USB Power Delivery and Type-C
USB Type-C Overview

USB Power Delivery specification introduces USB Type-C receptacle, plug and cable; they provide a smaller, thinner and more robust alternative to existing USB interconnect. Main features are:

- Enable new and exciting host and device form-factors where size, industrial design and style are important parameters
- Work seamlessly with existing USB host and device silicon solutions
- Enhance ease of use for connecting USB devices with a focus on minimizing user confusion for plug and cable orientation
USB Type-C Overview

Type-C Features

• Enable **new** and exciting host and device **form-factors** where size, industrial design and style are important parameters

• Work **seamlessly with existing USB** host and device silicon solutions

• **Enhance ease of use** for connecting USB devices with a focus on **minimizing user confusion** for plug and cable orientation

• Simple Power Delivery implementation (BMC)

<table>
<thead>
<tr>
<th>Mode of Operation</th>
<th>Nominal Voltage</th>
<th>Maximum Current</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB 2.0</td>
<td>5 V</td>
<td>500 mA</td>
<td>Default current, based on definitions in the base specifications</td>
</tr>
<tr>
<td>USB 3.1</td>
<td>5 V</td>
<td>900 mA</td>
<td></td>
</tr>
<tr>
<td>USB BC 1.2</td>
<td>5 V</td>
<td>Up to 1.5 A</td>
<td>Legacy charging</td>
</tr>
<tr>
<td>USB Type-C @ 1.5 A</td>
<td>5 V</td>
<td>1.5 A</td>
<td>Supports high power devices</td>
</tr>
<tr>
<td>USB Type-C @ 3.0 A</td>
<td>5 V</td>
<td>3 A</td>
<td>Supports higher power devices</td>
</tr>
<tr>
<td>USB PD</td>
<td>Configurable up to 20 V</td>
<td>Configurable up to 5 A</td>
<td>Directional control and power level management</td>
</tr>
</tbody>
</table>
USB has evolved from a data interface capable of supplying limited power to a primary provider of power with a data interface.

- **Power Delivery**: More Power with USB Power Delivery (100W)
- **Type-C**: More Flexibility with a new reversible USB-C connector
- **Alternate Mode**: More Protocols (Display Port, HDMI, VGA, Ethernet…)
- **USB IF**: More Speed with USB 3.1 (10 Gbit/s)
USB PD → Power Profiles
as of today per USB PD release 2.0

Source capabilities organized as profiles

- PROFILE 0
 Reserved

- PROFILE 1
 5V @ 2A
 10W
 Default start-up profile

- PROFILE 2
 5V @ 2A, 12V @ 1.5A
 18W

- PROFILE 3
 5V @ 2A, 12V @ 3A
 36W

- PROFILE 4
 5V @ 2A, 12V, 20V @ 3A
 60W
 Limit for Micro-B/AB connector

- PROFILE 5
 5V @ 2A, 12V, 20V @ 5A
 100W
 Limit for Standard A/B connector

- Additional capabilities possible as optional extensions to standard pr
<table>
<thead>
<tr>
<th>Power Adapter Examples</th>
<th>Permitted Standard</th>
<th>Include optionality(1)</th>
<th>Not permitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>“15 W”</td>
<td>5 V @ 3 A (15 W)</td>
<td>5 V @ 3 A (15 W)</td>
<td>5 V @ 2 A (10 W)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 V @ 1.8 A (15 W)</td>
<td>8 V @ 1.8 A (15 W)</td>
</tr>
<tr>
<td>“27 W”</td>
<td>5 V @ 3 A (15 W)</td>
<td>5 V @ 3 A (15 W)</td>
<td>5 V @ 3 A (15 W)</td>
</tr>
<tr>
<td></td>
<td>9 V @ 3 A (27 W)</td>
<td>9 V @ 3 A (27 W)</td>
<td>9 V @ 3 A (27 W)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 V @ 2.25 A (27 W)</td>
<td>12 V @ 3 A (36 W)</td>
</tr>
<tr>
<td>“45 W”</td>
<td>5 V @ 3 A (15 W)</td>
<td>5 V @ 3 A (15 W)</td>
<td>5 V @ 3 A (15 W)</td>
</tr>
<tr>
<td></td>
<td>9 V @ 3 A (27 W)</td>
<td>9 V @ 3 A (27 W)</td>
<td>9 V @ 3 A (27 W)</td>
</tr>
<tr>
<td></td>
<td>15 V @ 3 A (45 W)</td>
<td>15 V @ 3 A (45 W)</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 V @ 2.8 A (45 W)</td>
<td>16 V @ 2.8 A (45 W)</td>
</tr>
<tr>
<td>“60 W”</td>
<td>5 V @ 3 A (15 W)</td>
<td>5 V @ 3 A (15 W)</td>
<td>5 V @ 3 A (15 W)</td>
</tr>
<tr>
<td></td>
<td>9 V @ 3 A (27 W)</td>
<td>9 V @ 3 A (27 W)</td>
<td>9 V @ 3 A (27 W)</td>
</tr>
<tr>
<td></td>
<td>15 V @ 3 A (45 W)</td>
<td>15 V @ 4 A (60 W)</td>
<td>15 V @ 5 A (75 W)</td>
</tr>
<tr>
<td></td>
<td>20 V @ 3 A (60 W)</td>
<td>20 V @ 3 A (60 W)</td>
<td>20 V @ 3 A (60 W)</td>
</tr>
</tbody>
</table>

