Quick Start Guide
Low-Voltage BLDC motor driver expansion board based on STL220N6F7 for STM32 Nucleo (X-NUCLEO-IHM08M1)
Quick Start Guide Contents

X-NUCLEO-IHM08M1: Low-Voltage BLDC motor driver expansion board
Hardware and Software overview

Setup & Demo Examples
Documents & Related Resources

STM32 Open Development Environment: Overview
Low-Voltage BLDC motor driver expansion board

X-NUCLEO-IHM08M1 Hardware Description

The X-NUCLEO-IHM08M1 is a three-phase brushless DC motor driver expansion board based on the STL220N6F7 (STripFET™ F7 Power MOSFET) for STM32 Nucleo. The combination of STL220N6F7 and L6398 (IC driver) forms the high current power platform for the BLDC motor and the digital section based on the STM32 Nucleo board offers 6-step or FOC algorithm control solutions. It is compatible with the ST morpho connector and supports the addition of other boards which can be connected with a single STM32 Nucleo board. The user can also mount the Arduino™ UNO R3 connector.

Main features

- 3-phase driver board for BLDC/PMSM motors.
- Nominal operating voltage range: 8 V - 48 V DC.
- Maximum output peak current: 30 A.
- Nominal RMS output current: 15A
- Thermal monitoring and overheating protection.
- 3-Shunt and 1-Shunt configurable jumpers for motor current sensing.
- Hall / Encoder motor sensor connector and circuit.
- Potentiometer available for speed regulation.
- User LED
- RoHS compliant.

Key Products on board

STL220N6F7: STripFET™ F7 Power MOSFET 260A, 60V
L6398: High voltage high and low-side driver
TSV994IPT: Rail to rail input/output high merit factor op-amps

Latest info available at www.st.com
X-NUCLEO-IHM08M1
X-CUBE-SPN8 Software Description

The X-CUBE-SPN8 is an expansion software package for STM32Cube. The software runs on the STM32 and includes drivers that recognize, initialize and send application commands to the L6398 device.

It is compatible with the NUCLEO-F302R8 or the NUCLEO-F401RE when connected to one or more X-NUCLEO-IHM08M1 expansion boards.

Key features

- Complete firmware package to build motor control applications based on L6398 gate drivers and STL220N6F7 Power MOSFETs (X-NUCLEO-IHM08M1).
- API function available to send any application command to motor driver
- Example implementation to control one low voltage three phase BLDC/PMSM motor, available on board X-NUCLEO-IHM08M1 expansion board when plugged to NUCLEO-F302R8 or NUCLEO-F01RE
- Easy portability across different MCU families, thanks to STM32Cube
- Free, user-friendly license terms
Quick Start Guide Contents

X-NUCLEO-IHM08M1: Low-Voltage BLDC motor driver expansion board
Hardware and Software overview

Setup & Demo Examples
Documents & Related Resources

STM32 Open Development Environment: Overview
Setup & Demo Examples

HW prerequisites

- 1x Low-Voltage BLDC motor driver expansion board (X-NUCLEO-IHM08M1)
- 1x STM32 Nucleo development board (NUCLEO-F302R8 or NUCLEO-F401RE)
- 1x Low voltage 3-phase BLDC motor
- 1x Laptop/PC equipped with Windows 7 or 8
- 1x USB type A to Mini-B USB cable
- 1x external power supply (according with the motor characteristics)
Setup & Demo Examples

HW settings – building the system

• Plug the expansion board on an STM32 Nucleo through the ST morpho connector

• Connect the three motor wires U,V,W to the J16 connector.

• On the X-NUCLEO-IHM08M1 expansion board, set jumpers: J9 open, JP3 closed.
 - For 6-step control (X-CUBE-SPN8 FW), set jumpers: JP1 and JP2 open, J5&J6 on the 1-Sh side. **Keep capacitor C5 mounted**; in case of poor motor current regulation during startup, reduce its value.
 - For FOC control (STSW-STM32100 FW), set jumpers: JP1 and JP2 closed, J5&J6 on the 3-Sh side. **Remove capacitors C3, C5 and C7**.
 - Connect the DC supply voltage to the J1 connector.
Setup & Demo Examples
SW prerequisites

- **STSW-LINK008**: ST-LINK/V2-1 USB driver

- **STSW-LINK007**: ST-LINK/V2-1 firmware upgrade

- **X-CUBE-SPN8**
 - copy the .zip file content into a folder on your PC. The package will contain source code example (Keil, IAR, System Workbench) based on **NUCLEO-F302R8** or **NUCLEO-F401RE**.
X-CUBE-SPN8 in 8 steps
Use of X-CUBE-SPN8 with pre-compiled .BIN FW file

1. www.st.com/x-nucleo

2. Select X-NUCLEO-IHM08M1

3. Download & unpack X-CUBE-SPN8

4. Download & install STM32 Nucleo ST-LINK/V2-1 USB driver STSW-LINK008

5. Download / Install / Run ST-Link FW Upgrade Utility STSW-LINK007

X-CUBE-SPN8 package main structure

- [Documentation]
- [Drivers]
- [Middlewares]
- [Projects]

- Docs
- Motor Control drivers
- Motor Control lib, Serial UI
- F3/F4 src code
Use of X-CUBE-SPN8 with pre-compiled .BIN FW file

