HDMI® IPAD™ product presentation

HDMI signal conditioning
Is this presentation suited for you?

Where do you stand with HDMI® interfacing?

Beginner?
I am not familiar with this subject. I am in the discovery phase and would like an overview and a basic understanding of the technology.

Intermediate?
I have a basic understanding of this subject. I would like to go deeper in details and tackle more aspects of this subject.

Advanced?
I am very familiar with this subject. I would like to deepen my knowledge and become an expert.

Overview

Basic

In depth

Click here to continue to next slide

Click here to open new presentation

Click here to open new presentation
High-definition multimedia interface (HDMI) Ecosystem

HDMI connectors address many applications
HDMI connector

ESD protection requirements

Datalines
- High frequency
- Differential signaling

Control lines
- Low frequency
- I²C bus must drive poor-quality cables

Power supply
- 5 V DC
- Requires current limiter
ESD protection is needed for…

- Advanced technology with very **thin lithography** and gate oxide highly vulnerable to ESD
- Integrated electronics systems with **PCBs having a high component density** facilitate ESD **coupling** and **propagation**
- IC manufacturers reluctant to make robust embedded ESD protection diodes that would require a **significant active area of their advanced and expensive technology**.

When the **application uses RF** (Wi-Fi or Bluetooth), a **common-mode filter** is **required**, in addition to ESD protection, to avoid **RF performance decrease** due to the EMI generated by the high-speed link.
HDMI – Dataline ESD protection

Why ultra-low capacitance?

- The parasitic capacitance of ESD protection devices must be low enough to allow HDMI signals to be transmitted without degradation.

- A high parasitic capacitance of the ESD protection devices would increase too much the signal rise/fall time and prevent the communication.

Example of the impact of parasitic capacitance on an HDMI signal simulated with discrete capacitance.
HDMI – Control lines: Why a specific I²C driver?

- The parasitic capacitance of poor quality or long cables increases the rise time of the I²C bus used by the High-bandwidth Digital Content Protection (HDCP) protocol.

- If this rise time exceeds the HDMI specification, a blue screen prevents the user from watching their video content.

- To mitigate this issue, an optimized I²C timing booster is needed.

Without optimized I²C booster

- Rise time > 1200 ns

With ST's optimized I²C booster

- Rise time < 400 ns

- High risk of interoperability issue

 - I²C timing compliant with HDMI
The 5 V pin of the HDMI connector provides power to devices connected to the HDMI source.

The HDMI specification allows:
- Up to 500 mA of maximum output current from the source
- Up to 55 mA of maximum sunk current
- Up to 100 mV of maximum voltage drop-out
HDMI placement and layout - Tips

High-speed data
- Needs ESD protection close to HDMI connector
- Routing is impedance-controlled

Interface IC
- Single-chip interface is recommended for easier layout

HDMI chipset
- Cannot integrate system-level ESD protection (±8000 V) as per IEC 61000-4-2 Level 4 → it requires an interface IC with system-level ESD protection
- Compliant with the basic HDMI specification, it will not handle optimized I²C booster
<table>
<thead>
<tr>
<th>Source</th>
<th>Data lines</th>
<th>CONTROL LINES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TMDS ESD protection</td>
<td>ESD protection</td>
</tr>
<tr>
<td></td>
<td>HDMI2C1-14HD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HDMI2C1-14HDS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HDMI2C1-6C1</td>
<td></td>
</tr>
</tbody>
</table>

Snik

<table>
<thead>
<tr>
<th>Source</th>
<th>Data lines</th>
<th>CONTROL LINES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HDMI2C2-14HD</td>
<td></td>
</tr>
</tbody>
</table>

HDMI2C1-14HD & HDMI2C2-14HD
- QFN 36L
 - 500-µm pitch
 - 6.5 x 3.5 mm

HDMI2C1-14HDS
- QFN 24L
 - 500-µm pitch
 - 4 x 4 mm

HDMI2C1-6C1
- QFN 18L
 - 500-µm pitch
 - 3.5 x 3.5 mm
ST solution for HDMI interfaces w/ RF

HDMI application with RF

Requires ESD integrated common-mode filter on datalines with ST’s ECMF series
ST solution for HDMI interfaces w/o RF

HDMI application without RF
Requires single-chip HDMI interface IC such as HDMI2Cx-14HDx
Let’s go further

Intermediate product presentation soon available: ‘Understanding HDMI IPAD™ series specification’

Datasheets:
- HDMI2C1-14HD: ESD protection & signal conditioning for HDMI 2.0 source interface
- HDMI2C2-14HD: ESD protection & signal booster for HDMI™ 2.0 sink interface
- HDMI2C1-6C1: ESD protection and signal booster for HDMI™ Source control stage interface

Application Notes:
- TVS short-pulse dynamic resistance measurement ... (AN4022)
- IEC 61000-4-2 standard testing (AN3353)

Selection:
- Selection guide [pdf]
- www.st.com/hdmi-ipad
Thank you