STM32L5 MCU series excellence in ultra-low-power with more security
<table>
<thead>
<tr>
<th>STM32L0</th>
<th>STM32L1</th>
<th>STM32L4</th>
<th>STM32L4+</th>
<th>STM32L5</th>
<th>STM32U5</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 CoreMark</td>
<td>93 CoreMark</td>
<td>273 CoreMark</td>
<td>409 CoreMark</td>
<td>443 CoreMark</td>
<td>651 CoreMark</td>
</tr>
<tr>
<td>32 MHz Cortex-M0+</td>
<td>32 MHz Cortex-M3</td>
<td>80 MHz Cortex-M4</td>
<td>120 MHz Cortex-M4</td>
<td>110 MHz Cortex-M33</td>
<td>160 MHz Cortex-M33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STM32L0+</th>
<th>STM32L1+</th>
<th>STM32L4+</th>
<th>STM32L5+</th>
<th>STM32U5+</th>
</tr>
</thead>
<tbody>
<tr>
<td>183 CoreMark</td>
<td>213 CoreMark</td>
<td>409 CoreMark</td>
<td>443 CoreMark</td>
<td>651 CoreMark</td>
</tr>
<tr>
<td>48 MHz Cortex-M0+</td>
<td>64 MHz Cortex-M4</td>
<td>48 MHz Cortex-M0+</td>
<td>48 MHz Cortex-M0+</td>
<td>48 MHz Cortex-M0+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STM32F2</th>
<th>STM32F4</th>
<th>STM32F7</th>
<th>STM32H7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 398 CoreMark</td>
<td>Up to 608 CoreMark</td>
<td>1082 CoreMark</td>
<td>Up to 3224 CoreMark</td>
</tr>
<tr>
<td>120 MHz Cortex-M3</td>
<td>180 MHz Cortex-M4</td>
<td>216 MHz Cortex-M7</td>
<td>Up to 550 MHz Cortex-M7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STM32MP1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4158 CoreMark</td>
</tr>
<tr>
<td>650 MHz Cortex-M0+</td>
</tr>
<tr>
<td>A7</td>
</tr>
</tbody>
</table>

Optimized for mixed-signal Applications
Main concerns for embedded design

- **Security**
 - Increase the robustness against attacks

- **Low power consumption**
 - Long life time, small battery size

- **Integration, performance, ecosystem**
 - Best fit versus the application requirements
First STM32 based on Cortex-M33

STM32L5 is the answer

• More security with TrustZone and ST security implementation
 • HW to increase resistance to logical and board level attack

• Lower Power consumption
 • STM32 ultra-low-power technology

• Integration, performance, ecosystem
 • More performance, choice of packages and wide ecosystem
Security: TrustZone for isolation

ST implementation provides a high granularity of isolation

- Each GPIO or peripheral, DMA channel, clock configuration register, ART or small part of Flash memory or SRAM can be configured as **trusted** or **un-trusted**

- **Full isolation** of trusted and non-trusted worlds
Security: TrustZone for isolation

TrustZone provides full isolation

Example of IoT application implementation

STM32L5

Un-Trusted

Un-Trusted Application

Trusted Application

Trusted

RF

Sensors
Security: TrustZone and privileged zones

- More partitioning
- Possibility to separate the trusted and un-trusted area with privileged and un-privileged zone
- Strong granularity to define each part of memory or each peripheral, DMA channel as privileged or un-privileged
TrustZone: example

STM32L5

Un-Trusted & Privileged

Un-Trusted

RTOS

Trusted & Privileged

Trusted

Secured Keys

Secured Boot

Un-Trusted & Un-Privileged

Un-Trusted

RF Stack

Un-Privileged

RF

Trusted & Un-Privileged

Secured data

Sensor IP

Sensors

Secured Keys

Boot
A full set of security

Encryption
- AES-128/256 Encryption
- SHA-256 Authentication
- Public Key Acceleration (PKA): for RSA, Diffie-Hellmann or ECC (Elliptic Curve Cryptography)
- Certified Crypto library
- True Random Number Generator
- Unique ID
- OTP Zone

