

28nm FD-SOI Technology Catalog

) Content

FD-SOI Technology	
The body-bias (BB) advantage	4
Standard-cells	5
•• IO	6
Memories	
Phase locked-loop (PLL)	9
Oscillators	
Analog-to-digital convertors (ADC)	
Digital-to-analog convertors (DAC)	
Embedded power-management IPs	
One-time-programmable (OTP) IP: FUSE	
Process-monitoring box (PMB)	
Voltage & thermal sensors	
Linear regulators	
High-speed serial links	

FD-SOI Technology

The unique advantages of 28nm FD-SOI technology, allow SoC/ASIC designers to gain full benefit of best-in-class Performance, Power, and Area (PPA) in a single process-technology flavor without having to choose multiple technology variants.

Power and energy efficiency

Ultra low leakage, wide Body-Bias & operating voltage range

Analog performance for mixed signal & RF design

Robustness for mission critical applications

Cost effective platform

A few of the advantages of 28nm FD-SOI technology:

- At 28nm, FD-SOI requires fewer mask steps because it is a simpler process.
- In UTBB FD-SOI technology, the channel is quite thin, so it can be effectively controlled by the Gate, which results in lower leakage power (in static/stand-by power). For design optimization and flexibility, multiple Threshold Voltage (V,) flavors of the transistor are available, including:
 - RVT device for regular-V_T or standard-V_T circuits,
 - LVT device for low-V₊ high-speed circuits.
- Body-Biasing is an effective feature in FD-SOI to control the V₊ of the transistor to leverage device electrostatics for speed and leakage optimization.
- Wide operating voltage range, for different applications with competitive PPA advantages:
 - Very low V_{DD} for ultra-low power applications,
 - Reduced V^r_{DD} for competitive speed at reasonable power consumption,
 - Nominal V_{DD}^{DD} for high-performance applications.
- Excellent device electrostatics, (a) low leakage, leveraging Ultra-Thin Body and Box (UTBB) technology, (b) faster operation, due to the fully depleted channel, and (c) remarkable reliability

APPLICATION BENEFITS BY MARKET SEGMENT

Internet of Things, Wearable • Ultra-low-voltage operation • Well-managed leakage in high-temperature environments FBB optimizes power/performance High reliability thanks to highly-efficient memories · Efficient RF and analog integration **Networking Infrastructure Consumer Multimedia** • Energy-efficient multicore • Optimized SoC integration (Mixed-signal & RF) Adapt performance & power to workload via FBB

• Excellent performance in memories

- Energy-efficient SoC under all thermal conditions
- Optimized leakage in idle mode

THE BODY-BIAS (BB) ADVANTAGE

Effective lever to optimize between higher performance and lower leakage

BODY-BIASING: AN EXTREMELY POWERFUL AND FLEXIBLE CONCEPT IN FD-SOI

Body-biasing, also often referred to as back biasing, controls the threshold voltage (V_T) of a transistor to optimize:

- Drive current (for higher performance) at the expense of increased leakage current (Forward Back Bias, FBB)
- Or, leakage current, with somewhat lower performance (Reverse Back Bias, RBB)

Body-biasing facilitates a wide Dynamic Voltage Frequency Scaling (DVFS) range (0.7 V - 1.1 V)

- Performance boost wherever needed
- Reduce power consumption at a given performance requirement
- · Process compensation reducing the margins to be taken at design
- Seamless inclusion in the EDA flow

