</td>
<td>0</td>
</tr>
<tr>
<td>0x58</td>
<td>PFC Voltage loop Kd</td>
<td>0</td>
</tr>
<tr>
<td>0x59</td>
<td>PFC startup duration</td>
<td>ms</td>
</tr>
<tr>
<td>0x5A</td>
<td>PFC abilitation status</td>
<td>0</td>
</tr>
</tbody>
</table>
Step #7 Finalizing the firmware

Open the ST MC Workbench and create a new project.
• Generate the configuration (.h) files for the firmware library (see Step #9).
Step #7 - Finalizing the firmware

3/5

- Compile the firmware library using the available IDE (IAR, Keil and AC6) (see step #10).
Step #7 - Finalizing the firmware

- Flash the executable into the microcontroller using ST-LINK (see Step #10).
Step #7 - Finalizing the firmware

• Establish a real-time communication with the firmware using the monitor feature of ST MC Workbench to start the motor, set the speed and get feedback (see Step #12).
Step #8 – Set up motor parameters manually

- Set **Max Rated Speed** with the maximum motor speed according to the application specs.
- Set **Nominal Current** with maximum peak current provided to each of the motor phases according to the motor specs.
- Set **Nominal DC Voltage** with value of DC bus provided to the inverter or the rectified value of AC input.
Step #8 – Set up motor parameters manually

Pole pair number

- The number of pole pairs is usually provided by the motor supplier, but in case it’s not or if you’d like to double-check it:
 - Connect a DC power supply between two (of the three) motor phases and provide up to 5% of the expected nominal DC bus voltage. (You may also set current protection to nominal motor current.)
 - Rotate the motor with your hands, you should notice a little resistance, otherwise:
 - If you are not able to rotate the motor, decrease the applied voltage.
 - If the motor does not generate any resistance, gradually increase the applied voltage.
 - The number of rotor stable positions in one mechanical turn represents the number of pole pairs.
Step #8 – Set up motor parameters manually

Stator resistance and inductance

• Using the multimeter, measure the DC stator resistance phase-to-phase \((R_s) \) and divide it by two.

• Connect the DC voltage between two motor phases.

• Connect the oscilloscope voltage and current probes as shown in the figure.

• Increase the voltage up to the value where the current equals the nominal value, so the rotor will align with the generated flux.

• Don’t move the rotor anymore.
Step #8 – Set up motor parameters manually

Stator resistance and inductance

- Disable the current protection of DC voltage source.
- Unplug one terminal of the voltage source cable without switching it off.
- Plug the voltage source rapidly and monitor on the scope the voltage and current waveform until you get something like the one shown in the figure.
- The measurement is good if the voltage can be assimilated to a step and the current increase such as $I_\infty \cdot (1 - e^{-t \cdot L/R})$.
- Measure the time required to current waveform to rise up to 63%.
- This time is L_d/R_s constant. Multiply it by R_s and you’ll get the L_d value.

\[V = 0.63\cdot I_\infty \]

\[\tau = \frac{L}{R} \]
Step #8 – Set up motor parameters manually

Back EMF constant K_e

- The Back-EMF constant represents the proportionality constant between the mechanical motor speed and the amplitude of the B-EMF induced into the motor phases:

$$V_{Bemf} = K_e \cdot \omega_{mec}$$

- To measure K_e, it usually suffices to turn the motor with your hands (or using a drill or another motor mechanically coupled) and use an oscilloscope to look for the phase-to-phase induced voltage (V_{Bemf}).
Step #8 – Set up motor parameters manually

Back EMF constant Ke

- Measure the V_{Bemf} frequency (f_{Bemf}) and the peak-to-peak amplitude (V_{Bemf-A})

- Compute Ke in V_{RMS} / K_{RPM}:

$$Ke = \frac{V_{Bemf-A} \cdot [V \text{ peak-to-peak}] \cdot \text{pole pairs number} \cdot 1000}{2 \cdot \sqrt{2} \cdot f_{Bemf} \ [Hz] \cdot 60}$$
Generate, compile, debug and run
Step #9 – Parameter generation

• Once all the parameters have been entered in the ST MC Workbench, select the output path in the option form and choose ‘SystemDriveParams’ present in the FW working folder.