(1) Making use of optionality is not encouraged as it diminishes interoperability – should only be utilized in specific use cases where a local optimization is of value and the standard voltages are still supported by Source & Sink.
Type-C Pin Outs Functions

Receptacle

High Speed Data Path (RX for USB 3.1, or reconfigured in Alternate Mode)

<table>
<thead>
<tr>
<th>A1</th>
<th>A2</th>
<th>A3</th>
<th>A4</th>
<th>A5</th>
<th>A6</th>
<th>A7</th>
<th>A8</th>
<th>A9</th>
<th>A10</th>
<th>A12</th>
<th>A12</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>TX1+</td>
<td>TX1-</td>
<td>VBUS</td>
<td>CC1</td>
<td>D+</td>
<td>D-</td>
<td>SBU1</td>
<td>VBUS</td>
<td>RX2-</td>
<td>RX2+</td>
<td>GND</td>
</tr>
</tbody>
</table>

High Speed Data Path (TX for USB 3.1, or reconfigured in Alternate Mode)

<table>
<thead>
<tr>
<th>B12</th>
<th>B11</th>
<th>B10</th>
<th>B9</th>
<th>B8</th>
<th>B7</th>
<th>B6</th>
<th>B5</th>
<th>B4</th>
<th>B3</th>
<th>B2</th>
<th>B1</th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>RX1+</td>
<td>RX1-</td>
<td>VBUS</td>
<td>SBU2</td>
<td>D-</td>
<td>D+</td>
<td>CC2</td>
<td>VBUS</td>
<td>TX2-</td>
<td>TX2+</td>
<td>GND</td>
</tr>
</tbody>
</table>

USB 2.0 Interface

Secondary Bus

Cable Bus Power

Cable Ground

Configuration Channel

Two pins on the USB Type-C receptacle, CC1 and CC2, are used in the discovery, configuration and management of connections across USB type-C cable.
Type-C Pin Outs Functions

Plug

<table>
<thead>
<tr>
<th>Function</th>
<th>Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Speed Data Path</td>
<td>A12</td>
<td>A11</td>
<td>A10</td>
<td>A9</td>
<td>A8</td>
<td>A7</td>
<td>A6</td>
<td>A5</td>
<td>A4</td>
<td>A3</td>
<td>A2</td>
</tr>
<tr>
<td>USB 2.0 Interface</td>
<td>GND</td>
<td>RX2+</td>
<td>RX2-</td>
<td>VBUS</td>
<td>SBU1</td>
<td>D-</td>
<td>D+</td>
<td>CC</td>
<td>VBUS</td>
<td>TX1-</td>
<td>TX1+</td>
</tr>
<tr>
<td>High Speed Data Path</td>
<td>B1</td>
<td>B2</td>
<td>B3</td>
<td>B4</td>
<td>B5</td>
<td>B6</td>
<td>B7</td>
<td>B8</td>
<td>B9</td>
<td>B10</td>
<td>B11</td>
</tr>
<tr>
<td>USB 2.0 Interface</td>
<td>GND</td>
<td>TX2+</td>
<td>TX2-</td>
<td>VBUS</td>
<td>VCONN</td>
<td>SBU2</td>
<td>VBUS</td>
<td>RX1-</td>
<td>RX1+</td>
<td>GND</td>
<td></td>
</tr>
</tbody>
</table>

On a standard USB Type-C cable, only a single CC wire within each plug is connected through the cable to establish signal orientation.