FOUNDATION IP/LIBRARIES PORTFOLIO

Standard-Cells	10
 Multiple Architectures Multiple Channel-length (Poly-Biasing) options Multiple-V_T options Rich portfolio of cells 	 Wide portfolio for various applications Optimized for Core/Pad Limited chip configurations Differentiating solutions for Low Power and Area Efficiency Programmability for varied board/package and loading environment
Memories	Clock Generators
 Low V_{min} Low Power options Mono & Dual rail compilers Soft-Error Rate (SER) robustness 	Wide-PortfolioVarious Patented ArchitecturesBest-in-Class Performance, Power, Area
Data Convertors (ADC & DAC)	Specific IPs
 Multiple Architectures Wide Resolution range (up to 24 bits) High-Speed (up to 64 Gsps) Best-in-Class Performance, Power, Area 	 Body-Bias Generator OTP Security IP (Fuse) Process Monitoring Block (PMB), Thermal and Voltage Sensors Regulators Power Management IPs

STANDARD-CELLS

STMicroelectronics offers a broad portfolio of standard-cell libraries in 28nm FD-SOI technology. The standard-cells designed in 28nm FD-SOI offer unique advantages to various SoC/ASIC applications. The mainstream standard-cell library is augmented by specialized libraries for lowpower and high-performance applications.

Low Power	Mainstream	High.Performance	The Mainstream library and
IsolationLevel-ShifterRetention/Always-ON	 General Purpose CORE Multi-Bit Flip-Flop Clock ECO & PR 	 High-Performance CORE Skewed Sequential Cells 	Low-Power library are available both RVT and LVT threshold-volt support in 12-Track (12T) and 8-Track (8T) architectures. The High-Performance library ha
Classification based on application			both 12T & 8T architectures and

....Classification based on application

Multiple tracks and architectures (12T/8T)

Multi-threshold voltage (V_T) support (LVT/RVT) Multi-channel length variants (Poly-Bias P0/P4/P10/P16)

	Library	8 Ti	ack	12 Track	
	Libialy	LVT	RVT	LVT	RVT
	CORI (Core Isolation Library)	•	•	•	•
	CORR (Core Retention Register Library)	•	•	•	•
	SHIFT (Level Shifter Library)	•	•	•	•
Low-Power	CORBF (Core Multi-Bit Flip-Flop Library)	٠	•	-	-
	SYNC (Synchronizer Library)	•	•	•	-
	CDMPR (Place & Route Library with CDM Protection)	-	-	•	•
	CDMSHIFT (Level Shifter Library with CDM Protection)	-	-	•	•
	CORE (Core Library)	•	•	•	•
Mainstream	CLK (Clock Library)	•	•	•	•
	PR (Place & Route Library)	•	•	•	•
	ECO (Engineering Change Order Library)	•	•	•	•
Uish Derformence	CORHP (High-Performance Core Library)	•	-	•	-
Hign-Performance	CORXT (Library with High-Speed Flip-Flops)	•	-	•	-

* Other electrical parameters will be disclosed under NDA

threshold-voltage options.

10

28nm FD-SOI IO library enables flexible, effective and reliable interfacing in SoC design with state-of-the-art features and PPA advantages. Special approaches, such as the compensation strategy, flexibility between compensated and uncompensated IO, and ESD solutions, provide differentiation in SoC/ASIC designs with applications ranging from low-power hand-held devices to high-performance computing.

The IO solutions consists of versatile cells with multiple features:

- Wide range of functionalities: **interface functionalities**, dedicated IO functionalities to serve **analog IP blocks**, **power-supply** provisioning to an SoC, or provision of **reliable ESD protection**
- Multiple Metal Stacks options, Multiple Supply Voltages, and Chip-Layout Configurations (Core-Limited, Pad-Limited, and Pad-in-Core)
- Differentiating solutions: No intermediate supply required in 3.3 V IO, significantly fewer supply pads using compensation strategy, multiple patents in IO design
- IO offer **supports a variety of industry standards** like I²C, USB, GPIO, MIPI Slimbus, SDMMC, HSPROG, EMMC and other specific high-speed IO interfaces
- Advanced ESD protection compliant to IEC 61000-4-2 are available on request