• Click on the ‘Generation’ button to configure the project.
Step #10 – Compile and program the MCU

1. Run the IAR Embedded Workbench.

2. Open the IAR workspace (located in Project\EWARM) folder according to the microcontroller family (e.g. STM32F10x_Workspace.eww for STM32F1).

3. Select the correct user project from the drop-down menu according to the control stage used (e.g. STM32F10x_UserProject - STM3210B-EVAL).

4. Compile and download.
Step #10 – Compile and program the MCU

- Optionally, run Keil uVision.

- Open the Keil workspace (located in Project\MDK-ARM) folder according to the microcontroller family (e.g. STM32F10x_Workspace.uvmpw for STM32F1).

- Select the proper user project from the drop-down menu according to the control stage used (e.g. STM3210B-EVAL).

- Compile and download.
Step #11 – Program the LCD firmware

- Run the ST-LINK Utility.
- File → Open file… and select the .hex file (located in LCDProject\hex) according to the control stage used (e.g. STM3210B-EVAL.hex).
- Target → Program…
Step #12 – Run the motor

• Arrange the system for running the motor:
 • Connect the control board with the power board using the MC cable.
 • Connect the motor to the power board.
 • Connect the power supply to the power board and turn on the bus.

• If the board is equipped with the LCD:
 • Press joystick center on Fault Ack button to reset the faults.
 • Press joystick right until the Speed controller page is reached.
 • The press joystick down to reach the Start/Stop button.
 • Press the center of the joystick to run the motor.
Step #13 – Run the motor

- Optionally you can start the motor using the ST MC Workbench.
- Connect the PC to the control board with the USB to RS-232 dongle (and a null modem cable).
- Open the Workbench project used to configure the firmware and click on Monitor button.
- Select the COM port and click Connect button. This establishes the communication with the firmware.
- To clear the fault, click Fault Ack and then Start Motor button to run the motor.
ST Evaluation Board Offer
Motor control kits

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>ST Link on-board</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-NUCLEO-IHM001</td>
<td>STM32 Nucleo Pack FOC and 6-step control for Low voltage 3-ph motors</td>
<td>Yes (embedded)</td>
<td>Single drive</td>
</tr>
<tr>
<td></td>
<td>with DC Power supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-NUCLEO-IHM002</td>
<td>Motor control starter kit for STM32F100 (128KB Flash) Value Line MCUs</td>
<td>Yes</td>
<td>Single drive</td>
</tr>
<tr>
<td>STM32100B-MCKIT</td>
<td>Motor control starter kit for STM32 (128KB flash) Performance and Access Line microcontrollers</td>
<td>Yes</td>
<td>Single drive</td>
</tr>
</tbody>
</table>

The motor control kit connections represented below can also be applied when combining STM32 control boards and evaluation power boards.

- P-NUCLEO-IHM001
- P-NUCLEO-IHM002
ST Complete Inverters

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>ST Link on-board</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEVAL-IHM034V2</td>
<td>Dual-motor control and PFC demonstration board featuring the STM32F103 and STGiPS20C60</td>
<td>No</td>
<td>Single/Dual drive</td>
</tr>
<tr>
<td>STEVAL-IHM036V1</td>
<td>Low-power motor control board featuring the SLLIMM™ STGiPN3H60 and MCU STM32F100C6T6B</td>
<td>No</td>
<td>Single drive</td>
</tr>
<tr>
<td>STEVAL-IHM038V1</td>
<td>BLDC ceiling fan controller based on STM32 and SLLIMM-nano</td>
<td>No</td>
<td>Single drive</td>
</tr>
<tr>
<td>STEVAL-IHM040V1</td>
<td>BLDC/PMSM driver demonstration board based on STM32 and the SLLIMM-nano</td>
<td>No</td>
<td>Single drive</td>
</tr>
<tr>
<td>STEVAL-IHM042V1</td>
<td>Compact, low-voltage dual-motor control board based on the STM32F303 and L6230</td>
<td>Yes</td>
<td>Single/Dual drive</td>
</tr>
<tr>
<td>STEVAL-IHM043V1</td>
<td>6-Step BLDC sensorless driver board based on the STM32F051 and L6234</td>
<td>No</td>
<td>Single drive</td>
</tr>
</tbody>
</table>
Flexible MC Platform