Decryption

Authentication

STM32L5

Memory & IP Protection
- Active and static Anti-tamper detection
- Memory Protection Unit (MPU)
- Secure Boot
- Read and Write Protection
- HDP (Hide Protect)
- Unique Boot Entry
- OTFDEC (On-the-fly decryption) on Octo SPI to protect external memory
- JTAG fuse
- TrustZone
- SFI (Secure Firmware Installation)
• STM32L5 reuses the STM32L4/L4+ technology achieving **best-in-class** power consumption

• STM32L5 integrates an optional **SMPS** (DC/DC buck voltage regulator) which can be enabled/disabled on the fly to avoid external noise for external RF or data acquisition.

• Proven by EEMBC test results:
 - **370 ULPMark-CP**
 - **54 ULPMark-PP**
Ultra-low-power modes

Best power consumption numbers with full flexibility

<table>
<thead>
<tr>
<th>Wake-up time</th>
<th>(V_{BAT})</th>
<th>Tamper detection: 3 I/Os, RTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 (\mu)s</td>
<td>3 nA / 187 nA*</td>
<td></td>
</tr>
<tr>
<td>14 (\mu)s</td>
<td>17 nA / 122 nA*</td>
<td></td>
</tr>
<tr>
<td>14 (\mu)s</td>
<td>108 nA / 222 nA*</td>
<td></td>
</tr>
<tr>
<td>14 (\mu)s</td>
<td>Standby + 4-Kbyte RAM 272 nA / 386 nA*</td>
<td>Wake-up sources: + BOR, IWDG</td>
</tr>
<tr>
<td>5 (\mu)s</td>
<td>Stop 2 (full retention: 256-Kbyte RAM) 3.0 (\mu)A / 3.1 (\mu)A*</td>
<td>Wake-up sources: + all I/Os, PVD, COMPs, I²C, LPUART, LPTIM</td>
</tr>
<tr>
<td>6 cycles</td>
<td>Sleep</td>
<td>26 (\mu)A / MHz</td>
</tr>
<tr>
<td></td>
<td>Run up to 110 MHz</td>
<td>Down to 62 (\mu)A / MHz</td>
</tr>
</tbody>
</table>

Note: * without RTC / with RTC
More performance

Better responsiveness of the application

- **New** Arm® Cortex®-M33 performance: +20% versus Cortex-M4
 - 1.5 DMIPS/MHz
 - 4.02 CoreMark/MHz
 - 165 DMIPS
 - 442 CoreMark

- **New** ST ART Accelerator™: working both on internal and external Flash
 - 8 Kbytes of instruction cache
High integration and innovation

Large memory, USB Type-C™ w/ power delivery controller, CAN FD

Parallel interface
- FSMC 8-/16-bit (TFT-LCD, SRAM, NOR, NAND)

Digital
- 2x SAI, DFSDM (4 channels)

Timers
- 14 timers including:
 - 2x 16-bit advanced motor control timers
 - 2x LPUART timers
 - 3x 16-bit-timers
 - 2x 32-bit timers

I/Os
- Up to 115 I/Os
 - Touch-sensing controller

Arm® Cortex®-M33 CPU
- 110 MHz
- TrustZone®
- FPU
- MPU
- ETM

DMA

ART Accelerator™
- Up to 512-Kbyte
- Flash memory
- Dual Bank

256-Kbyte RAM

Connectivity
- USB Device Crystal-less
- USB Type-C and PD
- 1x SD/SDIO/MMC, 3x SPI
- 4x I²C, 1x CAN FD
- 1x Octo-SPI
- 5x USART + 1x LPUART

Encryption
- AES (256-bit), PKA,
 SHA-1, SHA-256, TRNG,
 CRC, OTFDEC

Analog
- 2x 12-bit ADC 12/16 bits
- 5 MSPS, 2x DAC
- 2x comparators
- 2x op amps
- 1x temperature sensor
Large portfolio

7 packages, several options

Flash memory size / RAM size (bytes)