Multi-supply

Interface/Application	Library name	IO standard	IO supply	Features/Specification
	GPIO 1V8 1.8 V Programmable IO, Non-PVT Compensated	JESD76/JESD8-7	1.8 V	 8-Level-Drive Programmability 1V8 Failsafe and Non-Failsafe Support 1V5 and 1V2 operation
	GPIO 3V3 3.3 V Programmable IO, Non-PVT Compensated	JESD76/JESD8-B	3.3 V	 4-Level-Drive Programmability 3.3 V Failsafe and Non-Failsafe
	GPIO 1V8_3V3 1.8 V & 3.3 V Programmable IO, Non-PVT Compensated	JESD76/JESD8-7 JESD8-B	1.8 V 3.3 V	3.3 V Failsafe cellTwo-level drive/slew options
General Purpose UART, JTAG	2V5_3V3 2.5 V & 3.3 V Programmable IO, Non-PVT Compensated	JESD80/JESD8-5 JESD76/JESD8-B	2.5 V 3.3 V	• 4-Level-Speed programmability
	TESTMUX 1V8 1.8 V High-Performance IO, PVT Compensated	JESD76/JESD8-7	1.8 V	 2-Level-Drive programmability Cells with 2/4 /6/8 mA drives Support 1.5 V and 1.2 V operation
	PROG 1V8 1.8 V High-Performance IO, PVT Compensated	JESD76/JESD8-7	1.8 V	 Isolation & Retention feature 2-Level-Drive programmability Non-Failsafe and Failsafe cells Support 1V5 and 1V2 operation
PVT Compensation	COMPENSATION1V8 PVT Compensated	-	1.8 V	Library for PVT compensation at 1.8 V
Block	REFCOMPENSATION1V83V3 PVT Compensated	-	1.8 V 3.3 V	Library for PVT compensation at 1.8 V & 3.3 V
Printer/LED	SRC 3V3 Large transmission length slew rate controlled 3.3 V IO	JESD76/JESD8-B	3.3 V	 Support critical Signal Integrity requirements Support 6" to 24" trace length
	SDMMC 1V8_3V3 1.8 V & 3.3 V SDMMC IO	SD3.01/JESD84 A44	1.8 V 3.3 V	• Support Type A (33 $\!\Omega)$ and Type B (50 $\!\Omega)$ driver
SPI/SD/MMC/ EMMC/Flash	EMMC 1V8 1.8 V EMMC Failsafe IO	JESD84 B50	1.8 V	 Support eMMC TYPE0(50), TYPE1 (33), TYPE2 (66), and TYPE3 (100) Supports eMMC HS200 mode and eMMC HS400 mode Support SDR and DDR
Digital Audio/ MultiDrop	SLIMBUS 1V8 1.8 V Slimbus IO	MIPI Slimbus 1.1	1.8 V	 Isolation and Retention feature 20 cm trace length support
Interchip USB	HSIC 1V2 1.2 V HSIC 10	High Speed Interchip USB 1.0	1.2 V	 Slew rate and Impedance control 10 cm transmission line support Jitter less than 365ps
HDMI/PMBus/ ANDBus/Addressing/ SMBus/IPMI/ LCD Drivers/RTC	I²C 1V8 1.8 V I²C Failsafe Open Drain IO		1.8 V	 Support Standard Mode (100 KHz), Fast Mode (400 KHz), Fast Plus Mode (1 MHz) Programmable built-in bus pull-up resistor
	I ² C 1V8 3V3TTFS 1.8 V I ² C IO with 3.3 V tolerant and failsafe		1.8 V	• Support Standard Mode (100 KHz), Fast Mode (400 KHz), Fast Plus Mode (1 MHz)
	I²C 3V3 3.3 V I²C Failsafe Open Drain IO	NXP UM10204	1.8 V	 Support I²C and SM Bus Mode Support I²C Standard Mode (100 KHz) and Fast Mode (400 KHz)
	I ² C 3V3 5VFSFT 3.3 V I ² C IO with 5 V Failsafe and tolerant Open Drain feature		3.3 V	Support I ² C Standard Mode (100 KHz) andFast Mode (400 KHz)
PMBus/ANDBus/ Reset/SMBus/LCD Drivers	OD 3V3 Open Drain failsafe 3.3 V IO	JESD76/JESD8-B	3.3 V	 Bidirectional cell (200 KHz), Output cell (850 KHz) 4 mA/8 mA output drive cell
Video	5VFSFT 5 V Failsafe Tolerant 3.3 V IO	JESD36	3.3 V	4 mA drive push-pull IO40 MHz
	ANAF_ANA		1.0 V 1.8 V 3.3 V	 Analog IO cells with minimized parasitic capacitance Includes basic cells enabling an optimized analog IO ring construction
Analog Library	ANAF_ANA6V		1.0 V 1.8 V 3.3 V	 Analog Fail-Safe pad with 6 V signal protection Restricted to USB20TG application only
	ANAF_3V3FS		1.0 V 1.8 V 3.3 V	Fail-safe ANA pad with 3.3 V and 5.0 V signal protection
	ANAF_ANA_1V8FS		1.8 V	• 1.8 V Fail-Safe ANA pad
	BASIC		1.8 V 3.3 V	 Includes Basic cells enabling the IO ring construction in Core-Limited, Pad-Limited or Pad in Core configurations
ESD, & Supplies Library	CORESUPPLY		1.0 V 1.8 V 3.3 V	Dedicated Core Supply cells and ESD Core-Clamp
	CDMKIT		1.1 V 1.8 V	Optimized CDM protections
Packaging Library	BUMP		NA	 Available with three classes of BUMP cells Provides Flip-Chip strategy to an IO library for high pin count