Full set of control boards featuring all ST MCUs

Full set of power boards featuring Power Transistors, IPM, and MC Driver ICs.

STM32XX-EVAL Control board

NUCLEO-XX Control board

X-NUCLEO-IHM09M1 Connector Adapter

STEVAL-XX Power board

MC Connector
The MC connector

34-pin connector dedicated to motor control applications, it is a standard ST interface between MCU evaluation boards and power boards.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>FAULT</td>
<td></td>
</tr>
<tr>
<td>PWM 1 High</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PWM 1 Low</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>PWM 2 High</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>PWM 2 Low</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>PWM 3 High</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>PWM 3 Low</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Current phase A</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Current phase B</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Current phase C</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>NTC by pass Relay</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Dissipative Brake PWM</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>5V</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>PFC Sync</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>PFC PWM</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Encoder A / Hall A / Bemf A</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Encoder B / Hall B / Bemf B</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

34-pin connector dedicated to motor control applications, it is a standard ST interface between MCU evaluation boards and power boards.
STM32 evaluation boards with MC connector

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>ST Link on-board</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>STM32072B-EVAL</td>
<td>Evaluation board with STM32F072VB MCU</td>
<td>Yes</td>
<td>Single drive</td>
</tr>
<tr>
<td>STM3210E-EVAL</td>
<td>Evaluation board for STM32 F1 series - with STM32F103 MCU</td>
<td>No</td>
<td>Single drive</td>
</tr>
<tr>
<td>STM3220G-EVAL</td>
<td>Evaluation board for STM32 F2 series - with STM32F207IG MCU</td>
<td>Yes</td>
<td>Single drive</td>
</tr>
<tr>
<td>STM32303E-EVAL</td>
<td>Evaluation board for STM32F303xx microcontrollers</td>
<td>Yes</td>
<td>Single/Dual drive</td>
</tr>
<tr>
<td>STM32446E-EVAL</td>
<td>Evaluation board for STM32F407 line - with STM32F407IG MCU</td>
<td>Yes</td>
<td>Single drive</td>
</tr>
<tr>
<td>STEVAL-IHM039V1</td>
<td>Dual motor drive control stage based on the STM32F415ZG microcontroller</td>
<td>No</td>
<td>Single/Dual drive</td>
</tr>
</tbody>
</table>

For the complete list visit st.com

In-circuit debugger/programmer

- ST-LINK/V2
- ST-LINK/V2-ISOL (2500 VRMS high isolation voltage)(1)

(1) for high-voltage applications if not implemented in the evaluation board
Key hardware features 1/3

<table>
<thead>
<tr>
<th>Reference / bundle</th>
<th>Voltage</th>
<th>Power</th>
<th>Motor type / control type *</th>
<th>ST Parts</th>
<th>Application focus</th>
</tr>
</thead>
</table>
| STEVAL-IPM05F | 125 – 400 V_{DC} | Up to 700 W (Up to 8A) | PMSM/BLDC FOC/6-step 3-shunt | • 1 x STGIF5CH60TS-L
• 1x TSV994 | Power board: water pumps, fans, dish washers and more |
| STEVAL-IPM07F | 125 – 400 V_{DC} | Up to 800 W (Up to 10A) | PMSM/BLDC FOC/6-step Single/3-shunt | • 1 x STGIF7CH60TS-L
• 1x TSV994 | Power board: water pumps, fans and more |
| STEVAL-IPM10F | 125 – 400 V_{DC} | Up to 1 kW (Up to 15A) | PMSM/BLDC FOC/6-step | • 1 x STGIF10CH60TS-L
• 1x TSV994 | Power board: pumps, compressors, washing machines and more |
| STEVAL-IPM10B | 125 – 400 V_{DC} | Up to 1.2 kW (Up to 15A) | PMSM/BLDC FOC/6-step single/3-shunt | • 1 x STGIB10CH60TS-L
• 1x TSV994 | Power board: pumps, compressors, air conditioning and more |
| STEVAL-IPM15B | 125 – 400 V_{DC} | Up to 1.5kW (Up to 20A) | PMSM/BLDC FOC/6-step single/3-shunt | • 1 x STGIB15CH60TS-L
• 1x TSV994 | Power board: pumps, compressors, fans, dish washers and more |
Key hardware features 2/3