1. Connect the STM32 NUCLEO board with the X-NUCLEO-IHM08M1 board and LV BLDC motor.
2. Drag and drop X-CUBE-SPN8_Fxxx.bin.
 - X-CUBE-SPN8_F302.bin for F3 or
 - X-CUBE-SPN8_F401.bin for F4 or
 - on Nucleo drive
3. Push the blue button and motor RUN.
X-CUBE-SPN8 for code developers

Compile the FW using one of supported IDE

X-CUBE-SPN8 for NUCLEO-F302R8 or NUCLEO-F401RE

1. www.st.com/x-nucleo
2. Select X-NUCLEO-IHM08M1
3. Download & unpack X-CUBE-SPN8
4. Open the IDE workspace for Nucleo board selected

IAR IDE vers. 7.40

Flash and Run the project

www.st.com/x-cube

STM32CubeExpansion_SPN8_V1.0.0\Projects\Multi\Examples\MotorControl\EWARM\STM32FXXXRX-Nucleo
Documents & Related Resources

All documents are available in the DESIGN tab of the related products webpage

X-NUCLEO-IHM08M1:

- Gerber files, BOM, Schematic
- DB2778: Low-Voltage BLDC motor driver expansion board based on STL220N6F7 for STM32 Nucleo – data brief
- UM1996: Getting started with X-NUCLEO-IHM08M1 low-voltage BLDC motor driver expansion board based on STL220N6F7 for STM32 Nucleo – user manual

X-CUBE-SPN8:

- DB2771: Low-Voltage BLDC motor driver software expansion for STM32Cube – data brief
- UM1992: Getting started with X-CUBE-SPN8, low-voltage BLDC motor driver software expansion for STM32Cube – user manual
- Software setup file

Consult www.st.com for the complete list
Quick Start Guide Contents

X-NUCLEO-IHM08M1: Low-Voltage BLDC motor driver expansion board
Hardware and Software overview

Setup & Demo Examples
Documents & Related Resources

STM32 Open Development Environment: Overview
The STM32 Open Development Environment (ODE) consists of a set of stackable boards and a modular open SW environment designed around the STM32 microcontroller family.

- STM32Cube development software
- STM32 Nucleo development boards
- STM32 Nucleo expansion boards (X-NUCLEO)
- STM32Cube expansion software (X-CUBE)
- Function Packs (FP)

www.st.com/stm32ode
STM32 Nucleo Development Boards (NUCLEO)

- A comprehensive range of affordable development boards for all the STM32 microcontroller series, with unlimited unified expansion capabilities and integrated debugger/programmer functionality.

Power supply through USB or external source

Integrated debugging and programming ST-LINK probe

STM32 microcontroller

Complete product range from ultra-low power to high-performance

ST morpho extension header

Arduino™ UNO R3 extension headers

www.st.com/stm32nucleo
STM32 Nucleo Expansion Boards (X-NUCLEO)

- Boards with additional functionality that can be plugged directly on top of the STM32 Nucleo development board directly or stacked on another expansion board.

Example of STM32 expansion board (X-NUCLEO-IKS01A1)
STM32 Open Development Environment

Software components

• **STM32Cube software (CUBE)** - A set of free tools and embedded software bricks to enable fast and easy development on the STM32, including a Hardware Abstraction Layer and middleware bricks.

• **STM32Cube expansion software (X-CUBE)** - Expansion software provided free for use with the STM32 Nucleo expansion board and fully compatible with the STM32Cube software framework. It provides abstracted access to expansion board functionality through high-level APIs and sample applications.

• **Compatibility with multiple Development Environments** - The STM32 Open Development Environment is compatible with a number of IDEs including IAR EWARM, Keil MDK, and GCC-based environments. Users can choose from three IDEs from leading vendors, which are free of charge and deployed in close cooperation with ST. These include Eclipse-based IDEs such as Ac6 System Workbench for STM32 and the MDK-ARM environment.

Tools & IDEs
- IAR EWARM, Keil MDK-ARM, GCC-based IDEs (e.g. Ac6 System Workbench for STM32)

Applications
- Sample applications (e.g. based on ST OpenSoftwareX)

Middleware
- STM32Cube middleware
- Upper level middleware (e.g. ST OpenSoftwareX)
- STM32Cube expansion middleware

Hardware Abstraction
- STM32Cube Hardware Abstraction Layer (HAL)

Hardware
- STM32 Nucleo expansion boards (X-NUCLEO)
- STM32 Nucleo developer boards

Open License Models: STM32Cube software and sample applications are covered by a mix of fully open source BSD license and ST licenses with very permissive terms.

www.st.com/stm32cube

www.st.com/x-cube
STM32 Open Development Environment

Building block approach

The building blocks

- Sense
 - Accelerometer, gyroscope
 - Inertial modules, magnetometer
 - Pressure, temperature, humidity
 - Proximity, microphone

- Connect
 - Bluetooth LE, Sub-GHz radio
 - NFC, Wi-Fi, GNSS

- Translate
 - Audio amplifier
 - Touch controller
 - Operation Amplifier

- Move / Actuate
 - Stepper motor driver
 - DC & BLDC motor driver
 - Industrial input / output

- Power
 - Energy management & battery

- Process
 - General-purpose microcontrollers
 - Secure microcontrollers

- Software

Your need

- COLLECT
- TRANSMIT
- ACCESS
- CREATE
- POWER
- PROCESS

Our answer

www.st.com/stm32ode