
STSPIN logic core basics

L6470\72, L6480\82 and powerSTEP01

Basic features

The logic core integrated into the L6470\72, L6480\82

and powerSTEP01 ICs provides advanced features for the control of

the stepper motor position:

 Programmable speed profile

 Absolute and relative positioning

 Speed tracking

 External limit switch management

2

20/06/2016Presentation Title

Basic features 3

20/06/2016Presentation Title

Registers

Command

execution logic

Speed

profile

generator

Sine

LUT

Cosine

LUT

To PWM

modulator of

phase A

To PWM

modulator of

phase B

ABS_POS

Configuration

registers

From SPI

interface

From external

limit switch

STATUS

EL_POS

Basic features

The command execution logic converts the high-level commands

from the SPI into indications for the speed profile generator.

4

20/06/2016Presentation Title

Registers

Command

execution logic

Speed

profile

generator

Sine

LUT

Cosine

LUT

To PWM

modulator of

phase A

To PWM

modulator of

phase B

ABS_POS

Configuration

registers

From SPI

interface

From external

limit switch

STATUS

EL_POS

Basic features
The speed profile generator generates the step-clock and direction signal

according to the indications of the command execution logic and the

parameters of the configuration registers.

5

20/06/2016Presentation Title

Registers

Command

execution logic

Speed

profile

generator

Sine

LUT

Cosine

LUT

To PWM

modulator of

phase A

To PWM

modulator of

phase B

ABS_POS

Configuration

registers

From SPI

interface

From external

limit switch

STATUS

EL_POS

Basic features
The absolute position (ABS_POS) and electrical position (EL_POS)

registers are counters controlled by the speed profile generator.

The diagnostic register (STATUS) returns the status of the device.

6

20/06/2016Presentation Title

Registers

Command

execution logic

Speed

profile

generator

Sine

LUT

Cosine

LUT

To current

control of

phase A

To current

control of

phase B

ABS_POS

Configuration

registers

From SPI

interface

From external

limit switch

STATUS

EL_POS

Basic features

The sine and cosine LUT are used to generate the full-step, half-step

and microstepping driving sequences according to the EL_POS value.

7

20/06/2016Presentation Title

Registers

Command

execution logic

Speed

profile

generator

Sine

LUT

Cosine

LUT

To PWM

modulator of

phase A

To PWM

modulator of

phase B

ABS_POS

Configuration

registers

From SPI

interface

From external

limit switch

STATUS

EL_POS

Programmable speed profile

The motion engine allows independent setting of all the

speed profile parameters.

8

20/06/2016Presentation Title

Speed

Time

Maximum speed

from 15.25 to 15610 step/s

(15.25 step/s resolution)

Minimum speed

from 0 to 976 step/s

(0.24 step/s resolution)

Acceleration and Deceleration

from 14.55 to 59590 step/s2

(14.55 step/s2 resolution)

Programmable speed profile

The parameters of the speed profile can be changed only

in specific conditions:

9

20/06/2016Presentation Title

Speed

Time

Maximum speed

can be always changed,

but if a motion is under

execution, the new value

is used at next motion

request

Minimum speed

can be modified only

when the motor is

stopped

Acceleration and

Deceleration

can be modified only

when the motor is

stopped

Positioning commands

The motion engine integrates an absolute position register which

indicates the mechanical position of the motor.

The absolute position register is a 22-bit up/down counter connected

to the step-clock signal generated by the speed profile generator.

10

20/06/2016Presentation Title

h000000

h200000 h1FFFFF

Forward

direction

Reverse

direction

Positioning commands 11

20/06/2016Presentation Title

Name Description Notes

Move
Perform the target number of microsteps in the
requested direction.

Only in stop condition.

GoTo
Reach the target absolute position (ABS_POS
register) using the shortest path.

Only when not BUSY.

GoTo_DIR
Reach the target absolute position (ABS_POS
register) running in the requested direction.

Only when not BUSY.

GoHome
Reach the home position (all zeroes) using the
shortest path.

Only when not BUSY.

