

CAN bus protection - ST ESDCAN series

Agenda

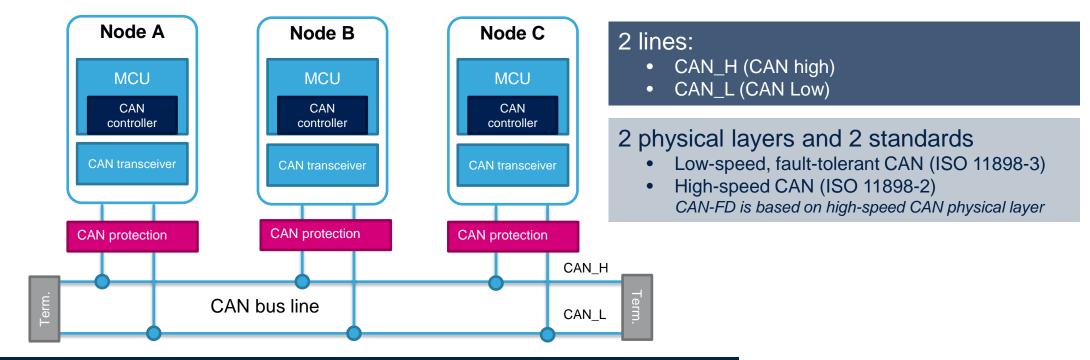
CAN bus overview and standards

5 Package miniaturization

Why protection is needed

5 questions to select the right ESDCAN

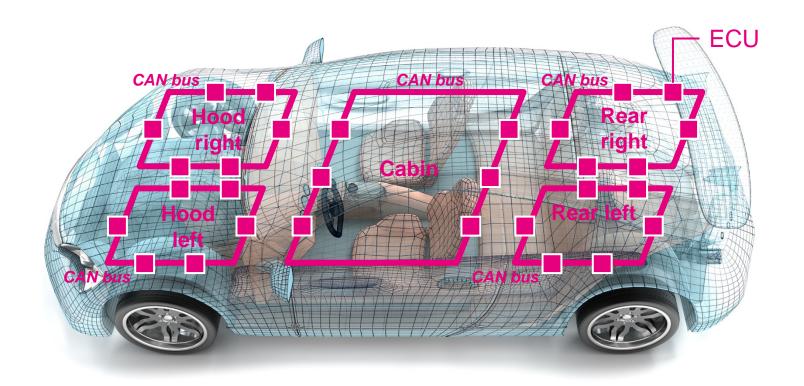
3 ESDCAN series versus standards


7 More on ESDCAN series

4 ESDCAN series versus quality of protection

Controller area network bus overview

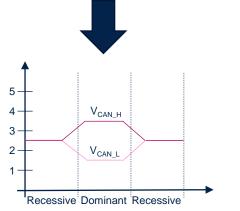
Cost-effective, light-weight, safe and reliable transmission, and information available for all nodes

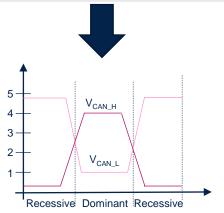


CAN serial bidirectional half-duplex multimaster communication bus

Where CAN is used

The CAN bus is reliable and is used to connect most ECUs in a car domain or car zone, including safety and critical functions


CAN standards ecosystem


7 layers ISO model Physical and data link sublayers Hardware Standards 7. Application 6. Presentation Filtering, overload, Logic link control recovery 5. Session ISO 11898-1 Data encapsulation Media access CAN2.0A (identifier: 11 bits) Frame coding Controller CAN2.0B (identifier: 29 bits control Error management as requested & implemented in 4. Transport (De) serialization SAE J1939 for trucks and off-Physical coding roads vehicles) Bit coding, bit timing, ... sublayer (PCS) 3. Network AUI -ISO 11898-3 Physical media Drivers/receivers (CAN fault tolerant) Transceiver 2. Data link characteristics attachment (PMA) ISO 11898-2 MDI -(CAN High speed) Physical media Connector and CAN-FD (flexible data-rate) is Application-specific: not 1. Physical compliant with ISO 11898-2 defined by CAN specs dependent (PMD) wires

CAN bus characteristics

Parameters	High-speed CAN	Low-speed CAN			
Physical layer standards	ISO 11898-2	ISO 11898-3			
Data rate	Up to 1 Mbps (5 Mbps for CAN-FD)	Up to 125 kbps			
Maximum length	30 m	500 m			
Termination	120 Ω shunt	$2.2~k\Omega$ serial on each line			
Recessive voltage level	$V_{CAN_H} = V_{CAN_L} = 2.5 \text{ V}$	$V_{CAN_H} \sim 0 V$ $V_{CAN_L} \sim 5 V$			
Dominant voltage level	$V_{CAN_H} = 3.6 V$ $V_{CAN_L} = 1.4 V$	$V_{CAN_H} = 4 V$ $V_{CAN_L} = 1 V$			

Why protection needed

- Automotive systems require a high level of **robustness** and must be extremely reliable, especially when they control safety devices.
- The automotive industry has defined standards to guarantee the robustness of car embedded electronics.
- The SAE-J2962 (communication transceivers qualification requirements) standard recommends using protection devices for CAN transceivers to prevent dramatic failures.

