STM32G0

World’s 1st USB-C™ & Power Delivery 3.0 MCU
Why to use USB-C and Power Delivery Technology?

USB Type-C connector enhances user experience
- It’s a 24-pin miniature and reversible connector. USB-C cable has same plug as both ends.
- Some pins can be repurposed to support proprietary protocols (Alternate Modes).
- 15W of power can transit natively without USB PD protocol.

To exchange more data faster with various protocols
- 2 separate USB data paths available simultaneously: USB 2.0 + USB 3.1 (up to 10Gbit/s).
- Display Port, HDMI, MHL, Thunderbolt are supported to carry video/audio signals.
- Conventional I²C/SPI/UART/Ethernet interfaces can be "bridge" to USB-C.

To get more power with a comprehensive and robust protocol
- **USB Power Delivery** protocol enables power negotiation (up to 100W).
- It allows to discover power capabilities and needs between two USB-C connected devices.
- It enables advanced voltage and current negotiation to support fast charging.
- USB PD is used to activate Alternate Modes or to carry Authentication messages.

To protect your application and extend its functionalities
- Identification of genuine chargers or accessories using USB PD authentication messages.
- USB PD Alternate Modes and Vendor Defined Messages enable product differentiation.
- Secure firmware upgrade capability.
USB Power Delivery is a Protocol!

To get more power in a robust and safe way!
- Enables advanced and higher voltage and current negotiation (up to 100W)
- Source and Sink establish power contracts that match with their power capabilities and needs (ex: technology of battery used, power budget allocation, number of ports etc)
- Supply voltage (V_{bus}) is fixed (5V,9V,15V,20V) or configurable (Programming Power Supply)
- Dual Role Power devices can swapped power direction (ex: tablet charging a Notebook !)

To extend devices functionalities and create an unique differentiation!
- Use of USB PD Structured Vendor Defined Messages (VDMs) to extend the functionality a device exposes

<table>
<thead>
<tr>
<th>Mode of operation</th>
<th>Nominal voltage</th>
<th>Maximum current</th>
<th>Maximum power</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB PD</td>
<td>Configurable</td>
<td>5 A</td>
<td>100 W</td>
</tr>
<tr>
<td>USB Type-C Current @ 3.0 A</td>
<td>5 V</td>
<td>3.0 A</td>
<td>15 W</td>
</tr>
<tr>
<td>USB Type-C Current @ 1.5 A</td>
<td>5 V</td>
<td>1.5 A</td>
<td>7.5 W</td>
</tr>
<tr>
<td>USB BC 1.2</td>
<td>5 V</td>
<td>Up to 1.5 A</td>
<td>7.5 W</td>
</tr>
<tr>
<td>Default USB Power</td>
<td>USB 3.2</td>
<td>900 mA (x1)</td>
<td>4.5 W</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,500 mA (x2)</td>
<td>7.5 W</td>
</tr>
<tr>
<td></td>
<td>USB 2.0</td>
<td>500mA</td>
<td>2.5 W</td>
</tr>
</tbody>
</table>
Terminology

Power roles
- Source/Provider: Provide Power
- Sink/Consumer: Consume power
- DRP: **Dual Role Power** (can be either Sink or Source)

Data roles
- DFP: Downstream Facing Port (usually a Host / HUB ports)
- UFP: Upstream Facing Port (usually a device)
- DRD: **Dual-Role Data** - typical of "on-the-go" ports

Power role and Data role can swap!
Roles can be dynamically swapped using USB PD

Alternate Mode capabilities enabled via USB PD

Authentication

Fast charging using PPS
Be Connected with STM32G0

World’s First conventional MCU with built-in USB-C and PD interfaces

- Harness to the innovative features of USB-C technology with a standard microcontroller.
- Get more “power” and support new use-cases with USB Power Delivery
- Create differentiation features (authentication, fast charge, FW upgrade)

* UCPD stands for USB Type-C and Power Delivery Interface
Smart Integration

- **UCPD** is a new interface that supports:
 - USB Type-C connector management
 - USB Power Delivery r3.0 communication protocol

