

Standard analog products for automotive

General Purpose Analog
Signal conditioning and interface
April 2023

Index

Automotive standard analog portfolio

Automotive signal conditioning

Extended automotive high-performance analog portfolio

Operational amplifiers & comparators

LOW-POWER
OPERATIONAL
AMPLIFIERS

PRECISION
OPERATIONAL
AMPLIFIERS

HIGH OUTPUT CURRENT & CAPACITIVE LOAD OPERATIONAL AMPLIFIERS

FAST OPERATIONAL AMPLIFIERS

COMPARATORS

GRADE 0 (150°C)

AMPLIFIERS &

COMPARATORS

Current sense amplifiers

The main features of ST's portfolio of current sensing ICs ensure robustness and application safety:

- -20 to +70 V line monitoring
- Bidirectional or unidirectional current measurement.
- Integrated solutions for faster design time and reduced bill of materials
 - Integrated EMI filters
 - Pin selectable gain
 - Shutdown function
- Robust devices that do not require external protection
- Automotive-grade qualified

Precision / high-accuracy

Interfaces

USB Type C

STUSB1600

- USB Type-C r1.2
- DUAL ROLE
- AUTO-RUN
- QFN24 4x4

STUSB1700

SOURCE only

STUSB1700Y

SOURCE only

STUSB4500L

- Type C port controller
- SINK
- AUTO-RUN

√

USB Type C + PD PHY

STUSB1602

- USB Type-C r1.2 & PD r2.0
- DUAL ROLE
- Companion chip of STM32 MCU
- QFN24 4x4

SOURCE only

USB Type CPower Delivery

STUSB4700

- PD controller PD r2.0
- SOURCE
- AUTO-RUN
- QFN24 4x4

STUSB4710

- PD controller PD r2.0
- SOURCE
- AUTO-RUN
- QFN16 3x3 SO-16

STUSB4700Y

- PD controller PD r2.0
- SOURCE
- AUTO-RUN

STUSB4500

- PD controller PD r2.0
- SINK
- AUTO-RUN

STUSB4761

- PD controller PD r3.0
- SOURCE
- AUTO-RUN with CC/CV
- 100W cable support

RS485

ST3485EIY

- 3.3 V powered
- 15 kV ESD protected
- up to 12 Mbps

STR485

- 3.3 V, selectable data rate (250 Kbps / 20 Mbps)
- 1.8 V to 3.3 V IO compatibility

ST485EIYDT

- 3.3 V powered
- 15 kV ESD protected
- up to 12 Mbps

RS485

Production

Development

Watchdog, reset and supervisors ICs

STWD100:

watchdog timer circuit for automotive applications

The STWD100 watchdog timer circuits are self-contained devices which prevent system failures caused by certain types of hardware errors (including nonresponding peripherals and bus contention) or software errors (such as a bad code jump or code stuck in loop). A watchdog input (WDI) signal periodically resets the internal watchdog timer within a specified timeout period. If the system fails, the watchdog timer is not reset, a system alert is generated and the watchdog output is asserted.

Main applications

Advanced driver assistance systems (ADAS)

Infotainment

Telematics and connectivity

Automotive Logic ICs

The Automotive-grade logic ICs offer a range of products including counters / encoders / decoders, gates, flip-flop / registers and buffer drivers.

Supporting temperature ranges that can go up to 125°C, our automotive logic devices offer:

- · AEC-Q100 and Q101 compliance
- TS-16949 certification
- PPAP availability
- AEC-Q001 and Q002 guidelines for Statistical Yield Analysis (SYA) and Part Average Testing (PAT) at EWS
- Specific screening and test methods above and beyond AEC-Q100 compliance, such as performance of a 100% hot test (125°C) during the back-end (packaging and testing) stage
- Highly reliable standard SO and TSSOP packages