MEMORIES

28nm FD-SOI embedded memory offers versatility to designers by allowing them to choose from a wide portfolio of compilers, with its advantage of high performance and energy efficiency, along with high reliability and robustness. FD-SOI memories provide best-in-class PPA and figures of merit. The offer includes High-Performance, Low-Leakage, and Low-Voltage SRAMs and ROMs, along with special memories.

The compilers are further complemented by a rich variety of features, including:

- Body-biasing feature support for process compensation and performance boost
- **Low-power** features using input gating, standby, periphery shutdown and array retention, and Embedded switches
- **Multiple power rail** feature for operating-voltage reduction
- Multiple bank options offering interesting timing-power-densityleakage trade-offs

- Multiple mux options to select or modify the aspect ratio
- Speed mode selection to adjust the margins depending on the voltage of operation
- Margin control for self-time and reset operation
- **Redundancy** to improve the yield at the production level
- Bit masks to preserve the content
- Embedded Test features including BIST mux, scan chains, and synchronous bypass to reduce test time and improve test coverage
- Neutron Soft Error Rate (SER) less than 10 FIT/Mb and Immunity to Alpha SER
- **Patented well structures** to enable Ultra-Low-Voltage Operation.

	Compiler Name	Description
	SPHD_LOLEAK	Single-port high-density compiler with best density, leakage trade-off
Low leakage memory	SPREG_LOLEAK	Single-port register file optimized for leakage, speed, and density
	ROM_LOLEAK	Static ROM mainstream compiler
	DPHD_HIPERF	Dual-port compiler targeted for high-performance, density, and low-power applications
High	SPHD_HIPERF	Single-port high-density compiler with best density and speed trade-off
memory	DPREG_HIPERF	Dual-port dual-rail register file with high-performance bitcell
SPREG_HIPERF Single-port register file with high performance for Cache RAM applications		Single-port register file with high performance for Cache RAM applications
	SPHD_BODYBIAS	Single-port high-density compiler supporting forward body bias
BODYBIAS	SPREG_BODYBIAS	Single-port register file supporting forward body bias for high-performance applications
Memory	DPHD _BODYBIAS	Dual-port compiler targeted for high-performance, density, and low-power applications
	DPREG_BODYBIAS	Dual-port dual-rail register file with high-performance bitcell
Special Memory	PRF2HD_BODYBIAS	Area-optimised, dual-port register file using single-port bitcell

PHASE LOCKED-LOOP (PLL)

Phase Locked-Loop (PLLs) are clock generators for frequency synthesis. The standard offer (highly customizable) is supplemented with high-performance, spread-spectrum and fractional-PLL offers.

