USB 2.0 advanced protection solutions
Where do you stand with USB protection?

Beginner?
I am not familiar with this subject. I am in the discovery phase and would like an overview and a basic understanding of the technology.

Intermediate?
I have a basic understanding of this subject. I would like to go deeper in details and tackle more aspects of this subject.

Advanced?
I am very familiar with this subject. I would like to deepen my knowledge and become an expert.
USB stands for Universal Serial Bus

It is very popular and present on most electronic devices

It is a serial bi-directional bus that is hot-pluggable and supports Plug and Play.

3 data lines:
- D+
- D-
- ID (for USB On-The-Go only)

1 power line: V_{BUS}

3 standards:
- Low speed (1.5 Mbit/s)
- Full speed (12 Mbit/s)
- High speed (480 Mbit/s)
USB 2.0 basics (2)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Low speed</th>
<th>Full speed</th>
<th>High speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data rate</td>
<td>Up to 1.5 Mbit/s</td>
<td>Up to 12 Mbit/s</td>
<td>Up to 480 Mbit/s</td>
</tr>
<tr>
<td>Termination</td>
<td>Not terminated</td>
<td>Not terminated</td>
<td>90 Ω differential</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45 Ω to ground</td>
</tr>
<tr>
<td>Signaling – Logical low level</td>
<td>$V_{D^+} = 0$ to $+0.3$ V</td>
<td>$V_{D^+} = 0$ to $+0.3$ V</td>
<td>$V_{D^+} = -10$ to $+10$ mV</td>
</tr>
<tr>
<td></td>
<td>$V_{D^-} = 2.8$ to 3.6 V</td>
<td>$V_{D^-} = 2.8$ to 3.6 V</td>
<td>$V_{D^-} = +360$ to $+440$ mV</td>
</tr>
<tr>
<td>Signaling – Logical high level</td>
<td>$V_{D^+} = 2.8$ to 3.6 V</td>
<td>$V_{D^+} = 2.8$ to 3.6 V</td>
<td>$V_{D^+} = +360$ to $+440$ mV</td>
</tr>
<tr>
<td></td>
<td>$V_{D^-} = 0$ to $+0.3$ V</td>
<td>$V_{D^-} = 0$ to $+0.3$ V</td>
<td>$V_{D^-} = -10$ to $+10$ mV</td>
</tr>
<tr>
<td>V_{BUS} voltage</td>
<td>From 4.4 V to 5.5 V</td>
<td>From 4.4 V to 5.5 V</td>
<td>From 4.4 V to 5.5 V</td>
</tr>
<tr>
<td>(standard downstream port)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{BUS} max current</td>
<td>500 mA</td>
<td>500 mA</td>
<td>500 mA</td>
</tr>
<tr>
<td>(standard downstream port)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Focus on power: charging ports

• Purpose: Charging batteries through the V_{BUS} pin.

• Need for a current rate higher than 500 mA for the standard downstream port.

• The USB Battery Charging Specification (first release in 2007) defined a new type of port called charging port.

• Even if the maximum current is 5.0 A for safety, most USB cables are rated up to 1.5 A, thus creating a limitation.

<table>
<thead>
<tr>
<th></th>
<th>Standard downstream port (SDP)</th>
<th>Charging downstream port (CDP)</th>
<th>Dedicated charging port (DCP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>USB Battery Charging Specification Revision 1.2 (released in 2010)</td>
<td>Yes (max. current 900 mA on V_{BUS} during high speed transfer)</td>
<td>No (D+ and D- shorted)</td>
</tr>
<tr>
<td>Data transfer enabled</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum current on V_{bus}</td>
<td>500 mA @ 5V</td>
<td>1.5 A @ 5V (USB cables rated at 1.5A only)</td>
<td>5A with voltage > 2V (USB cables rated at 1.5A only)</td>
</tr>
</tbody>
</table>
Focus on power: USB Power Delivery

• To further develop the “power” aspect of USB ports, the USB Power Delivery (PD) specification was released in July 2012.

• 6 power profiles are defined extending the supply voltages (Profile 0 is reserved)

• This requires new cables withstanding voltages higher than 5 V and currents higher than 1.5 A.

• Profile 4 is the limit for micro-B/AB connectors.

<table>
<thead>
<tr>
<th>Profile</th>
<th>5 V</th>
<th>12 V</th>
<th>20 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2.0 A, 10 W</td>
<td>1.5 A, 18 W</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.0 A, 10 W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>3.0 A, 36 W</td>
<td>3.0 A, 60 W</td>
</tr>
<tr>
<td>5</td>
<td>5.0 A, 60 W</td>
<td>5.0 A, 60 W</td>
<td>5.0 A, 100 W</td>
</tr>
</tbody>
</table>
The need for ESD protection devices

Advanced technology with very **thin lithography** and gate oxides are highly vulnerable to ESD.