Automotive-grade standard logic

Function	Commercial product	Package	Description
Buffer	74LCX125YMTR + YTTR	SO14 + TSSOP14	Quad Bus Buffer (3-State)
Inverter	74VHC14YMTR + YTTR	SO14 + TSSOP14	Hex Schmitt Inverter
Buffer	74LCX07YMTR + YTTR	SO14 + TSSOP14	Hex Buffer
Gate	74LCX00YMTR + YTTR	SO14 + TSSOP14	Quad 2-Input NAND Gate
Schmitt Trigger	HCF40106YM013TR	SO14	Hex Schmitt Trigger
Buffer	HCF4010YM013TR	SO16	Hex Buffer/Converters noninverting
Flip-Flop	HCF4013YM013TR	SO14	Dual D Flip-Flop
Shift Register	HCF4021YM013TR	SO16	8-Stage Static Shift Register
Mux / Demux	HCF4051YM013TR	SO16	Single 8-Channel Analog Mux / Demux
Counter/Driver	HCF4060YM013TR	SO16	14-Stage Counter/Driver AND Oscillator
Inverter	HCF4069YUM013TR	SO14	Hex Inverter
Gate	HCF4070YM013TR	SO14	Quad Ex-OR Gate
Schmitt Trigger	HCF4093YM013TR	SO14	Quad 2-Input NAND Schmitt Trigger
Bus register	HCF4094YM013TR + YTTR	SO16	8-Stage Shift-AND-Store Bus Register
Mux / Demux	M74HC4851YRM13TR + YTTR	SO16 + TSSOP16	Single 8 Channel Analog Mux / Demux
Mux / Demux	M74HC4852YRM13TR	SO16	Dual 4 Channel Analog Mux / Demux
Inverter	M74HC04YRM13TR + YTTR	SO14 + TSSOP14	Hex Inverter
Gate	M74HC08YRM13TR + YTTR	SO14 + TSSOP14	Quad 2-Input AND Gate
Buffer	M74HC126YRM13TR+ YTTR	SO14 + TSSOP14	Quad Bus Buffer (3-State)
Gate	M74HC132YRM13TR + YTTR	SO14 + TSSOP14	Quad 2-Input Schmitt NAND Gate
Inverter	M74HC14YRM13TR + YTTR	SO14 + TSSOP14	Hex Schmitt Inverter
Multiplexer	M74HC151YRM13TR + YTTR	SO16 + TSSOP16	8-Channel multiplexer
Latch	M74HC259YRM13TR + YTTR	SO16 + TSSOP16	8 Bit Addressable Latch
Generator	M74HC280YRM13TR	SO14	9 Bit Parity Generator
Counter	M74HC4060YRM13TR + YTTR	SO16 + TSSOP16	14-Stage Binary Counter/Oscillator
Shift Register	M74HC4094YRM13TR + YTTR	SO16 + TSSOP16	8 Bit SIPO Shift Register Latch (3-State)
Shift Register	M74HC595YRM13TR + YTTR	SO16 + TSSOP16	8 Bit Shift Register Output Latch (3-State)
Inverter	M74HC365YRM13TR + YTTR	SO16 + TSSOP16	Hex Bus Buffer (3-State)

Quality, process, and packages

Automotive grade qualification process

80%

of all innovations in the automotive industry today are enabled by electronics

Very high level of in-house parametric testing equipment

100% electrical testing with very extensive coverage coupled with automatic visual inspection

Part Average Testing (PAT) to detect and remove parts tested "pass" but potentially weak in reliability

Hot test & Junction Verification Test (JVT) at Final test for SOT23, Mini-SO, SO, TSSOP, QFN/DFN

A specific commercial product number

Automotive parts production process

Part number (example)	Grade	Process control T84	Visual inspection of wafers	EWS	PPAT GPAT	SBL SYL	Thermal cycles	Final electrical test	Junction verificatio n test	PPAP report	
TSZ181ILT	Non AG	Sampling	Sampling	Sampling	No	100%	No	25°C	No	No	
TSZ181IYLT	AG Grade 1	100%	100%	100%	Yes	100%	Yes	25°C 125°C	125°C	Yes	125°C
TSZ181HYLT	AG Grade 0	100%	100%	100%	Yes	100%	Yes	25°C 150°C	150°C	Yes	150°C

Automotive grade DFN packages

Wettable flanks for Automated Optical Inspection (AOI)

Immune to soldering crack for more than 2000 thermal cycles -40 to 125 °C, 1 cycle per hour, 1.0 mm thick high Tg FR4 PCB

