95HF series
NFC / RFID Reader IC

June 2018
The 95HF product is an integrated reader IC for contactless applications with several key features:

- The 95HF series manages frame coding and decoding in Reader / Writer mode (CR95HF / ST95HF) and in Card Emulation mode (only ST95HF) for standard applications such as near field communication (NFC), proximity and vicinity standards (RFID).

- Multiprotocol support @13.56MHz
 - ISO/IEC 14443 Type A and B, ISO/IEC 15693, ISO/IEC 18092, MIFARE® Classic compatible

- Communication interfaces with a Host Controller
 - Serial Peripheral Interface (SPI) Slave Interface 2MHz
 - Universal Asynchronous Receiver/Transmitter (UART) (only for CR95HF)
 - Up to 528-Byte RAM buffer for Reader / Writer & 256-Byte RAM buffer for Card Emulation

- Fast data transfer speed
 - Up to 424 Kb/s (ISO14443-A / ISO18092), up to 848 Kb/s (ISO14443-B), up to 52.6 Kb/s (ISO15693)
Main 95HF Market Segments

Smart Industry
- Maintenance, Factory Automation

Smart Home
- Home Gateway, Gaming

Smart City
- Lighting, Access lock
Key Use Cases

Access control / data reading

- Activate / Deactivate access
- Data programming

Commissioning for Wireless industrial network

- ID Activation
- Parameter settings

Device programming in production

- In-the-box programming
- Simple and flexible

Servicing & Maintenance

- Download records history with contactless
- Update parameters
Use cases
- RFID / NFC reader
- Product identification or authentication
- Product configuration (parameter settings)
- Access Control, Digital Door Locks
- Medical, industrial & production reader equipment

Key Features
- All NFC modes supported (ISO14443, ISO15693, FeliCa)
- Fast data transfer (up to 848kb/s)
- Low power modes

Key Benefits
- Simple implementation / limited BOM
- Easy-to-use evaluation / development kits
- Reference designs, application notes
- Cost effective solution

CR95HF

<table>
<thead>
<tr>
<th>Reader Writer</th>
<th>ISO14443</th>
<th>RAM BUFFER</th>
<th>SPI</th>
<th>UART</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ISO15693</td>
<td>2.7/5.5V</td>
<td>2Mb/s</td>
<td>2.7/5.5V</td>
</tr>
<tr>
<td></td>
<td>FeliCa</td>
<td>RAM BUFFER</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NFC</td>
<td>848kb/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.23W</td>
<td>528-Byte</td>
<td>2Mb/s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Digital output (IRQ)

QFN32
ST95HF NFC / RFID Transceiver

Use cases
- Dynamic data exchange between a NFC phone and a NFC device
 - User settings update, information log download, firmware upgrade…
 - Dynamic wireless pairing with hand-over

Key Features
- Reader-Writer (R/W) and Card Emulation (CE)
- All NFC modes supported (ISO14443, ISO15693, FeliCa)
- Fast data transfer (up to 848kb/s)

Key Benefits
- Simple implementation / limited BOM
- Easy-to-use evaluation / development kits
- Reference design notes, application notes
- Cost effective solution
ST25R HF Readers

<table>
<thead>
<tr>
<th></th>
<th>CR95HF</th>
<th>ST95HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Entry-Level Reader</td>
<td>Entry-Level Reader</td>
</tr>
<tr>
<td>Reader/Writer mode</td>
<td>ISO14443A/B</td>
<td>ISO14443A/B</td>
</tr>
<tr>
<td></td>
<td>ISO15693</td>
<td>ISO15693</td>
</tr>
<tr>
<td></td>
<td>Felica</td>
<td>Felica</td>
</tr>
<tr>
<td>Card emulation mode</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>P2P mode</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RF speed</td>
<td>848kbps</td>
<td>848kbps</td>
</tr>
<tr>
<td>Market certification</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Advanced features</td>
<td>Ind wake-up</td>
<td>Ind wake-up</td>
</tr>
<tr>
<td>Interface</td>
<td>SPI 2Mbps</td>
<td>SPI 2Mbps</td>
</tr>
<tr>
<td></td>
<td>UART 2MHz</td>
<td></td>
</tr>
<tr>
<td>Power supply</td>
<td>2.7V - 5.5V</td>
<td>2.7V - 5.5V</td>
</tr>
<tr>
<td>Output power</td>
<td>0.23W</td>
<td>0.23W</td>
</tr>
<tr>
<td>Temperature range</td>
<td>-25°C to +85°C</td>
<td>-25°C to +85°C</td>
</tr>
<tr>
<td>Package</td>
<td>32-pin QFN (5x5mm)</td>
<td>32-pin QFN (5x5mm)</td>
</tr>
</tbody>
</table>
CR95HF: Operating Modes

- CR95HF has 2 modes operating modes:
 - Wait for Event (WFE):
 - This mode includes four low consumption states:
 - Power-up
 - Hibernate
 - Sleep
 - Tag detector
 - Active mode:
 - Ready: RF is OFF and the CR95HF waits for a command (ProtocolSelect, ...) from external Host
 - Reader: CR95HF communicates actively with a tag or an external host (an MCU, for example)
- CR95HF can switch from one mode to another
ST95HF: Operating Modes

- ST95HF has 2 modes operating modes:
 - **Wait for Event (WFE):**
 - This mode includes four low consumption states:
 - Power-up
 - Hibernate
 - Sleep / Field Detector
 - Tag detector
 - **Active mode:**
 - Ready: RF is OFF and the ST95HF waits for a command (ProtocolSelect, …) from external Host
 - Reader: ST95HF communicates actively with a tag or an external host (an MCU, for example)
 - Card Emulation: The ST95HF can communicate as a Card or Tag with an external reader. The Card or Tag application is located in the Host and communicates with the ST95HF via the SPI interface.