Integrated electronics systems with **high-component-density PCBs** facilitate ESD coupling and propagation.

IC manufacturers are reluctant to make robust embedded ESD protection diodes that would take up a **significant active area of their advanced and expensive technology.**
Why ultra-low capacitance?

- The parasitic capacitance of ESD protection devices must be low enough to allow USB 2.0 high-speed signals (maximum data rate: 480 Mbit/s) to be transmitted without degradation.

- A high parasitic capacitance of the ESD protection devices would increase too much the signal rise/fall time and prevent communications.

Example of the impact of parasitic capacitance on high-speed signal simulated with discrete capacitance
EMI filtering & ESD protection for USB datalines

System-level ESD protection (IEC 61000-4-2 Level 4)

+ Common-mode filter (ECMF)

Data rate (Gbit/s)

- **10**
 - **ESDAXLC6-1BU2**
 - 1-line ESD
 - ST0201
 - 0.6 x 0.3 x 0.3 mm
 - **HSP051-4N10**
 - 4-line ESD
 - QFN 1.85 x 0.95 x 0.32 mm

- **5**
 - **USBULC6-2N4**
 - 2-line ESD
 - QFN 1.0 x 0.8 x 0.5 mm
 - **HSP051-4M10**
 - 4-line ESD
 - QFN 2.50 x 1.00 x 0.47 mm

- **0.48**
 - **USBLC6-2P6**
 - 2-line ESD + VBUS 6V
 - SOT-666
 - 1.6 x 1.6 x 0.53 mm
 - **USBLC6-4SC6**
 - 4-line ESD + VBUS 6V
 - SOT23
 - 2.92 x 1.62 x 1.17 mm

- **0.012**
 - **USBLC6-2SC6**
 - 2-line ESD + VBUS 6V
 - SOT23
 - 2.92 x 1.62 x 1.17 mm

Click to know more about ECMF™
Power Delivery - ESD & EOS protection

VBUS (Typ.)

- **SMALLEST**
 - **9 V**
 - NEW ESDA13P70-1U1M
 - Ipp = 70A, Ppp = 1300W
 - NEW ECMF02-4CMX8
 - 2-lane CMF + ID + \(V_{BUS} \) 16V
 - 2.50 x 1.20 x 0.50 mm
 - NEW ECMF2-0730V12M12
 - 2-lane CMF + ID + \(V_{BUS} \) 13V
 - 2.60 x 1.35 x 0.5 mm
 - **5 V**
 - NEW ESDA7P60-1U1M
 - Ipp = 60A, Ppp = 700W
 - HSP061-2M6
 - 2-line ESD + \(V_{BUS} \)
 - 1.45 x 1.00 x 0.55 mm

- **STONGEST**
 - SMM4F24A
 - Ipp = 60A, Ppp = 2300W
 - SMM4F13A
 - Ipp = 85A, Ppp = 2300W
 - SMM4F12AVCL
 - Ipp = 100A, Ppp = 2200W
 - SMM4F6.0A
 - Ipp = 170A, Ppp = 2300W

SMALLEST INTEGRATION With USB 2.0 datalines

1. **ESDA7P60-1U1M**
 - Ipp = 60A, Ppp = 700W

2. **ECMF02-4CMX8**
 - 2-lane CMF + ID + \(V_{BUS} \) 16V
 - 2.50 x 1.20 x 0.50 mm

3. **ECMF2-0730V12M12**
 - 2-lane CMF + ID + \(V_{BUS} \) 13V
 - 2.60 x 1.35 x 0.5 mm

4. **HSP061-2M6**
 - 2-line ESD + \(V_{BUS} \)
 - 1.45 x 1.00 x 0.55 mm

NEW ECMF2-0730V12M12

- **Package & Size**
 - **QFN**
 - 1610
 - 1.6mm x 0.55mm x 1.0mm
 - **SMA Flat**
 - 3.80mm x 0.85mm x 1.90mm
Let’s go further

Basic information

- ECMF™ series portfolio overview: common-mode filters embedding ESD protection - Product presentation
- HSP series portfolio overview: High-speed port ESD protection - Product presentation

In-depth information

- TVS short-pulse dynamic resistance measurements... Application note AN4022
- IEC 61000-4-2 standard testing - Application note AN3353
- Pspice models: ESD protection and ECMF™

Selection & sampling

- Our Protection devices & Integrated EMI filtering selection guide
- Our USB port protection product selector
- Our USB IPAD™ (including ECMF™) product selector