HSP series portfolio overview

High-speed port ESD protection
Is this presentation suited for you?

Where do you stand with high-speed port protection?

- **Beginner?**
 - I am not familiar with this subject. I am in the discovery phase and would like an overview and a basic understanding of the technology.
 - Click here to continue to next slide

- **Intermediate?**
 - I have a basic understanding of this subject. I would like to go deeper in details and tackle more aspects of this subject.
 - Click here to open new presentation

- **Advanced?**
 - I am very familiar with this subject. I would like to deepen my knowledge and become an expert.
 - Click here to open new presentation

Overview

Basic

In depth
ESD protection is needed for:

- **Advanced technology with very thin lithography** and gate oxide highly vulnerable to ESD.

- **Integrated electronics systems with PCBs having a high component density** facilitate ESD coupling and propagation.

- **IC manufacturers reluctant to make robust embedded ESD protection diodes that would require a significant active area of their advanced and expensive technology.**

When the **application uses RF (Wi-Fi or Bluetooth)**, a **common-mode filter is required**, in addition to ESD protection, to avoid **RF performance decrease** due to the EMI generated by the high-speed link.
Dedicated to high-speed ports

Ultra-low capacitance

- The parasitic capacitance of ESD protection devices must be low enough to allow high-speed signals to be transmitted without degradation.

- A high parasitic capacitance of the ESD protection devices would increase too much the signal rise/fall time and prevent the communication.

Example of the impact of parasitic capacitance on an HDMI signal simulated with discrete capacitance
Dedicated to high-speed ports
Flow-through layout

- To make the design and PCB layout **easier and simpler**
- To preserve the **symmetry** between the 2 lines of the differential lane

→ **High-speed port protection must be flow-through**
The quality of protection lies in the clamping voltage of the ESD diodes.

- It is measured after 30 ns (the first peak voltage is in the nanosecond range; too fast to be significant).

- HSP protection devices can clamp 8000 V ESD strikes down to 13 V!
Main selection criteria

- **V_{BR}** Breakdown voltage higher than operating signal. Above this voltage, the ESD protection devices will enter Clamping mode.

- **f_c** Cut-off frequency higher than high-speed signal bandwidth defined by the rise time value.

- **$C_{I/O \, \text{to GND}}$** Low parasitic capacitance (a consequence of high bandwidth) minimizing the impact on transmission line impedance.

- **R_d** Dynamic resistance & **V_{CL}** Clamping voltage to keep the protected IC safe.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Test conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{BR}</td>
<td>$I_R = 1$ mA</td>
<td>4.5</td>
<td>5.8</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{RM}</td>
<td>$V_{RM} = 3.6$ V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{CL}</td>
<td>$I_{pp} = 1$ A, 8/20 μs</td>
<td>10</td>
<td></td>
<td>100</td>
<td>nA</td>
</tr>
<tr>
<td>V_{CL}</td>
<td>IEC 61000-4-2, +8 kV contact ($I_{pp} = 16$ A), measured at 30 ns</td>
<td>13</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>R_d</td>
<td>Dynamic resistance, pulse duration 100 ns</td>
<td></td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>$C_{I/O , \text{to I/O}}$</td>
<td>$V_{I/O} = 0$ V, $F = 200$ MHz to 9 GHz</td>
<td>0.2</td>
<td>0.3</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>$C_{I/O , \text{to GND}}$</td>
<td>$V_{I/O} = 0$ V, $F = 200$ MHz to 2.5 GHz</td>
<td>0.4</td>
<td>0.55</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>f_c</td>
<td>-3 dB</td>
<td>10</td>
<td></td>
<td></td>
<td>GHz</td>
</tr>
<tr>
<td>Z_{diff}</td>
<td>Time domain reflectometry: $t_f = 200$ ps (10 - 90%), $Z_0 = 100$ Ω</td>
<td>85</td>
<td>100</td>
<td>115</td>
<td>Ω</td>
</tr>
</tbody>
</table>
High-speed port protection package offer

1 mm²

2 mm²

5 mm²

2-line packages

0.8 mm²

1.45 mm²

2.56 mm²

4-line packages

0.72 mm²

1.9 mm²

2.5 mm²

8-line package

4.95 mm²
High-speed port protection portfolio

2 lines
- HSP061-2N4
 - μQFN-4L 400-μm pitch
 - Size: 1 x 0.8 x 0.5 mm
- HSP062-2M6
 - μQFN-6L 500-μm pitch
 - Size: 1 x 1.45 x 0.55 mm
- HSP062-2P6
 - SOT-666
 - Size: 1.6 x 1.6 x 0.52 mm

4 lines
- HSP061-4F4
 - Flip Chip / WLCSP
 - 6 bumps – 300-μm pitch
 - Size: 0.6 x 1.2 x 0.38 mm
- HSP051-4N10
 - DFN-10L 400-μm pitch
 - Size: 1 x 1.9 x 0.3 mm
- HSP051-4M10
 - DFN-10L 500-μm pitch
 - Size: 1 x 2.5 x 0.48 mm

8 lines
- HSP061-8M16
 - DFN-16L 400-μm pitch
 - Size: 1.5 x 3.3 x 0.55 mm
Let’s go further

Basic presentation

In-depth information

Selection

Intermediate product presentation soon available: ‘Understanding ST’s HSP series specification’

Application Notes:
- HSP06x-2 high-speed line protection on HDMI 1.4 link (AN4138)
- HSP061-8M16 high-speed line protection on HDMI 1.4 link (AN3357)
- TVS short-pulse dynamic resistance measurement ... (AN4022)
- IEC 61000-4-2 standard testing (AN3353)

- Selection guide [pdf]
- www.st.com/hsp-protection
Thank you