GoMark
Reach the position stored into the MARK register

using the shortest path.
Only when not BUSY.

Positioning commands

Move
The Move command makes the motor perform the target number of

steps in the indicated direction.

12

20/06/2016

Positioning commands

GoTo
The GoTo command makes the motor reach the target ABS_POS value using the

shortest path.

GoTo_DIR
The GoTo_DIR command makes the motor reach the target ABS_POS value using the

indicated direction.

13

20/06/2016

Positioning commands 14

20/06/2016

Positioning commands

GoHome
The GoHome command makes the motor reach the zero value of the

ABS_POS register using the shortest path.

It is equivalent to the GoTo(0) command.

GoMark
The GoMark command makes the motor reach the value of the

ABS_POS register stored into the MARK register using the shortest

path.

It is equivalent to the GoTo(MARK) command.

15

20/06/2016

Speed tracking and stop commands 16

20/06/2016Presentation Title

Name Description Notes

Run Reach the target speed in the requested direction.

Always accepted and

immediately executed

(if present, the previous
command is aborted)

SoftStop
Stop the motor in accordance to the programmed
speed profile.

Always accepted and

immediately executed

(if present, the previous
command is aborted)

HardStop Immediately stop the motor (infinite deceleration).

Always accepted and

immediately executed

(if present, the previous
command is aborted)

SoftHiZ
Stop the motor in accordance to the programmed
speed profile and then disable the power bridges.

Always accepted and

immediately executed

(if present, the previous
command is aborted)

HardHiz Immediately disable the power bridges.

Always accepted and

immediately executed

(if present, the previous
command is aborted)

Speed tracking and stop commands

Run
The Run command makes the motor reach the target speed following

the programmed speed profile boundaries (acceleration and

deceleration).

17

20/06/2016Presentation Title

Speed tracking and stop commands

SoftStop
The SoftStop command makes the motor decelerate down to zero

speed.

HardStop
The HardStop command immediately stops the motor.

18

20/06/2016

Time

Speed

SoftStop

HardStop

Speed tracking and stop commands

SoftHiZ
The SoftHiz command executes a SoftStop and then disables the

power bridges.

HardHiZ
The HardHiZ command executes a HardStop and then disables the

power bridges.

19

20/06/2016

External limit switch management 20

20/06/2016

The motion engine can manage the presence of an external limit switch

(mechanical position sensor) providing dedicated motion commands.

Name Description Notes

GoUntil
Reach the target speed in the requested
direction and stop when SW input is forced low
(falling edge).

Always accepted and
immediately executed
(if present, the previous
command is aborted)

ReleaseSW
Run the motor at low speed in the requested
direction and stop when SW input is forced high
(rising edge).

Always accepted and
immediately executed
(if present, the previous
command is aborted)

External limit switch management

A practical example...

21

20/06/2016

External limit switch management

The GoUntil command is executed and the load reaches the limit

switch at programmed speed.

When a falling edge on the SW is detected, the motor is stopped with a

SoftStop and one of this two actions can be automatically executed:

 The absolute position is reset to zero

 The absolute position is stored into the a service register (MARK)

22

20/06/2016Presentation Title

External limit switch management

The ReleaseSW command is executed and the load is moved at low

speed and positioned exactly on the threshold point of the limit switch.

When a rising edge on the SW is detected, the motor is stopped with a

HardStop and one of this two actions can be automatically executed:

 The absolute position is reset to zero

 The absolute position is stored into the a service register (MARK)

23

20/06/2016

Step clock mode 24

20/06/2016

The motion engine can be forced to use an external step clock.

Name Description Notes

StepClock
Switch the device in step-clock mode imposing the

direction.
Only in stop condition.

When the step-clock mode is enabled, the motion engine considers the

motor as stopped and the system is considered at zero speed, so all

the respective parameters/limits depending on the motor status or

speed are applied.

Step clock mode 25

20/06/2016

Registers

Command

execution logic

Speed

profile

generator

Sine

LUT

Cosine

LUT

To PWM

modulator of

phase A

To PWM

modulator of

phase B

ABS_POS

Configuration

registers

From SPI

interface

From external

limit switch

STATUS

EL_POS

External step-clock

source

Configuration and diagnostic commands 26

20/06/2016

In order to set up the motion engine and the other functions of the device, a set of

commands for the reading and the writing of the internal registers is provided.