- ST95HF can switch from one mode to another

ST95HF initialization and operating state change
CR95HF / ST95HF: Startup Sequence

- After the power supply is established at power-on, the 95HF waits for a low pulse on the pin IRQ_IN (t_1) before automatically selecting the external interface (SPI) or (UART in case of CR95HF) and entering Ready state after a delay (t_3)

![Diagram showing the startup sequence with time labels t_0, t_1, t_2, t_3 and associated descriptions]

- t_0: initial wake-up delay - 100µs (min)
- t_1: minimum interrupt width - 10µs (min)
- t_2: delay for the serial interface selection – 250ns (typ)
- t_3: High Frequency Oscillator setup time – 10ms (max)
- t_4: V_{PS} ramp-up time from 0V to V_{PS} - 10ms (max)
CR95HF / ST95HF: SPI Interface

• Serial Peripheral Interface (SPI)
 • Polling mode
 • In order to send commands and receive replies, the application SW has to perform 3 steps:
 • Send the command to the 95HF
 • Poll the 95HF until is ready to transmit the response
 • Read the response
 • The application SW should never read data from the 95HF without being sure that the 95HF is ready to send the response. The maximum allowed SPI communication speed is \(f_{\text{SCK}} \) (SPI clock frequency)
 • A control byte is used to specify a communication type and direction:
 • 0x00: Send command to the 95HF
 • 0x03: Poll the 95HF
 • 0x02: Read data from the 95HF
 • 0x01: Reset the 95HF
 • Interrupt mode
 • When the 95HF is configure to use the SPI serial interface, pin IRQ_OUT is used to give additional information to user. When the 95HF is ready to send back a reply, it sends an Interrupt Request by setting a low level on pin IRQ_OUT, which remains low until the host reads the data.
 • The application can use the Interrupt mode to skip the polling stage.
CR95HF: UART Interface

- **Universal Asynchronous Receiver/Transmitter (UART)**
 - The host sends commands to the CR95HF and waits for replies. Polling for readiness is not necessary. The default baud rate is 57600 baud. The maximum baud rate is 2Mbps.

 - When sending commands, no data must be sent if the LEN field is zero.
 - When receiving data from the CR95HF, no data will be received if the LEN field is zero.
CR95HF / ST95HF: Commands

• **Command format**
 • Frame sent by the Host to the 95HF: `<CMD><Len><Data>`
 • Frame sent by the 95HF to the Host: `<RespCode><Len><Data>`
 ➢ These 2 formats are available either in both UART and SPI modes.

• **Command list**
 • **IDN**: provides 95HF short information and revision
 • **ProtocolSelect**: selects and configure the communication protocol
 • **SendRecv**: sends RF commands and receives tag response
 • **Listen (ST95HF used)**: Listens for data using previously selected protocol (used in CE mode)
 • **IDLE**: sets the 95HF in a low power consumption mode “Wait for Event mode” (Power-up, Hibernate, Sleep or tag detection) and specifies the wake-up source
 • **RdREG**: allows to read the Wake-up register and the Analog configuration register
 • **WrREG**: allows to write the Analog configuration register
 • **BaudRate**: sets the UART baud rate
 • **Echo**: simple serial interface echo command
• **VFQFPN32 Package** – 5.0 x 5.0mm
95HF Support Eco-system

Easy-to-use and customer-oriented

- STM32Nucleo hardware ecosystem
- Discovery kit STM32 based
- Antenna e-design tool
- Schematic, BOM, Gerber
- STM32Cube software ecosystem
- e2e community
- PC software tool ST25 SDK
- Documentation

STM32Nucleo
Discovery kit
Antenna e-design tool
Schematic, BOM, Gerber
STM32Cube
e2e community
PC software tool
Documentation
CR95HF Evaluation Boards

CR95HF demo board
- CR95HF NFC multi-protocol reader IC
- 47x34 mm 2 turns double layer antenna etched on PCB and associated tuning circuit
- STM32F1 microcontroller
- USB & JTAG connectors

CR95HF Nucleo shield board
- CR95HF NFC multi-protocol reader IC
- 47x34mm 4 turns antenna etched on PCB
- SPI (Slave interface) or UART
- Up to 528-byte command/reception buffer
- Optimized power management
- Powered through Arduino™ UNO R3 connector

ST95HF discovery kit
- ST95HF NFC transceiver IC
- 47x34mm 4 turns antenna
- STM32F1 micro-controller
- LCD color display + Joystick + LEDs
- USB & JTAG connectors
ST25R Part Numbers

<table>
<thead>
<tr>
<th>Package</th>
<th>Features</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry-Level HF Readers</td>
<td>QFN32</td>
<td>Reader / Writer (R/W) R/W & Card emulation (CE)</td>
</tr>
</tbody>
</table>
Thank You!

Solutions for NFC / RFID Tags and Readers