Product highlights

TSV782 overview

High bandwidth (30 MHz) Low offset (200 µV) Rail-to-rail 5 V op amp

KEY APPLICATIONS

- Industrial and Automotive
- Power management

KEY BENEFITS

Accuracy virtually unaffected by noise or input bias current

VCC-

Signal conditioning for high frequencies

- Gain bandwidth product 30 MHz, unity gain stable
- Slew rate 20V/µs
- Low input offset voltage: 50μV typ., 200 μV max.
- Low input bias current: 2 pA typ.
- Low noise : 7nV/√Hz
- Wide supply voltage range: 2.0 V to 5.5 V
- Rail-to-rail input and output

TSV7721 TSV7722 TSV7723 overview

High bandwidth (22 MHz) Low offset (200 µV) Low-rail 5 V op amp

KEY APPLICATIONS

- Industrial and Automotive
- Telecom infrastructure

KEY BENEFITS

- Accuracy virtually unaffected by noise or input bias current
- Signal conditioning for high frequencies

- Gain bandwidth product 22 MHz, unity gain stable
- Low input offset voltage 50 μV typ, 200 μV max
- Low input voltage noise density: 7 nV/√Hz
- Wide supply voltage range: 1.8 to 5.5 V
- Power saving: 1.7 mA typical, 2.5 nA in shut-down
- Output rail-to-rail
- Automotive grade and shut-down versions available

TSV772 overview

High bandwidth (20 MHz) Low offset (200 µV) Rail-to-rail 5 V op amp

KEY APPLICATIONS

- Industrial and Automotive
- Power management

KEY BENEFITS

- Accuracy virtually unaffected by noise or input bias current
- Signal conditioning for high frequencies

- Gain bandwidth product 20 MHz, unity gain stable
- Low input offset voltage: 50 µV typ., 200 µV max.
- Low input bias current: 2 pA typ.
- Low noise: 7 nV/√Hz
- Slew rate: 10.5 V/µs
- Wide supply voltage range: 2.0 V to 5.5 V
- Rail-to-rail input and output

TSV791 TSV792 overview

High bandwidth (50MHz) Low offset (200 μV) Rail-to-rail 5 V op amp

KEY APPLICATIONS

- Industrial and Automotive
- Power management

KEY BENEFITS

- Accuracy virtually unaffected by noise or input bias current
- Signal conditioning for high frequencies

- Gain bandwidth product 50MHz, unity gain stable
- Slew rate 30V/µs
- Low input offset voltage 50μV typ, 200 μV max
- Low input voltage noise density 6.5nV/√Hz @10kHz
- Wide supply voltage range: 2.2 V to 5.5 V
- Rail-to-rail input and output
- Extended temperature range: -40 °C to +125 °C

TSX9 overview

Industrial

Automotive

High bandwidth (10 to 16MHz) rail-to-rail 16V op amp

KEY APPLICATIONS

- Communications
- Process control

KEY BENEFITS

- Direct supply by +5V/-5V power lines
- Signal conditioning for high frequencies

- Rail-to-rail input and output
- Gain bandwidth product 10 MHz (unity gain stable) or 16 MHz (stable for gain > 2)
- Low power consumption: 2.8 mA
- Low input bias current: 10 pA typ
- High tolerance to ESD: 4 kV HBM
- Automotive qualification

TSX7 overview

TSX7191AILT

TSX7192IST

TSX7192IDT

TSX7191AIYLT

TSX7192IYST

TSX7192IYDT

High accuracy (Vio < 200 μV) rail-to-rail 16V op amp

KEY APPLICATIONS

- Instrumentation amplifier
- Active filtering

KEY BENEFITS

Direct supply by +5V/-5V power lines

Gain >10

Single

Vio < 100µV

Dual

High accuracy signal conditioning

KEY FEATURES

Low input offset voltage: 200 µV max

- Low input offset voltage: 100 µV max for "A" version
- Rail-to-rail input and output
- Gain bandwidth product 2.7 MHz (unity gain stable) or 9 MHz (stable for gain > 10)
- Low supply voltage: 2.7 16 V

SOT23-5

MiniSO8

SO8

TSB7 overview

Low offset (300 µV), 6 MHz and 20 MHz, 36 V Rail-to-rail 36 V op amp

KEY APPLICATIONS

- Motor control
- Strain gauge

KEY BENEFITS

- Accuracy virtually unaffected by noise or input bias current
- Signal conditioning for high frequencies