A command checking the device diagnostic register (STATUS) is also present.

Name Description Notes

SetParam Write the target register
Executed only if the target register
canbe written in the current
condition.

GetParam Read the target register
Always accepted and immediately
executed.

GetStatus
Read the diagnostic register (STATUS)
and release the failure condition

Always accepted and immediately
executed.

ResetPos Reset the absolute position to zero
Executed only if the absolute
positionregister canbe written in
the current condition.

ResetDevice
Reset all the parameters to the default
value (powerstage outputs are forced
in high impedance status)

Always accepted and immediately
executed (HANDLE WITH CARE).

What you can\cannot do

When… You can…

Power stage is disabled
• Read and write all the registers

• Perform any motion command

Power stage is enabled and the motor is

stopped

• Read all registers

• Write most of the registers but the

critical ones (IC configuration, current

control setup, step mode, electrical

position)

• Perform any motion command

Power stage is enabled, the motor is

moving and the BUSY line is high (no

command under execution)

• Read all registers

• Write some registers

• Perform absolute positioning, speed

tracking and stop commands

Power stage is enabled, the motor is

moving and the BUSY line is low

(command under execution)

• Read all registers.

• Write some registers

• Perform speed tracking and stop

commands

27

20/06/2016

SPI interface

20/06/2016

SPI interface

The motion engine commands and the configuration parameters are

sent to the devices through an 8-bit SPI interface.

29

20/06/2016

Tx buffer stores the

response byte which

must be transmitted

Rx buffer loads the

byte of the shift

register at CS rising

edge

Shift register loads the byte

of the Tx buffer at CS falling

edge and performs

the bit-by-bit transmission

(parallel to serial and serial

to parallel converter).

Serial output of the device

is updated at CK falling

edge and it is enabled only

when the CS line is low

SPI Interface and daisy-chaining

The SPI of the motion engine is compliant with the daisy-chain

configuration.

30

20/06/2016Presentation Title

Using this configuration, a single SPI master can drive

multiple SPI slaves.

SPI Interface and daisy-chaining 31

20/06/2016

Driving sequence example with 3 slaves

Step 1: The master starts the communication cycle forcing the CS line low. The

slaves load into the shift register of the SPI interface the response bytes.

Master Slave 1 Slave 2 Slave 3

CS

CK

R1 R2 R3

SPI Interface and daisy-chaining 32

20/06/2016

Step 2: The master transmits the first command byte. At the same time, each slave

transmits the byte into the SPI shift register to the next device of the chain (right side)

and stores into the shift register the byte from the previous one (left side).

At the end of byte transmission, the master receives the response byte of the slave 3.

The CS line is kept low and it is not raised at the end of byte transmission.

Master Slave 1 Slave 2 Slave 3

CS

CK

C1 R1 R2

R3

C1 R1 R2

SPI Interface and daisy-chaining 33

20/06/2016

Step 3: The master transmits the second command byte. At the same time, each slave

transmits the byte into the SPI shift register to the next device of the chain (right side)

and stores into the shift register the byte from the previous one (left side).

At the end of byte transmission, the master receives the response byte of the slave 2.

The CS line is kept low and it is not raised at the end of byte transmission.

Master Slave 1 Slave 2 Slave 3

CS

CK

C2 C1 R1

R2

C2 C1 R1

SPI Interface and daisy-chaining 34

20/06/2016

Step 4: The master transmits the last command byte. At the same time, each slave

transmits the byte into the SPI shift register to the next device of the chain (right side)

and stores into the shift register the byte from the previous one (left side).

At the end of byte transmission, the master receives the response byte of the slave 1.

The CS line is kept low and it is not raised at the end of byte transmission.

Master Slave 1 Slave 2 Slave 3

CS

CK

C3 C2 C1

R1

C3 C2 C1

SPI Interface and daisy-chaining 35

20/06/2016

Final step: The master stops the communication cycle forcing the CS line high.