Standard PLL

- Generates multiples of input frequency (Frequency Synthesis)
- Highly customizable

Fractional PLL

Generates output, which is a fractional multiple
 of input frequency

Spread Spectrum PLL

- Spreads energy of output to a band around it
- Reduces Electromagnetic Interference (EMI)

High Performance PLL

- Low jitter, low power, low area PLLs
- LC VCO based PLLs

The 28nm FD-SOI PLL offer has various features:

- **On-the-fly switching** (on request)
- No dependence on supply sequence (In absence of analog or digital supply, the PLL is automatically in power-down mode)
- Multiple operating modes: Normal, power-down, VCO stand-alone, Bypass
- Automatic Bandwidth tracking
- **Compatibility with all metal stacks** (uses only 5 thin metals)
- Clock de-skewing by acting as a negative delay element to compensated clock-tree delay

Nomo	Input Fre	equency	Output Freq	uency (MHz)	VCO Freque	ency (MHz)
Name	Min	Max	Min	Max	Min	Max
PLL_FF_308MHZ	32.768 KHz	32.768 KHz	26	307.2	307.2	312.01
PLL_PF_960MHZ_B	1.92 MHz	93 MHz	480.960	480.960	960	960
PLL_PF_960MHZ_32K	32.768 KHz	32.768 KHz	153.6	319.98	921.26	959.98
PLL_PF_1066MHZ	195 MHz	1066 MHz	195	1066	780	1066
PLL_PF_1200MHZ	9.6 MHz	350 MHz	9.52	1248	600	1248
PLL_PF_2132MHZ_7P	19.2 MHz	52 MHz	754 (7 phase)	2132 (7 phase)	754	2132
PLL_PF_3000MHZ_FR	24 MHz	40 MHz	31.25	3000	1500	3000
PLL_PF_3401MHZ	10 MHz	340 MHz	106.25	3400	1700	3400
PLL_PF_4600MHZ_SSCG_FR	4.0 MHz	350 MHz	19.05	3000	2400	6000
PLL_PF_3200MHZ_SSCG_FR	4.0 MHz	350 MHz	12.7	1600	1600	3200
PLL_PF_5000MHZ_SSCG_FR	24 MHz	40 MHz	39.06	2500	2500	5000
PLL_PF_480MHZ_6P (for USB2.0)	2 MHz	93 MHz	480 (6 phase)	480 (6 phase)	480	480
PLL_PF_6400MHZ	6 MHz	210 MHz	50	3200	3200	6400
PLL_PF_4000MHZ	2 MHz	372 MHz	31.25	2000	2000	4000
PLL_PF_2920MHZ_8P	9.6 MHz	403 MHz	1152 (8 phase)	2920 (8 phase)	1152	2920

OSCILLATORS

In 28nm FD-SOI Technology, a comprehensive portfolio of oscillators is available enabling area competitiveness, multiple metal-stack compatibility and wide frequency ranges. The oscillators support various modes of operation.