Relevant standards for CAN link compliance

Standards	Hazards	Туре	CAN protection specifics			
ISO 10605	ESD protection	Voltage spikes due to electro-static discharges.	ESD robustness up to 30 kV (R=330 Ω , C= 330 pF) and low ESD clamping voltage			
ISO 7637-3 pulse 3a/3b	Surge protection	Voltage spikes due to switching processes (influenced by capacitance and inductances of the wiring harness)	Must pass the surge and efficiently clamp the generated overvoltages			
ISO 16750	Jump start	Application of 24 V on all inputs to simulate a jump start with a 24 V battery	Reverse breakdown voltage V _{BR} > 24 V			
ISO 16750	Reverse battery	Application of -14 V for 12 V battery nominal voltage (passenger cars, etc.) and -28V for 24 V battery nominal voltage (trucks, off-roads, etc.) over 60 s to simulate reversed battery connection when using an auxiliary starting device	Forward breakdown voltage V_{BR} < -14 V for 12 V battery Forward breakdown voltage V_{BR} < -28 V for 24 V battery			

ESDCAN series mapping

Line capacitance 24 V systems (trucks, off-roads, etc.) 12 V systems (cars, light vehicles, etc.) SOT23-3L **ESDCAN01-2BLY ESDCAN24-2BLY** Low speed, faultfault-tolerant CAN SOT323-3L **ESDCAN04-2BLY** QFN 1.1 x 1.0 WF **ESDCAN06-2BLY** (DFN1110) **ESDCAN04-2BWY ESDCAN06-2BWY** -CAN/CAN-FD **ESDCAN05-2BWY** ESDCAN03-2BM3Y **ESDCAN03-2BWY ESDCAN02-2BWY** V_{BR} min Jump-start compatibility: Jump-start compatibility:

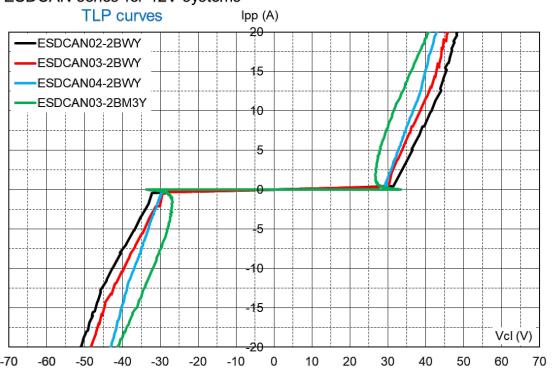
24 V + more than 10% tolerance

24 V + less than 10% tolerance

ESDCAN series versus standards

Hazards	Standards	ESDCAN24-2BLY	ESDCAN01-2BLY	ESDCAN04-2BLY	ESDCAN06-2BLY	ESDCAN02-2BWY	ESDCAN03-2BWY	ESDCAN04-2BWY	ESDCAN05-2BWY	ESDCAN06-2BWY	ESDCAN03-2BM3Y
ESD protection	<i>ISO 10605</i> (C = 150 pF, R = 330 Ω)	±30 kV contact	±30 kV contact	±30 kV contact	±30 kV contact	±30 kV contact	±30 kV contact	±30 kV contact	±30 kV contact	±30 kV contact	±15 kV contact
Surge protection	ISO 7637-3 pulse 3a/3b	✓	✓	✓	✓	~	~	✓	~	✓	✓
Jump-start	ISO 16750	V _{BR} min (reverse) = 27 V	V _{BR} min (reverse) = 25 V	V _{BR} min (reverse) = 27.5 V	V _{BR} min (reverse) = 38 V	V _{BR} min (reverse) = 28.5 V	V _{BR} min (reverse) = 26.5 V	V _{BR} min (reverse) = 27.5 V	V _{BR} min (reverse) = 39 V	V _{BR} min (reverse) = 38 V	V _{TRIG} min (reverse) = 28 V
Reverse battery	ISO 16750	V _{BR} min (forward) = 27 V	V _{BR} min (forward) = 25 V	V _{BR} min (forward) = 27.5 V	V _{BR} min (forward) = 38 V	V _{BR} min (forward) = 28.5 V	V _{BR} min (forward) = 26.5 V	V _{BR} min (forward) = 27.5 V	V _{BR} min (forward) = 39 V	V _{BR} min (forward) = 38 V	V _{TRIG} min (reverse) = 28 V