The other CC pin is repurposed as V_{CONN} for powering electronics.

Also, only one set of USB 2.0 D+/D- wires are implemented.

USB 2.0 Interface

- **D-** and **D+** wires are used for high-speed data transmission.
- **CC** wire is used for configuration and power delivery.

Configuration Channel

- **GND** wire is used for ground connections.

Secondary Bus

- **B1** to **B12** pins are used for secondary data transmission.

Cable Bus Power

- **B1** to **B12** pins are used for cable bus power connections.

Cable Ground

- **B1** to **B12** pins are used for cable bus ground connections.
Communication across the channel uses Biphase Mark Coding (BMC) over CC in Type C connector.
USB Type-C CC Connections

DFP - Source

- Detect attach/detach of USB ports, e.g. a DFP to a UFP
- **Resolve cable orientation and twist connections** to establish USB data bus routing
- Establish DFP and UFP roles between two attached ports
- Discover and configure VBUS
- USB Power Delivery Communication

UFP - Sink

4 possible CC configurations

- (CC1)
- (CC2)

Image of a USB Type-C CC Connections diagram showing DFP and UFP connections, with labels for DFP (Source) and UFP (Sink). The diagram illustrates 4 possible CC configurations and includes notes on connection detection, detection and muxes control, and the establishment of roles between attached ports.
USB PD Stack & Policy

Policies

System Policy Manager (system wide) is optional. It monitors and controls System Policy between various Providers and Consumers connected via USB.

Device Policy Manager (one per Provider or Consumer) provides mechanisms to monitor and control the USB-PD within a particular Provider or Consumer. It enables local policies to be enforced across the system by communication with the System Policy Manager.

Policy Engine (one per Source or Sink Port) interacts directly with the Device Policy Manager in order to determine the present local policy to be enforced.

Protocol Layer

The **Protocol Layer** forms the messages used to communicate information between a pair of ports. It receives inputs from the Policy Engine indicating which messages to send and indicates the responses back to the Policy Engine.

Physical Layer

It is responsible for sending and receiving messages across either the V_{BUS} or CC wire. It consists of a transceiver that superimposes a signal (BFSK on V_{BUS} or BMC on CC) on the wire.

It is responsible for managing data on the wire and for collision avoidance and detects errors in the messages using a CRC.
Product Portfolio

A complete offer to “lean in” USB PD Ecosystem

- SuperSpeed Switch
- USB Power Delivery Controller
- Power Management
- Type-C connector
- PROTECTIONS
- PHY - Type-C interface

Host, USB 3.1 Controller Access Point (optional)
Profile 1-2-3
Power Source Building Blocks

- Flyback Controller: STCH02
- Power MOSFET
- Main transformer
- Pulse transformer
- Optocoupler communication
- Rectifier
- CC/CV SEA01
- Feedback Network Selection
- USB PD Interface IC
- DC/DC Post regulation
- Multi Port case: Post regulation for each port

- It covers profile 1-2-3 from 5W to 45W
- High Efficiency
- Low EMI design: intelligent Jitter for EMI suppression
Primary Side Controller: Adapters up to 45W

Features

- Proprietary Constant current output regulation (CC) with no opto-coupler
- 700V embedded HV start-up circuit
- Quasi-resonant (QR) Zero Voltage Switching (ZVS) operation
- Valley skipping at medium-light load and advanced burst mode operation at no-load for under 10mW consumption
- Accurate adjustable output OVP

Benefits

- Low part count. BOM reduction thanks to an extensive features integration
- Exceeding 5 stars: No-Load power < 10mW
 - HV start-up zero power consumption
 - Advanced burst-mode operation
- Flexibility: suitable for adapters from 5W to 40W
- High Efficiency
- Low EMI design: intelligent jitter for EMI suppression
Profile 4, 5
Power Source Building Blocks

High Voltage
- PFC L6563H
- LLC L6699
- Power MOSFET
- PFC-LLC Integrated New solution STCMB1

Low Voltage
- main transformer
- Power MOSFET
- Synchronous Rectification SRK2001
- CC/CV SEA01

Post Regulation
- DC/DC Post regulation
- USB PD Interface IC
- 1 per port
Transition Mode PFC controller

Features

- 700V High Voltage Start-up circuit
- Fast bidirectional input voltage feedforward
- Adjustable OVP
- AC Brownout Detection
- Tracking boost function
- Inductor saturation protection
- Proprietary THD optimizer circuit
- Interface for cascaded converters
- -600mA/+800mA gate driver