Legend: without HW crypto with HW crypto

STM32L562CE STM32L562RE STM32L562ME STM32L562VE STM32L562QE STM32L562ZE

STM32L552CC STM32L552RC

STM32L552VC STM32L552QC STM32L552ZC

Pin count

48-pin LQFP/QFN 64-pin LQFP 81-pin WLCSP 100-pin LQFP 132-pin UFBGA (0.5 mm pitch) 144-pin LQFP
STM32L ULP portfolio

STM32L5 completes the ultra-low-power subclass

<table>
<thead>
<tr>
<th>Cost-smart ULP champion</th>
<th>Broad-range foundation</th>
<th>ULP With performance</th>
<th>ULP with more performance</th>
<th>Advanced security</th>
</tr>
</thead>
<tbody>
<tr>
<td>STM32L0</td>
<td>STM32L1</td>
<td>STM32L4</td>
<td>STM32L4+</td>
<td>STM32L5</td>
</tr>
<tr>
<td>Cortex-M0+ at 32 MHz</td>
<td>Cortex-M3 at 32 MHz</td>
<td>Cortex-M4 w/ FPU at 80 MHz</td>
<td>Cortex-M4 w/ FPU at 120 MHz</td>
<td>Cortex-M33 w/ FPU at 110 MHz</td>
</tr>
<tr>
<td>1.65 to 3.6V</td>
<td>1.65 to 3.6V</td>
<td>1.71 to 3.6V</td>
<td>1.71 to 3.6V</td>
<td>1.71 to 3.6V</td>
</tr>
<tr>
<td>8-/16-bit applications</td>
<td>Wide choice of memory sizes</td>
<td>High-performance, advanced analog circuits</td>
<td>Wide choice of memory sizes</td>
<td>Wide choice of memory sizes</td>
</tr>
<tr>
<td>Wide range of pin-counts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **STM32L0**: 3 product lines, Cost-effective, Smaller packages, USB, LCD, Analog, 8 to 192 Kbytes of Flash, Up to 20 Kbytes of SRAM
- **STM32L1**: 3 product lines, USB, LCD, AES, Rich Analog, True EEPROM, Dual-bank Flash memory (RWW), 32 to 512 Kbytes of Flash, Up to 80 Kbytes of SRAM
- **STM32L4**: 5 product lines, 5-MSPS ADC, PGA, Compar., DAC, Op Amp, USB OTG, LCD, AES, 64 Kbytes to 1 Mbyte, Up to 320 Kbytes of SRAM
- **STM32L4+**: 3 product lines, 5-MSPS ADC, PGA, Compar., DAC, Op Amp, USB OTG, LCD, AES, 1 to 2 Mbytes of Flash, Up to 640 Kbytes of SRAM
- **STM32L5**: 1 product line, 5-MSPS ADC, PGA, Compar., DAC, Op Amp, USB Type C, AES, 256 to 512 Kbytes of Flash, Up to 256 Kbytes of SRAM
A Complete Ecosystem
STM32CubeL5

One-stop-shop software package

STM32Cube MCU Packages

<table>
<thead>
<tr>
<th>Generic Middleware</th>
<th>Dedicated Middleware</th>
</tr>
</thead>
<tbody>
<tr>
<td>FreeRTOS</td>
<td>Secure Boot and Secure Firmware Update</td>
</tr>
<tr>
<td>FatFS file system</td>
<td>TF-M for trusted execution environment</td>
</tr>
<tr>
<td>mbedTLS and mbedCrypto</td>
<td>USB-PD device driver</td>
</tr>
<tr>
<td>USB Device stacks</td>
<td>STM32 Touch Sensing library</td>
</tr>
</tbody>
</table>

Peripheral drivers

- **HAL API**
 - Hardware Abstraction Layer, highly portable and easy to use
- **LL APIs**
 - Low-Layer APIs, light weight and highly optimized for runtime efficiency

Project Examples

- **STM32CubeMX ready**
 - More than 300 project examples for KEIL, IAR and STM32CubeIDE toolchains, with a STM32CubeMX configuration file

www.st.com/stm32cubel5
SBSFU and TF-M in STM32CubeL5

Reference code framework for a trusted Execution Environment

STM32L5

Un-Trusted
Un-Privileged

Un-Trusted
Privileged

TF-M
(Application Root of Trust)