<table>
<thead>
<tr>
<th>Reference / bundle</th>
<th>Voltage</th>
<th>Power</th>
<th>Motor type / control type</th>
<th>ST parts</th>
<th>Application focus</th>
</tr>
</thead>
</table>
| STEVAL-IHM021V2 | 120/230 V_{AC} nominal (60/50 Hz) | Up to 100 W | PMSM/BLDC FOC/6-step 3-shunt | • 3x L6390
 • 1x Viper12
 • 6x STD5N52U | Power board: water pumps, fans, dish washers, washing machines |
| STEVAL-IHM023V3 | 90 – 285 V_{AC}
 125 – 400 V_{DC} | Up to 1 kW | PMSM/BLDC FOC/6-step Single/3-shunt | • 3x L6390
 • 1x Viper16
 • 7x STGP10H60DF | Power board: pumps, compressors, washing machines and more |
| STEVAL-IHM028V2 | 90 – 285 V_{AC}
 125 – 400 V_{DC} | Up to 2 kW | PMSM/BLDC FOC/6-step Single/3-shunt | • 1x STGIPS20C60
 • 1x VIPer26LD
 • 1x STGW35NB60SD | Power board: pumps, compressors, air conditioning and more |
| STEVAL-IHM032V1 | 230 V_{AC} nominal
 86 to 260 V_{AC} | Up to 150 W | PMSM/BLDC FOC/6-step Single/3-shunt | • 2x L6392D
 • 1x L6391D
 • 1x Viper12
 • 6 x STGD3HF60HD | Power board: pumps, compressors, fans, dish washers and more |
| STEVAL-IHM035V2 | 120/230 V_{AC} nominal | Up to 100 W | PMSM/BLDC FOC/6-step single-shunt | • 1x STGIPN3H60
 • 1x VIPer16L | Power board: pumps, compressors, fans, dish washers and more |
| STEVAL-IHM045V1 | 30 – 270 V_{AC}
 40 – 400 V_{DC} | Up to 100 W | PMSM FOC Single/3-shunt | • 1x STGIPN3H60A
 • 1x VIPer06L
 • 1x TSV994 | Power board: pumps, compressors, fans, dish washers and more |
Key hardware features 3/3

<table>
<thead>
<tr>
<th>Reference / bundle</th>
<th>Voltage</th>
<th>Power / current</th>
<th>Motor type / control type *</th>
<th>ST Parts</th>
<th>Application focus</th>
</tr>
</thead>
</table>
| X-NUCLEO-IHM07M1 | Up to 48V | Up to 2.5A | PMSM/BLDC FOC/6-step Single/3-shunt | • 1x L6230
• 1x BAT30KFIILM
• 1x TSV994IPT | Sewing machines, pumps, drones, |
| X-NUCLEO-IHM08M1 | 10 – 48Vdc | Up to 15A | PMSM/BLDC FOC/6-step Single/3-shunt | • 6x STL220N6F7
• 3x L6398
• 1x TSV994IPT | Drones, e-bikes, drills, pumps, etc. |
| X-NUCLEO-IHM09M1 | - | - | Motor control connector adapter | • Not silicon devices | Allow connection of STM32 NUCLEO boards with any ST motor control power boards |