Datasheet: available on www.st.com

- Low steady state ripple and current distortion with limited undershoot or overshoot of the pre-regulator’s output thanks to new input voltage feed-forward implementation
- Reduced THD of the current
- High reliability thanks to a full set of protections
- HV start-up significantly reduces consumption compared to standard discrete circuit solutions
- Facilitated cooperation with cascaded DC-DC converter thanks to several power management & housekeeping functions
High power adapters 90W to 250W

Series-resonant half-bridge topology

Features
- Self adjusting adaptive dead time
- Anti-capacitive mode protection
- Two-level OCP
 - Frequency shift
 - Immediate shutdown
- Safe-start procedure
- Burst-mode operation at light load
- Brown-out protection
- Interface with PFC controller

Benefits
- High efficiency:
 - Reduced internal consumption (Iq=1mA)
 - Adaptive dead time allows design optimization to achieve ZVS with lower magnetizing current
- Improved reliability and lifetime thanks to anti-capacitive protection and smooth start-up circuit
- Reduced audible noise when entering burst-mode operation thanks to smooth restart feature

Datasheet: available on www.st.com
USB-PD

Power MOSFET product families

<table>
<thead>
<tr>
<th>Voltage Range</th>
<th>Product Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>800V-1500V</td>
<td>K5</td>
<td>Flyback</td>
</tr>
<tr>
<td>600V-650V</td>
<td>M2</td>
<td>Price/Performance</td>
</tr>
<tr>
<td>40-120V</td>
<td>F7</td>
<td>Sync Rec</td>
</tr>
</tbody>
</table>

Price/Performance

Premium efficiency
VHV PowerMOSFETs

Features
- Unmatched $R_{DS(on)}$ at very high BVDSS 800-950V-1050V
- Ultra-Low Q_G and high switching speed
- Extremely low thermal resistance
- High quality & reliability

Benefits
- Lower on-state conduction losses
- Best switching losses
- High efficiency with lower design complexity
- Ultra small Form factor

Product range example

<table>
<thead>
<tr>
<th>Part Number</th>
<th>B_{VDss}</th>
<th>$R_{DS(on)}$</th>
<th>I_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>STB13N80K5</td>
<td>800V</td>
<td>0.45Ω</td>
<td>12A</td>
</tr>
<tr>
<td>STD8N80K5</td>
<td>800V</td>
<td>0.95Ω</td>
<td>6A</td>
</tr>
<tr>
<td>STD9N80K5</td>
<td>800V</td>
<td>0.90Ω</td>
<td>7A</td>
</tr>
</tbody>
</table>

Flyback Architecture

Outstanding Form Factor

STL8N80K5
800V, 950mOhm, 13nC
PowerFLAT5x6
Power MOSFET

PFC & LLC Architecture

Product range example

<table>
<thead>
<tr>
<th>PFC</th>
<th>V_{DSS}</th>
<th>R_{DS(on)}</th>
<th>I_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>STF24N60M2</td>
<td>600V</td>
<td>0.190Ω</td>
<td>18A</td>
</tr>
<tr>
<td>STF25N60M2-EP</td>
<td>600V</td>
<td>0.188Ω</td>
<td>18A</td>
</tr>
<tr>
<td>STF20N60M2-EP</td>
<td>600V</td>
<td>0.278Ω</td>
<td>13A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LLC</th>
<th>V_{DSS}</th>
<th>R_{DS(on)}</th>
<th>I_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>STF9N60M2</td>
<td>600V</td>
<td>0.750Ω</td>
<td>5.5A</td>
</tr>
<tr>
<td>STF15N60M2-EP</td>
<td>600V</td>
<td>0.378Ω</td>
<td>11A</td>
</tr>
<tr>
<td>STF111N60M2-EP (e.s.available)</td>
<td>600V</td>
<td>0.595Ω</td>
<td>8.0A</td>
</tr>
</tbody>
</table>

- Up to 30% lower Q_g vs main competition (equivalent die size)
- 400 – 700V BV_{DSS} rated
- Back-to-Back G-S Zener protected

Features
- Reduced switching losses
- Enhanced immunity vs ESD & Vgs spikes
- Technologies dedicated to specific topology

Product range example

STL24N60M2
600V, 210mΩ, 28nC
PowerFLAT8x8
Power MOSFETs
Synchronous Rectification