TF-M
(PSA Root of Trust)

SBSFU TF-M
(PSA Immutable Root of Trust)

TF-M Framework

- Isolation and Secure execution
- Secure services (crypto, initial attestation, secure storage)
- Easy addition of user secure services
- Leveraging STM32L5 security features

SBSFU TF-M

- Secure Boot
- Secure Firmware Update
STM32L5 is one of the first MCU PSA Level 2 certified
STM32CubeIDE

All-in-1 STM32 development tool

Configure and generate code
STM32CubeMX integrated

Develop code, Compile and Link
TrustZone support
- TrueSTUDIO / SW4STM32 importer
- Advanced editor
- GNU C/C++ for Arm® toolchain

Program and Debug
TrustZone support
- GDB and OpenOCD debugger
- Support of ST-Link and J-Link debug probes
Partners IDEs development flow

Arm V8-M TrustZone architecture support

STM32CubeMX
- STM32CubeMX enhanced for TrustZone
 - Peripherals/middleware configuration
 - Resources allocation to security domains

STMicroelectronics IDEs
- Compile and Debug
- TrustZone Support
 - Partners IDE
 - STM32CubeIDE based on Eclipse
 - TrustZone debugging

STM32CubeProgrammer
- Device and memory configuration
- Program the application
- Secure Firmware Install

Optional step

STM32 Programming Tool
Configuration tool

- Power Consumption Calculator
- MCU or board Selector
- Code Generation
- TrustZone support
- Middleware Parameters
- FreeRTOS
- FatFS
- USB device
- Peripherals Configuration
- Clock Tree Initialization
- Pinout Configuration
- Load an Example .ioc file

TrustZone configuration and GPIOs, memories, DMA, peripherals allocation to security domains
All-in-one programming software tool

- MCU Internal Flash and external Flash services
- MCU configuration (Option bytes)
- Intuitive GUI
- Command Line Interface for scripting
- API DLL for Custom Integration
- STLink (JTAG, SWD)
- STM32 Bootloader Interface (USB, UART, SPI, I2C, CAN)
- Secure Firmware install (SFI)
STM32L5 hardware solutions

Speed-up evaluation prototyping and design

Evaluation Boards
- Full feature STM32L5 evaluation
 - STM32L552E-EV

Discovery Kit
- Flexible prototyping & demo
 - STM32L562E-DK

Nucleo Boards
- Affordable and quick prototyping
 - NUCLEO-L552ZE-Q

Costs:
- Evaluation Boards: $275
- Discovery Kit: $76
- Nucleo Boards: $20
Discovery kit

Prototype your wearable or sensor application with STM32L562E-DK

Key Features

- STM32L562 MCU with AES and PKA
- 240 x 240 pixel-TFT color Display
- state-of-the-art Energy Meter
- 3D accelerometer and 3D gyroscope
- Bluetooth® V4.1 low energy module
- Audio Codec and Headphone amplifier
- Digital microphone
- USB Type-C™ Sink device FS
- 512Mbit Octal Flash memory extension
- ST-Link V3
- STMod+ connector with fan-out expansion board for Wi-Fi®, Grove and mikroBUS™ compatible connectors

Fan-out expansion board included
State-of-the-art on-board power consumption measurement

STM32L562E-DK
On-board Energy Meter
300 nA to 150 mA measurement range
Secure your production flow with Secure Firmware Install (SFI)

Protect your code and control the number of products manufactured

Customer premises
- FW
- Encrypted FW
- Store encryption key and production counter into HSM
- ST Hardware Secure Module (HSM)

Untrusted environment
- STM32L5 SFI
- Authenticate target STM32
- Generate installation license

Encrypted FW transfer
- HSM physical transfer

Number of products controlled
- 27
STM32L5 helps designers to answer IoT challenges

- More security
- Lower power consumption
- Integration, performance, ecosystem
Thank you