CAN bus protection
Is this presentation suited for you?

Where do you stand with CAN bus protection?

Beginner?
I am not familiar with this subject. I am in the discovery phase and would like an overview and a basic understanding of the technology.

Overview

Intermediate?
I have a basic understanding of this subject. I would like to go deeper in details and tackle more aspects of this subject.

Basic

Advanced?
I am very familiar with this subject. I would like to deepen my knowledge and become an expert.

In depth

Click here to continue to next slide
Click here to open new presentation
Click here to open new presentation
Basics on CAN bus

CAN stands for Controller Area Network

It is very popular in the automotive industry

It is a serial bi-directional half-duplex multi-master communication bus

2 lines:
- CAN_H (CAN High)
- CAN_L (CAN Low)

2 standards:
- Low-speed, fault-tolerant
- High-speed

Benefits of CAN
- Cost-effective
- Light-weight
- Reliable / transmission safety
- Information available for all nodes
Where is CAN

• As the CAN bus is reliable, it is used to connect together most of the modules in the car, including safety and critical functions.
Basics on CAN bus

<table>
<thead>
<tr>
<th>Parameters</th>
<th>High-speed CAN</th>
<th>Low-speed CAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical layer standards</td>
<td>ISO 11898-2</td>
<td>ISO 11898-3</td>
</tr>
<tr>
<td>Data rate</td>
<td>Up to 1 Mbit/s</td>
<td>Up to 125 kbit/s</td>
</tr>
<tr>
<td>Maximum length</td>
<td>30 m</td>
<td>500 m</td>
</tr>
<tr>
<td>Termination</td>
<td>120 Ω shunt</td>
<td>2.2 kΩ serial on each line</td>
</tr>
<tr>
<td>Recessive voltage level</td>
<td>$V_{\text{CAN}_L} = 3.25 \text{ V}$</td>
<td>$V_{\text{CAN}H} = V{\text{CAN}_L} = 2.5 \text{ V}$</td>
</tr>
<tr>
<td>Dominant voltage level</td>
<td>$V_{\text{CAN}_L} = 1 \text{ V}$</td>
<td>$V_{\text{CAN}H} - V{\text{CAN}_L} = 2 \text{ V}$</td>
</tr>
</tbody>
</table>

![Graphs showing voltage levels](image)
Why protection is needed?

- Automotive systems require a high level of robustness and must be 100% reliable when they control safety devices.

- The automotive industry has defined standards to guarantee the robustness of car embedded electronics.
Why protection is needed?

CAN protection must comply with the following main standards

<table>
<thead>
<tr>
<th>Hazards</th>
<th>Type</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD protection</td>
<td>Voltage spikes due to electro-static discharges.</td>
<td>ISO 10605</td>
</tr>
<tr>
<td>Surge protection</td>
<td>Voltage spikes due to switching processes (influenced by capacitance and inductances of the wiring harness)</td>
<td>ISO 7637-3 pulse 3a/3b</td>
</tr>
<tr>
<td>Jump start</td>
<td>Application of 24 V on all inputs to simulate a jump start with a 24 V battery</td>
<td>ISO 16750</td>
</tr>
<tr>
<td>Reverse battery</td>
<td>Application of -28 V (during 60 s) to simulate a reversed battery connection in case of using an auxiliary starting device</td>
<td>ISO 16750</td>
</tr>
</tbody>
</table>
CAN protection portfolio

- **ESDCAN01-2BLY**
- **ESDCAN03-2BWY**
- **ESDCAN24-2BLY**
- **ESDCAN02-2BWY**

Package

- SOT23
- SOT323

Minimum breakdown voltage (V_{BR})

- 25 V
- 26.5 V
- 27 V
- 28.5 V
ESDCAN series versus standards

<table>
<thead>
<tr>
<th>Hazards</th>
<th>Standards</th>
<th>ESDCAN24-2BLY</th>
<th>ESDCAN01-2BLY</th>
<th>ESDCAN02-2BWY</th>
<th>ESDCAN03-2BWY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD protection</td>
<td>ISO 10605</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>+30 kV contact</td>
<td></td>
<td>+30 kV contact</td>
<td>+30 kV contact</td>
<td>+30 kV contact</td>
</tr>
<tr>
<td>Surge protection</td>
<td>ISO 7637-3 pulse 3a/3b</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Jump start</td>
<td>ISO 16750</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>V_{BR} min (reverse) = 27 V</td>
<td>V_{BR} min (reverse) = 25 V</td>
<td>V_{BR} in (reverse) = 28.5 V</td>
<td>V_{BR} in (reverse) = 26.5 V</td>
<td></td>
</tr>
<tr>
<td>Reverse battery</td>
<td>ISO 16750</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>V_{BR} min (forward) = 27 V</td>
<td>V_{BR} min (forward) = 25 V</td>
<td>V_{BR} min (forward) = 28.5 V</td>
<td>V_{BR} min (forward) = 26.5 V</td>
<td></td>
</tr>
</tbody>
</table>
ESDCAN series: quality of protection

- Not only protection features must comply with standards, but they must efficiently protect against surges.

- The quality of protection features is measured by its ability to clamp overvoltages and overcurrent, thus protect the IC (CAN controller) against EOS / ESD

- The lower the clamping voltage, the greater the circuit’s better ESD immunity.
Let’s go further

Protection of automotive electronics - guidelines for design and component selection
Application note AN2689

Pspice models

In-depth information

Selection & sampling

Our product selector: Automotive dataline ESD protection
Our selection guide: Automotive-grade protection devices and rectifiers (.pdf)