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Voltage</th>
<th>Ron</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>STL260N4LF7</td>
<td>40V</td>
<td><1.1mΩ</td>
<td>5.5A</td>
</tr>
<tr>
<td>STL200N45LF7</td>
<td>40V</td>
<td><1.8mΩ</td>
<td>11A</td>
</tr>
</tbody>
</table>

- **Features**
 - Very low $R_{DS(on)}$;
 - Proper C_{OSS};
 - Low V_{SD} and Q_{RR} with soft recovery body-drain diode
 - LL V_{th}

- **Benefits**
 - Efficiency improvement due low conduction losses and to static and dynamic diode ones, minimized switching noise and Vds spike at turn OFF
 - Easy driving features
Protections
ESD/CMF/ECMF

High flexibility for the Designers needs to find best compatibilities

- **ESD Protection**
 - Robustness: Surge capability up to 25kV and low clamping
 - Flexibility & Integration: Single or multi lines products
 - Transparency: High bandwidth for high speed signals

- **ESD + CMF**
 - High quality of protection
 - Unique filtering shape capabilities
 - Serial Interface: USB2.0/3.0, MIPI, DP, HDMI
 - Filters radiated noise and limits antenna de-sense

- **ECMF = ESD + CMF integrated**
 - High quality of protection
 - High integration: 1mm2 / 2 differential lines
 - Serial Interface: USB2.0/3.0, MIPI, DP, HDMI
 - Filters radiated noise and limits antenna de-sense
Controller & Interface

Value proposition: offer flexible and scalable solutions for designers

USB PD Controller
MCU Based
STM32
- FW USB PD Stack
- Adaptability versus USB PD specification new release
- PHY-Type-C interface companion chip
- Market proven solution

PHY -Type-C Interface
STUSB16
- Dual Role Type-C Interface with BMC
- Dual role capability
- Configurable start-up profiles
- Interface with external MCU through I²C
- Accessory support

USB PD Hard Coded Controller
STUSB4x
- HW USB PD Stack
- Flexible HW-SW partitioning
- Autorun or Micro based
- Easy Dead Battery Support
- P2P with PHY-Type-C interface
MCU Overview:

STM32F0 HW resources

- Transmission uses: TIM14, SPI1, DMA, GPIO
- Reception uses: TIM3, DMA, 1 comparator
- TIM2 is used to time-schedule tasks
- Embedded ADC to detect device on the CC bus and perform power measurements
- CRC to evaluate message’s CRC
- Standard GP I/Os to control Vconn, Load switch, Vbus discharge switch, Vout selection (primary feedback…

<table>
<thead>
<tr>
<th>Project</th>
<th>Flash Memory</th>
<th>RAM Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provider only</td>
<td>25.5 kB</td>
<td>4.4 kB</td>
</tr>
<tr>
<td>Provider only (RTOS)</td>
<td>29.0 kB</td>
<td>7.3 kB</td>
</tr>
<tr>
<td>Provider/Consumer DRP (RTOS)</td>
<td>30.2 kB</td>
<td>7.3 kB</td>
</tr>
</tbody>
</table>
USB-PD Interface: STUSB16xx

Features

- Dual Role Type-C Interface with BMC
- Dual role capability
- Configurable start-up profiles
- 600mA VCONN
- 120uA Idle current measured
- Interface with external MCU through I²C+Interrupt
- Integrated Voltage monitoring
- Integrated V_BUS discharge path
- Accessory support
- Dual Power supply:
 - \(V_{SYS} = 3.3V \)
 - \(V_{DD} \) [4.6V; 22V] (from V_BUS)

Benefits

- Low Pin count
- Integrated BMC transceiver
- Simple, Robust
- Configurable, Flexible
- Optimized for Portable applications
- P2P with STUSB4x

https://www.st.com/usb-type-c
USB-PD Type-C Solution

• AC/DC Multi-output 36W Converter
 • Based on STCH02 QR controller
 • Multiple Output voltages (5V, 9V, 12V)

• STM32 Embedded Software Solution
 • to interface with USB-C connector
 • to handle the USB Power Delivery protocol
 • cost effective and popular 32bit Microcontroller

• HW platform based on X-Nucleo Shield
Block Diagram

- Power Connector
- Internal Power Block
- Analog Front End
- Type-C Interface
- STM32Fx
- NUCLEO + MORPHO CONNECTORS
- NUCLEO + X-NUCLEO-USBPDM1
- Modular Approach
- External Power Supply Board
On board functionalities activable if not available on external power supply board.