- Wide supply voltage range:
 - 2.7 to 36 V
- Gain bandwidth product:
 - 6 MHz (TSB71x, unity gain stable)
 - 22 MHz (TSB719x, stable for gain > 10)
- Rail-to-rail input and output
- Low offset voltage:
 - 300 µV maximum (A version)
 - 800 µV maximum (Standard)

TSC2010 TSC2011 TSC2012 overview

70 V bidirectional current sensing

KEY APPLICATIONS

- · High-side current sensing
- Low-side current sensing
- Motor control

KEY BENEFITS

- High-side current measurement on high voltages
- Tolerant to voltage surge and battery reverse

- Bidirectional current measurement
- Gain:
 - x20 (TSC2010) x60 (TSC2011)
 - x100 (TSC2012)
- V_{ICM} operating: -20 to 70 V surviving: -25 to 76 V
- $V_{\rm CC}$ 2.7 to 5.5 V
- V_{IO} max 700 μV
- Bandwidth:
 - 1 MHz (TSC2010) 750 kHz (TSC2011)
 - 300 kHz (TSC2012)
- Operating temperature -40 to 125°C, MiniSO8 SO8
- extended temperature range (-40 to 150 °C) : **TSC2010H**, **TSC2011H** and **TSC2012H**.

TSC210 TSC211 ... TSC215 overview

26 V bidirectional current sensing

KEY APPLICATIONS

- Power management
- Battery chargers

KEY BENEFITS

- High-side current measurement on high voltages
- Tolerant to voltage surge and battery reverse

- Bidirectional current measurement
- Gain selectable by part number option
 - x50 **TSC213** x75 **TSC215** x100 **TSC214**
 - x200 <u>TSC210</u> x500 <u>TSC211</u> x1000 <u>TSC212</u>
- V_{ICM} operating -0.3 to 26 V
- V_{CC} 2.7 to 26 V
- V_{IO} max 35 μV
- Bandwidth 16 kHz (TSC210)
- Operating temperature -40 to 125 °C

TSZ181, TSZ182 overview

3 MHz chopper op amp

KEY APPLICATIONS

- High accuracy signal conditioning
- Automotive current measurement and sensor signal conditioning

KEY BENEFITS

 Accuracy virtually unaffected by temperature change

- Very high accuracy and stability:
 - 25 μV max at 25 °C,
 - 35 μV -40 °C to 125 °C
- Gain bandwidth product: 3 MHz
- Rail-to-rail input and output
- Low supply voltage: 2.2 5.5 V
- Low power consumption: 1 mA max. at 5 V
- extended temperature range (-40 to 150 °C): <u>TSZ181H</u>, <u>TSZ182H</u> and (-40 to 175 °C) : <u>TSZ181H1</u>, <u>TSZ182H1</u>

TSZ181H TSZ182H TSZ182H1 overview

High temperature zero drift amplifier

KEY APPLICATIONS

- High accuracy signal conditioning
- Current measurement
- Sensor signal conditioning

KEY BENEFITS

- Outstanding accuracy on an ultra wide temperature range
- Long mission profile

KEY FEATURES

- Very high accuracy and stability: V_{IO} 25 μV max
- Gain bandwidth product: 3 MHz
- Wide supply voltage range: 2.2 V to 5.5 V
- Rail-to-rail input and output
- Automotive grade
- High temperature range:
 - -40 °C to +150 °C (auto grade zero)
 - -40 °C to +175 °C (auto grade H1 version)

Automotive

Automotive

TSZ121 TSZ122 TSZ124 overview

Zero-drift amplifiers

KEY APPLICATIONS

- Battery-powered applications
- Signal conditioning

KEY BENEFITS

 Accuracy virtually unaffected by temperature change

- Very high accuracy (Vio)
- 5 µV max at 25 °C
- 8 μV max -40 °C to 125 °C
- dVIO/dT < 30 nV/°C
- Low supply voltage: 1.8 5.5 V
- Maximum supply current 40 μA
- Gain bandwidth product 400 kHz
- Automotive grade

STWD100Y overview

Standalone watchdog

KEY APPLICATIONS

- Industrial and automotive
- Telecommunications
- UPS (uninterruptible power supply)