ESDCAN series quality of protection

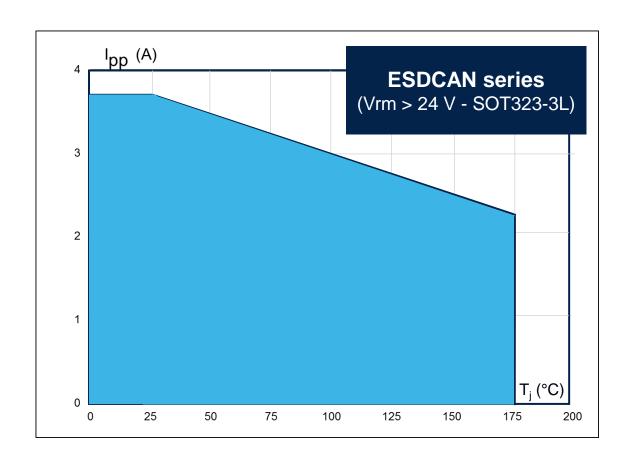

- Not only must protection features comply with standards, but they must efficiently protect against surges, even at high temperature.
- The quality of protection is measured by its ability to clamp overvoltages and overcurrent, thus protect the CAN transceiver and all the PHY components against EOS/ESD.
- The lower the clamping voltage, the greater ESD immunity.
- This clamping voltage is usually measured using TLP (transmission line pulse) method. Read more in AN5241

ESDCAN series High EMC immunity against surges

ESDCAN series for 12V systems

High ESD robustness:Up to 30kV–ISO 10605

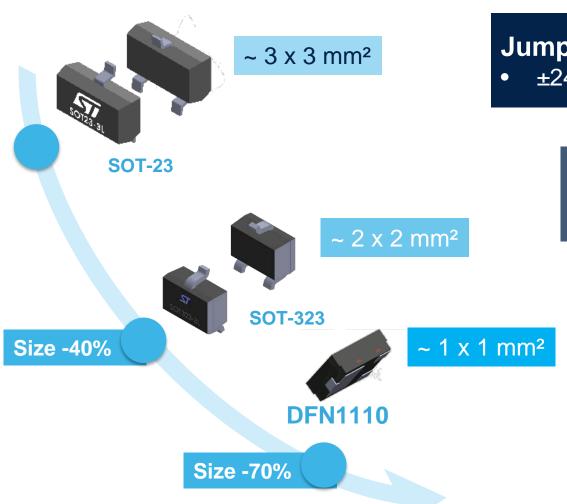
High EOS robustness: Up to 5.5A-8/20µs surge


High protection quality:

Low clamping voltage

ESDCAN series High temperature operation

Low derating with temperature


STMicroelectronics **ESDCAN** series still offers protection at high temperature

ESDCAN series maximum junction temperature: T_J max = 175°C

Package miniaturization with ESDCAN03-2BM3Y

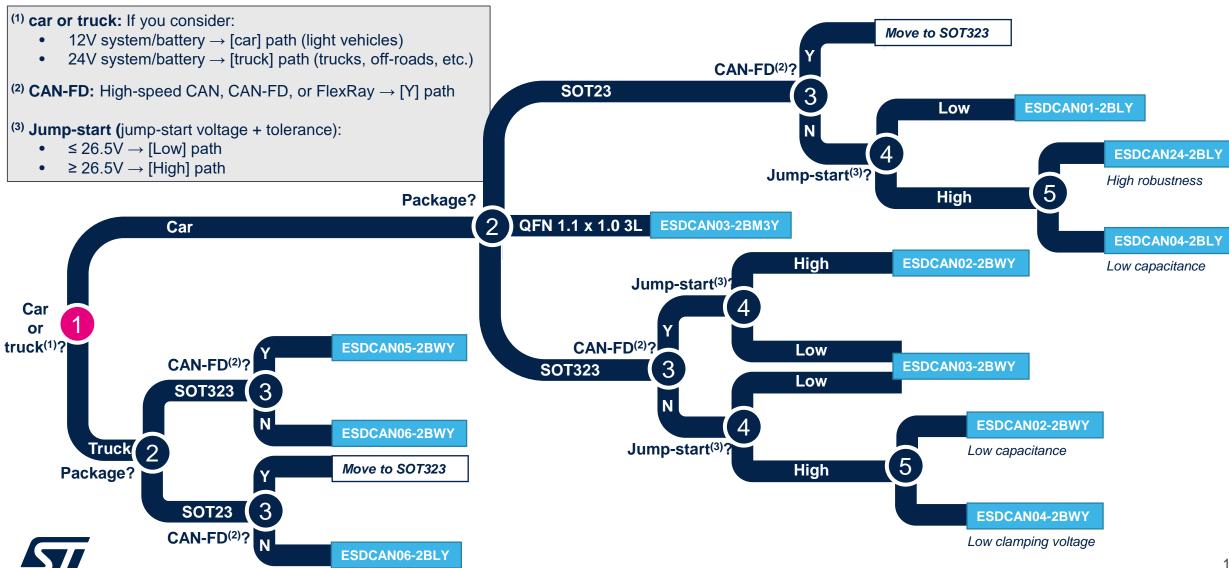
Jump-start and reverse plugging compatibility