USB 2.0 hooked to Type-C on Port 0, if available on STM32.
AC/DC 36W 5/9/12V

Efficiency and no Load Consumption

Efficiency @ 115Vac

<table>
<thead>
<tr>
<th>Load</th>
<th>Iout [A]</th>
<th>5V</th>
<th>9V</th>
<th>12V</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>3.000</td>
<td>83.18%</td>
<td>85.17%</td>
<td>85.41%</td>
</tr>
<tr>
<td>75%</td>
<td>2.250</td>
<td>80.61%</td>
<td>85.34%</td>
<td>85.53%</td>
</tr>
<tr>
<td>50%</td>
<td>1.510</td>
<td>80.20%</td>
<td>84.71%</td>
<td>84.61%</td>
</tr>
<tr>
<td>25%</td>
<td>0.750</td>
<td>80.92%</td>
<td>85.17%</td>
<td>81.67%</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>81.23%</td>
<td>84.45%</td>
<td>84.30%</td>
</tr>
</tbody>
</table>

Efficiency @ 230Vac

<table>
<thead>
<tr>
<th>Load</th>
<th>Iout [A]</th>
<th>5V</th>
<th>9V</th>
<th>12V</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>3.000</td>
<td>82.42%</td>
<td>85.56%</td>
<td>86.35%</td>
</tr>
<tr>
<td>75%</td>
<td>2.250</td>
<td>81.44%</td>
<td>84.65%</td>
<td>85.47%</td>
</tr>
<tr>
<td>50%</td>
<td>1.510</td>
<td>80.65%</td>
<td>83.44%</td>
<td>84.08%</td>
</tr>
<tr>
<td>25%</td>
<td>0.750</td>
<td>77.89%</td>
<td>80.36%</td>
<td>80.05%</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>80.60%</td>
<td>83.50%</td>
<td>84%</td>
</tr>
</tbody>
</table>

Input voltage Efficiency @ 10% Pout

<table>
<thead>
<tr>
<th>Voltage</th>
<th>5V</th>
<th>9V</th>
<th>12V</th>
</tr>
</thead>
<tbody>
<tr>
<td>115VAC</td>
<td>76.29%</td>
<td>76.68%</td>
<td>73.28%</td>
</tr>
<tr>
<td>230VAC</td>
<td>73.09%</td>
<td>73.06%</td>
<td>70.54%</td>
</tr>
</tbody>
</table>

Input voltage No load consumption 5V

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>115Vac</td>
<td>11mW</td>
</tr>
<tr>
<td>230Vac</td>
<td>12mW</td>
</tr>
</tbody>
</table>

- Please note that the values of efficiency are penalized by the power losses on secondary rectifier diode.
- The efficiency can be improved around 4% using synchronous rectification.

- 36W 5/9/12V board
AC/DC 36W 5/9/12V

Schematic
MCU + Discrete AFE Overview

- STM32 Embedded Software Solution to interface with USB-C connector and to handle the USB Power Delivery protocol.
 - **Hardware**: Entry level Cortex-M0 based STM32F0 microcontroller series with simple discrete Analog Front End PHY
 - **Embedded Software**: USB-C & PD Middleware

Best device for 2 ports management: STM32F051 in 48 pin package

Best device for 1 port management: STM32F051/31 in 20/32 pin package
X-NUCLEO-USBPDM1

• USB-C Power Delivery expansion board with two USB Type-C connectors for two port management.

• Main features:
 • Two Dual Role Ports
 • Dedicated Power Connector to interface with external Power Supply board providing different profiles (up to 20V and 5A) and \(V_{CONN} \)
 • On-board Power management able to provide internal needed voltages from \(V_{BUS} \)
 • Six debug LEDs
 • USB 2.0 interface capability available on one port
 • Compatible with STM32 Nucleo boards
 • Equipped with ST morpho connectors
X-NUCLEO-USBPDM1

Board Details

- Power Connector for external Power Source
- User LEDs
- Local Power Management
- Type-C Receptacle Port 1
- Power Role Configuration Port 1
- CC AFE and VCONN Switch Port 1
- VBUS Port 1 Switch and discharge
- VBUS Port 1 Current/Voltage sensing
- Connector for USB Load Port 1
- Type-C Receptacle Port 0 (USB2.0 Capability)
- Power Role Configuration Port 0
- CC AFE and VCONN Switch Port 0
- VBUS Port 0 Switch and discharge
- VBUS Port 0 Current/Voltage sensing
- Connector for USB Load Port 0