KEY BENEFITS

- Highest security level applications
- Robust and reliable
- Targeted applications: ADAS, front and rear LED lighting, mirror LED, emergency LED

Memory

Watchdog timeout period	Output type	Chip enable	Icc (μΑ)
3.4 ms 6.3 ms 102 ms 1.6 s	open drain	yes	13

V_{CC}

- Software code execution monitoring
- Hardware failure supervision
- System recovery

STUSB1700Y overview

Standalone USB Type-C controller

KEY APPLICATIONS

- USB car chargers
- Front seats and Rear seats charging
- Infotainment systems

KEY FEATURES

- Role: Source
- Configurable start-up profiles
- Integrated VCONN switch:
- Adjust. current limit (600mA max)
- OVP, OCP, UVP, short protection
- 22 V short-to-VBUS protection on CC
- Direct interface to MCU through I²C + IRQ
- Dual power supply capability:
- VBUS 4.1 V to 22 V AMR = 28 V
- VSYS 3.0 V to 5.5 V

KEY BENEFITS

- Standalone IC (MCU optional)
- Plug & Play,
- Robustness to high voltage spikes
- Configurable and flexible
- Integrated solution (reduced PCB area and cost vs. discrete
- Type-C r1.2 compliant

Ideal solution for 15 W charging (5V / 3A) with or without USB DATA

Link on st.com

STUSB4700Y overview

Stand-alone USB Type-C PD controller

KEY APPLICATIONS

- USB car chargers
- Front seats and Rear seats charging
- Infotainment systems

KEY FEATURES

- Role: Source
- Support all USB PD profiles
- Configurable start-up profiles
- Dedicated Voltage & Current control Interface
- Integrated Voltage monitoring
- High Voltage Protections on connector pins (including CC)
- Integrated VBUS discharge path
- Auto-run support
- Nominal power supply: VBUS 4.1 V to 22 V (AMR 28 V)

KEY BENEFITS

- Can run without MCU support
- Robustness to high voltage spikes
- Configurable and flexible
- Integrated solution (reduced PCB area and cost vs discrete)
- Low pin count
- Reference designs on request

Ideal solution for <60 W charging (<20 V / 3 A)
with or without USB data
without infotainment (ALT MODE)

Link on st.com

Automotive applications

Added value for smart driving

Added value for greener driving

Head light levelling

Context

Adjustment of headlight angle helps to compensate the car pitch angle, whatever the car loading or road conditions. The levelling becomes more and more critical as the headlights power increases, to prevent other drivers being dazzled.

The ECU provides a PWM signal proportional to the desired
headlight angle. The first op amp acts as a level shifter, and the
second as a low pass filter in order to provide a voltage
proportional to battery voltage to the actuator.

	ST Offer					
Feature	Supply voltage 36V operating	Capability to provide control voltage proportional to battery	Benefit			
	Supply voltage 40V AMR	Reduce need of load dump clamping				
58512	Rail-to-rail input / output stage	No need for charge pump circuitry				

Power switches for 48 V battery applications

Context

The automotive industry is committed to meet future emission regulations, and the implementation of intermediate battery voltage of 48 V appears as a very promising solution.

Temperature measurement

Context

Temperature is measured to guarantee safe operation of Motors, Converters and electronic control units. In Hybrid and Electric vehicle temperature measurement helps to monitor and maximize battery efficiency.

Electric power steering angle measurement

Context

Electric Power Steering is replacing hydraulics system due to the possibility to tailor steering-gear response according to driving conditions. In addition, EPS is a major contributor to fuel-saving efforts.

Rain and light sensor

Context

Rain and light sensors are widely used for automatic mode of windscreen wipers and automatic lights. Further applications can include the automatic closing of electric roof and windows or adjustment of dashboard backlight.

Advanced driving assistance system

Context

Watchdog ICs improve system reliability by monitoring the system for software code execution errors and hardware failures. This is specially critical for Advanced Driving Assistance Systems paving the way to autonomous vehicles.

Watchdog timer STWD100Y

Low-side current measurement for motors

Context

The pervasion of brushless DC motors in automotive leads to removal of energy-wasting belts for the transmission of power to sub-systems.