The slaves acquire the byte stored into the shift register of the SPI interface

and decode it as a command byte.

Master Slave 1 Slave 2 Slave 3

CS

CK

C3 C2 C1

Communication protocol

20/06/2016Presentation Title

General protocol description

 All commands are composed by a single byte.

 After the command byte, an argument could be needed.

 The argument length can vary from 1 to 3 bytes.

 A new command can be sent to the device only when the argument of the
previous command is completed.

 By default, the device returns an all zeroes response for any received byte.

 When a GetParam or a GetStatus command is received, the response bytes
represent the related register value.

 The response length can vary from 1 to 3 bytes.

 The logic acquires and executes the received byte only when the CS line is
forced high.

37

SetParam command 38

7 6 5 4 3 2 1 0

0 0 0 ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0]

The SetParam command byte is composed of the target register address with a

000 header.

According to the target register length, the command has to be followed

by a 1-, 2- or 3-byte argument: it is the value that has to be written into the

target register (MSByte first).

Some argument bits could be ignored according to the register structure.

Command byte

7 6 5 4 3 2 1 0

BYTE 2

BYTE 1

BYTE 0

Argument byte/s

(1) Skip BYTE2 transmission if the length of the register is lower than 3 bytes

T
ra

n
s
m

is
s
io

n
 o

rd
e
r

(2) Skip BYTE1 transmission if the length of the register is lower than 2 bytes

(1)

(2)

GetParam command 39

The GetParam command byte is composed of the target register address with a

001 header.

The command needs no argument.

According to the target register length the command returns a 1-, 2- or 3-

byte response: it is the current value of target register (MSByte first).

7 6 5 4 3 2 1 0

0 0 1 ADDR[4] ADDR[3] ADDR[2] ADDR[1] ADDR[0]

Command byte

Response byte/s (returned by the device)

T
ra

n
s
m

is
s
io

n
 o

rd
e
r

(1)

(2)

(1) The BYTE2 transmission is skipped if the length of the register is lower than 3 bytes

(2) The BYTE1 transmission is skipped if the length of the register is lower than 2 bytes

7 6 5 4 3 2 1 0

BYTE 2

BYTE 1

BYTE 0

GetStatus command 40

The GetStatus command byte is 0xD0.

The command needs no argument.

The command returns a 2-byte response containing the current value of the

STATUS register (MSByte first).

7 6 5 4 3 2 1 0

1 1 0 1 0 0 0 0

Command byte

Response byte/s (returned by the device)

T
ra

n
s
m

is
s
io

n
 o

rd
e
r

7 6 5 4 3 2 1 0

STATUS MSB

STATUS LSB

GetParam and GetStatus sequences 41

If a new GetParam or GetStatus command is sent to the device before the

previous response is completed, the new response replaces the previous one.

GetParam sequence without response interruption

GetParam sequence with response interruption

ResetPos command 42

7 6 5 4 3 2 1 0

1 1 0 1 1 0 0 0

The ResetPos command byte is 0xD8.

The command needs no argument.

Command byte

ResetDevice command 43

7 6 5 4 3 2 1 0

1 1 0 0 0 0 0 0

The ResetDevice command byte is 0xC0.

The command needs no argument.

Command byte

Move command 44

The Move command byte is 0x40 for a reverse direction movement and 0x41

for a forward direction movement (the LSb defines the motion direction).

The command needs a 3-byte argument indicating the target number of

microsteps (or steps) which must be performed (MSByte first).

7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 DIR

Command byte

7 6 5 4 3 2 1 0

NSTEP BYTE 2 (1)

NSTEP BYTE 1

NSTEP BYTE 0

Argument byte/s

T
ra

n
s
m

is
s
io

n
 o

rd
e
r

(1) Bits from 6 to 7 are ignored because NSTEP is a 22 bit value

GoTo command 45

The GoTo command byte is 0x60.

The command needs a 3-byte argument indicating the target absolute

position value (MSByte first).