ON-CHIP CRYSTAL (XTAL) OSCILLATOR FEATURES:

- Frequency Range: 32 KHz, 24 MHz 30 MHz
- Compatible with Multiple-Metallization
- Modes Supported: Oscillation Mode, IDDQ Mode, Force through Mode, Startup Test Mode, Bypass Mode

ON-CHIP RC OSCILLATOR FEATURES:

- Frequency Range: 30 MHz, 45 MHz, 90 MHz
- Metal Stack: 7 or 8
- Modes Supported: Raw Frequency Mode, Calibration Mode, Tracking Mode, IDDQ Mode, Bypass Mode

Oscillators*	Froquency	Frequency		XTAL parameters		
	rrequency	Max R _m	Max C _o	C _A /C _B		
32 KHz XTAL Oscillator						
C28SOI_OSC_X0_32K_ULP_LLR_EG	32.768 KHz	50 ΚΩ	3.0 pF	18 pF \pm 20%		
C28SOI_OSC_X0_32K_LR_EG	32.768 KHz	50 ΚΩ	3.5 pF	28 pF - 32 pF		
24 MHz to 30 MHz XTAL Oscillator						
C28SOI_OSC_XOA_24M_LR_EG	24 - 30 MHz	50 Ω	5 pF	$18 \text{ pF} \pm 20\%$		
			5 pF	$17 \text{ pF} \pm 10\%$		
C28SOI_OSC_XOA_30M_LR_EG	24 - 30 MHz	50 Ω	7 pF	$26 \text{ pF} \pm 10\%$		
			9 pF	$30 \text{ pF} \pm 10\%$		
RC Oscillator (FLL based)						
C28SOI_RCOSCI_30M_32K_TRAC_LR_EG	30 MHz 45 MHz 90 MHz	-	-	-		

ANALOG-TO-DIGITAL CONVERTORS (ADC)

In 28nm FD-SOI Technology, a broad portfolio of ADCs is available, supporting multiple resolutions and speed specifications.

The following features are supported in 28nm FD-SOI ADCs:

- Best-in-class PPA
- High speed (up to 64 Gsps)
- Multiple architectures available
- High Resolution (up to 24 bits)
- Available for various application and customizable on request

ADC	No of bits	Main features	Туре
AD12PP160MIQ_10	12 Bits, ENOB 10 Bits	160Msps	Pipelined
AD12PP500M_10	12 Bits, ENOB 10 Bits	500Msps	Pipelined
AD10PP160MIQ_10	10 Bits, ENOB 9 Bits	160Msps	Pipelined
AD12PP5G_18	12 Bits, ENOB 10 Bits	5Gsps	Pipelined
AD12SA1MLA_18	12 Bits, ENOB 10 Bits	1Msps	SAR
AD9SA6G_18	9 Bits, ENOB 7.5 Bits	6Gsps	SAR
AD8SA64G_10	8 Bits, ENOB 6.5 Bits	64Gsps	SAR
AD14SA250K_18	14 Bits, ENOB 13 Bits	250Ksps	SAR

* Area & Power will be disclosed under NDA

	No of bits	Main features	Туре
AD18ASDSE_18	18 Bits	SNR 98dB	Sigma Delta

DIGITAL-TO-ANALOG CONVERTORS (DAC)

Low Speed/DC

Audio Band

ST's DAC portfolio for 28nm FD-SOI Technology, offers various resolutions and speed specifications for multiple applications.

Speed

5 - 250 Msps

250 - 500 Msps

Gsps

100 k - 5 Msps

DAC	No of bits	Main features	Туре
DACI10HD3x1_1V8	10 Bits	Output current = 3.25 mA SFDR = 54 dBc @ 6 MHz	Current Steering
DA10HD6X4_18_C28S0I8M	10 Bits	Output current = 6 mA SFDR = 54 dBc @ 6 MHz Fs = 160 MHz	Current Steering
DAI10HD9X4CBLDET_1V8_EG8M	10 Bits	$\begin{array}{l} \text{Output current} = 8.7 \text{ mA} \\ \text{SFDR} = 54 \text{ dBc } @ 6 \text{ MHz} \\ \text{Fs} = 160 \text{ MHz} \\ \text{with cable detection} \end{array}$	Current Steering
DACI10HF1DA3_1V8	10 Bits	Output current = 1.25 mA SFDR = 60 dBc @ Nyquist	Q-switching Current Steering
DACI10HD17T034X3_1V8_LLR_EG8M	10 Bits	Output current = 17 mA to 34 mA SFDR = 54 dBc @ 6 MHz Fs = 160 MHz	Current Steering
DACI10HF10PC3_1V8_LLR_EG8M	10 Bits	Output current = 1.25 mA SFDR = $60dBc @ 40 \text{ MHz}$ Fs = $640MHz$	Current Steering
DACI14HF3T020DA4CAL_1V8_EG8M	14 Bits	Output current = 3 mA to 20 mA SFDR = 70 dBc @ 210 MHz Fs = 750 MHz	Current Steering