O₂ sensors

Context

Measurement of exhaust or inlet gas concentration of oxygen enables emission control by adjustment of combustion. Other applications include measurement of the partial pressure of oxygen in passengers breathing gas.

NO_x sensors for SCR

Maintains sensor accuracy

Compatible with extreme

working conditions

Increased reliability in

assembly line and during

lifetime

Context

Vehicle have to comply with environmental regulations requiring dramatic reduction of Nitrogen Dioxides emissions (NO_x and NO_2). This pressure implies new technologies such as real-time measurement of NO_x and selective catalytic reduction (SCR).

The NOx is measured in the exhaust gas by amperometric or potentiometric method.
Aqueous ammonia (also named urea) is injected in the catalyst in order to transform NO_x into N₂ and water.

Senefit

Pedal angle measurement

Context

Measurement of pedal position is mandatory to drive-by-wire, enabling new features as adaptive cruise control. Other applications include throttle valve angle measurement, windows wipers control.

Power seat current control

Context

Power seat allows the user to fine tune the seat position using a joystick. Advanced feature can include automatic recall of user-customized settings. Modern cars can use 3 to 6 motors per seat for position adjustment.

Senefit

Audio buffer

Context

Audio quality has direct impact on the end-user perception of quality of the vehicle. Audio is now required not only for music, but also for navigation and user vocal interface.

Op Amp

Promotion tools

TSC2010 TSC2011 TSC2012 evaluation board STEVAL-A1ETKT1V2

Motherboard

Daughter boards:

TSC2010, TSC2011, TSC2012.

TSC210/211/212/213/214/215 demo board **STEVAL-AETKT2V1**

Motherboard

Daughter boards: TSC210, TSC213

<u>Link</u>

Automotive Op Amps sample kit 2020

Discover our operational amplifiers and comparators for automotive

Product	Description	Package
Operational amplifiers		
LM2904WHYST	30 V, low-power dual bipolar, 150 °C op amp	Mini S08
TSB572IYQ2T	36 V, low-power dual rail-to-rail BiCMOS op amp in side-wettable flanks	DFN8 3x3
TSB611IYLT	36 V, low-power, rail-to-rail output, op amp	S0T23-5
TSB712IYST	36 V, precision, 6 MHz, rail-to-rail I/O, BiCMOS op amp	Mini S08
TSV911IYLT	5 V, wide bandwidth 8 MHz, single rail-to-rail I/O CMOS op amp	S0T23-5
TSV912HYDT	5 V, wide bandwidth 8 MHz, 150 °C, dual rail-to-rail I/O CMOS op amp	S08
TSX921IYLT	16 V, wide bandwidth 10 MHz, single rail-to-rail I/O CMOS op amp	S0T23-5
TSZ182IYST	5 V, very-high-accuracy, zero drift, CMOS op amp	Mini S08
Comparators		
LM2903YQ3T	36 V, low-power dual bipolar comparator in side-wettable flanks	DFN8 2x2
TS3011IYQ3T	5 V, rail-to-rail, high-speed comparator in side-wettable flanks	DFN8 2x2
TS3021HIYLT	1.8 V, rail-to-rail, high-speed, 150 °C comparator	S0T23-5
TS3022IYST	5 V, rail-to-rail, high-speed micropower comparator	Mini S08
TSX3702IYDT	16 V, micropower dual CMOS push-pull comparator	S08
Current sensing		
TSC101CIYLT	High-side current sense amplifier	S0T23-5
TSC103IYPT	High-voltage high-side current sense amplifier	TSS0P8

eDesignSuite and eDSim

eDesignSuite

THE SMART DESIGN TOOL

ST's eDesignSuite is a smart design and simulation tool that greatly simplifies the task of engineers working on various application types. This platform helps to select the best product for your application and speeds-up the design-in!

eDesignSuite tool makes the «Product PN» circuit design easy

Available modules

- Power management
- Thermo-electrical simulator
- Signal conditioning
- NFC/RFID calculators

Design your SMPS or analog circuit, get a quick preview with fully annotated schematic and BOM, and then run the electrical simulation through eDSim for fast and accurate simulations and reliable design validation.

Run the eDSim tool to crunch the electrical simulations 10-50 times faster than traditional analog SPICE simulators!

ST op amps application including cross reference tool

Download the latest mobile version

Our technology starts with You

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