(1) Bits from 6 to 7 are ignored because POS is a 22 bit value

7 6 5 4 3 2 1 0

0 1 1 0 0 0 0 0

Command byte

7 6 5 4 3 2 1 0

POS BYTE 2 (1)

POS BYTE 1

POS BYTE 0

Argument byte/s

T
ra

n
s
m

is
s
io

n
 o

rd
e
r

GoTo_DIR command 46

The GoTo_DIR command byte is 0x68 for a reverse direction movement and

0x69 for a forward direction movement (the LSb defines the motion direction).

The command needs a 3-byte argument indicating the target absolute position

value (MSByte first).

(1) Bits from 6 to 7 are ignored because POS is a 22 bit value

7 6 5 4 3 2 1 0

0 1 1 0 1 0 0 DIR

Command byte

7 6 5 4 3 2 1 0

POS BYTE 2 (1)

POS BYTE 1

POS BYTE 0

Argument byte/s

T
ra

n
s
m

is
s
io

n
 o

rd
e
r

GoHome command 47

7 6 5 4 3 2 1 0

0 1 1 1 0 0 0 0

The GoHome command byte is 0x70.

The command needs no argument.

Command byte

GoMark command 48

7 6 5 4 3 2 1 0

0 1 1 1 1 0 0 0

The GoMark command byte is 0x78.

The command needs no argument.

Command byte

Run command 49

7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 DIR

The Run command byte is 0x50 for a reverse direction movement and 0x51 for

a forward direction movement (the LSb defines the motion direction).

The command needs a 3-byte argument indicating the target speed value

(MSByte first).

Command byte

7 6 5 4 3 2 1 0

SPEED BYTE 2 (1)

SPEED BYTE 1

SPEED BYTE 0

Argument byte/s

T
ra

n
s
m

is
s
io

n
 o

rd
e
r

(1) Bits from 4 to 7 are ignored because SPEED is a 20 bit value

StepClock command 50

7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 DIR

The StepClock command byte is 0x58 for a reverse direction movement and

0x59 for a forward direction movement (the LSb defines the motion direction).

The command needs no argument.

Command byte

SoftStop command 51

7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0

The SoftStop command byte is 0xB0.

The command needs no argument.

Command byte

HardStop command 52

7 6 5 4 3 2 1 0

1 0 1 1 1 0 0 0

The HardStop command byte is 0xB8.

The command needs no argument.

Command byte

SoftHiZ command 53

7 6 5 4 3 2 1 0

1 0 1 0 0 0 0 0

The SoftHiZ command byte is 0xA0.

The command needs no argument.

Command byte

HardHiZ command 54

7 6 5 4 3 2 1 0

1 0 1 0 1 0 0 0

The HardHiZ command byte is 0xA8.

The command needs no argument.

Command byte

GoUntil command 55

7 6 5 4 3 2 1 0

1 0 0 0 ACT 0 1 DIR

The GoUntil command byte value depends on the target direction of the

movement (bit 0 = low  reverse direction, bit 0 = high  forward direction) and

the target action which should be performed at SW falling edge (bit 3 = low 

reset the absolute position to zero, bit 3 = high  stores the absolute position

into the MARK register).

The command needs a 3-byte argument indicating the target speed value

(MSByte first).

Command byte

7 6 5 4 3 2 1 0

SPEED BYTE 2 (1)

SPEED BYTE 1

SPEED BYTE 0

Argument byte/s

T
ra

n
s
m

is
s
io

n
 o

rd
e
r

(1) Bits from 4 to 7 are ignored because SPEED is a 20 bit value

ReleaseSW command 56

7 6 5 4 3 2 1 0

1 0 0 1 ACT 0 1 DIR

The ReleaseSW command byte value depends on the target direction of the

movement (bit 0 = low  reverse direction, bit 0 = high  forward direction) and

the target action which should be performed at SW falling edge (bit 3 = low 

reset the absolute position to zero, bit 3 = high  stores the absolute position

into the MARK register).

The command needs no argument.

Command byte

Further information and full design support can be found at www.st.com/stspin

http://www.st.com/stspin