• ±24V operating voltage

Compatible with CAN, CAN-FD and FlexRay

• Low line capacitance: 3.3 pF

Ultra low clamping voltage


• 32V @3A 8/20µs

DFN1110 package

Size: 1.10 mm x 1.0 mm x 0.55 mm

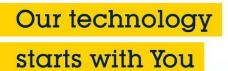
5 steps to select the right ESDCAN

life.augmented

More on ESDCAN series

ESDCAN web pages

Blog article


Application note AN2689

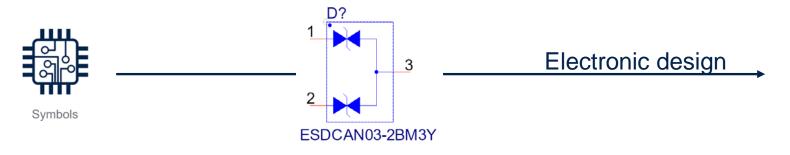
Evaluation board

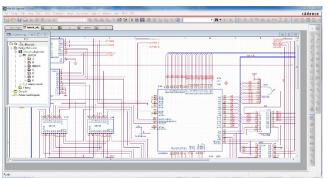
Pspice ESDCAN03-2BM3Y
Pspice all other ESDCAN

10 Years longevity program

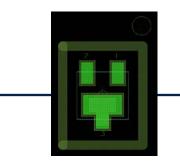
Protection finder

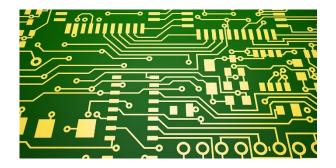
ESD basics presentation

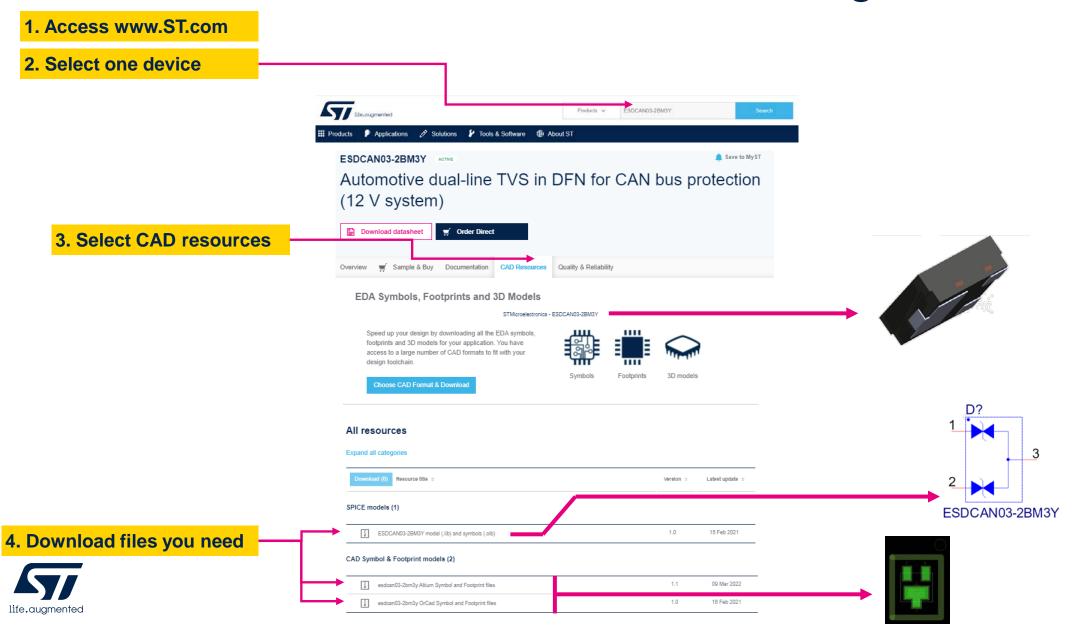

ESD video



Create a Digital Twin with ST CAD resources







Board layout

Go digital in four steps

Our technology starts with You

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