- First implementation in STM32G0 series
High Flexibility

Sink, Source and Dual Role Power roles supported

Dual Port - Certified* Solution

- Cortex®-M0+ STM32 platform
- Up to 2 built-in USB-C & PD3.0 interfaces
- 128 Kbytes of Flash – 36 Kbytes of SRAM
- Versatile analog and digital peripherals
- 28,32,48,64-pin packages available

(*) : USB-IF TID 227
STM32G0 UCPD manages the Configuration & Communication channels (CC lines) allowing:

1. Type-C Control
2. USB PD communication

STM32G0 UCPD manages the Configuration & Communication channels (CC lines) allowing:

1. Type-C Control
2. USB PD communication
Optimized Partitioning

Source (charger)
- Device Policy Manager
 - Policy Engine
 - Protocol
 - Physical Layer
 - USB-C Control
 - Source Port
 - Power Source(s)
 - BMC

Sink (device)
- Device Policy Manager
 - Policy Engine
 - Protocol
 - Physical Layer
 - USB-C Control
 - Sink Port
 - Power Source(s)

Connections:
- VBUS
- CC
- BMC
Built-in Features

USB-C control
+ Built-in Rp/Rd resistors
+ CC logic control (CC PHY)
+ CC lines voltage monitoring
+ Dead battery resistors
+ Fast Role Swap signaling

✓ Attach/detach and role management (SNK, SRC, DRP)
✓ Resolve cable orientation and twist connections to establish USB 2.0 /USB 3.x data bus routing
✓ Discover and configure VBUS or VCONN

Integration value represents $0.15

USB PD
+ PD transceiver PHY
+ Digital BMC
+ CRC encoding/decoding

✓ Power contract negotiation (up to 100W)
✓ Power or USB data Role swap
✓ Alternate mode through Vendor Define Messages
✓ PPS, Firmware upgrade, Authentication messages
Typical Block Diagram

Ex: Multi-Port Docking Station

- Port 1 negotiates power contracts with external USB-C power adapter.
- Port 2 supplies plugged accessory and handle HDMI signals request when TV detected, or USB devices inserted into legacy USB connectors.
STM32G0 is PD3.0 compliant device and it supports all PD3.0 features:

- Collision avoidance
- Fast role swap (FRS)
- Programming Power Supply (PPS)
- FW upgrade via CC lines
- Authentication via USB PD
More Security

Integrated security features, ready for tomorrow’s needs

Firmware IP protection

Mutual distrustful

Secret key storage

Secure firmware upgrade

Authentication

User flash

Securable Memory Area

- Execute-only Protection
- Read-out Protection
- Write Protection
- Memory Protection Unit (MPU)
- AES-256 / SHA-256 Encryption
- True Random Number Generator
- Unique ID

Standard user flash by default

Can be secured once exiting
No more access nor debug

Configurable size

Good fit to store critical data
- Critical routines
- Keys
USB-C Authentication Ready

Verify that the device is genuine & embeds the expected profile

- Security messages carry via USB PD3.0
- Compliant solution with timing constraints

- Flexible authentication library.
- Initiator and Responder mode supported
- Secret keys storage in securable memory area or external secure-micro (ST-SAFE)
Smart Ecosystem for Short Time-to-market

Discover and learn

STM32G071B-DISCO

Develop

NUCLEO-G071RB

STM32G081B-EVAL

Configure and Debug
Evaluation board with USB-C daughter board
- USB-C N°1 : DRP / 45W,
- USB-C N°2 : USB-C adapter to type-A and Display Port
Discovering USB-C

STM32G071B-DISCO

- Discover and display USB-C power and feature capabilities of any host.
- Analyze and sniff USB PD data packets and display Vbus voltage, Ibus current
- Debug, configure and inject USB PD3.0 packet using STM32CubeMonitor UCPD.
Easy Configuration

Device selection and peripherals configuration (port 1 or 2 and role of each port: SNK, SRC, DRP)

USB-PD middleware parameters settings

Code generation
PC Software GUI to display and configure parameters of USB PD Middleware
Note: Our STM32G0/UCPD solution has successfully passed the USB-IF Test Procedure for PD 3.0 Controller Silicon || PD 3.0 Power Brick || PD 3.0 Power Bank, and it's posted on the USB-IF Integrator's List. During the certification workshop our STM32G0 evaluation board (Port 1 / DRP role) has been used.