* Area & Power will be disclosed under NDA

Audio DAC	No of bits	Main features	Туре
DA24VASDLA_18	24 Bits	SNR 98 db	Sigma Delta

EMBEDDED POWER-MANAGEMENT IPs

Embedded power-management IPs enable power optimization in SoC and ASIC designs through Body-Biasing, Power Switches, and Embedded Metrology cells.

Power Management IPs	Description	
Body-Biasing IPs		
BBGEN_LLR_EG	Embedded Body Bias Generator with low power, low Vt and regular Vt process options	
BBMUX21_LLR_EG	Embedded Body Bias Multiplexer with low power, low Vt and regular Vt process options	
Power Switches		
EPOD_PLMEG_LLR_EG	Peripheral Embedded Power Distribution IP with Power Line Multiplexing feature and switch device EG	
EPOD_PSWFBMP_LLR_EG	Peripheral Embedded Power Distribution IP with a switch device having Feedback and Modular Pre-charge features	
Embedded Metrology Cells		
EMET_BE	Front-End embedded metrology structure	
EMET_FE	Back-End embedded metrology structure	

* Other electrical parameters will be disclosed under NDA

ONE-TIME-PROGRAMMABLE (OTP) IP: FUSE

OTP IP is a one-time programmable memory based on an anti-fuse cell with synchronous interface and dual-supply voltage. It is a non-volatile memory, with embedded programming capability and a specific programming sequence. In 28nm FD-SOI technology, memory cells support data storage using dielectric breakdown phenomena. All libraries embed a high-voltage charge pump and do not require an HV pad.

The OTP IP provides the following features in its 28nm FD-SOI technology variant:

- **Dual supply**: 1.1 V & 1.8 V (includes an internal power switch)
- IPs in **multiple-metal stack** are respectively fully blocked
- **Storage capacity** of 1 Kbit, 2 Kbit, 4 Kbit, 8 Kbit, and 16K bit.
- Maximum clock frequency (functional) is 120 MHz
- Maximum clock frequency (scan test) is 100 MHz
- Mean programming time is less than 10 us/bit
- · Programming lock word-by-word.
- Static 16 bits data word available at power ON
- Word size:
 - Standard with ECC correction: 32 useful data by word (Default mode not incremental programming)
 - No ECC, correction is done by redundancy: 16 useful data by word (only for word requiring incremental data programming)

Library Name	Key Features/Specification
FU_OTP_LLR_EG	OTP anti-fuse library is designed in 28 nm FD-SOI technology

PROCESS-MONITORING BOX (PMB)

Process-Monitoring Sensors track the onchip process fluctuations from fab-to-fab, wafer-to-wafer, and within-wafer using a unique die process ID to ensure the chip is within the pre-defined process limits (temperature monitoring, compensation and debug, and failure analysis).

	Library Name	Description
Sensors	G02_LR_0D_18	Monitors the process of GO2 OD18 devices
	G01_LL	Measures the SoC performance & helps to debug the failure analysis of chip, based on Low-Power & Low-Vt process option
	G01_LR	Measures the SoC performance & helps to debug the failure analysis of chip, based on Low-Power & Regular-Vt process option
	CPR8T_LL	Contains 8-Track Critical-Path Replica (CPR) cells used for process compensation and voltage scaling
	CPR_LL	Contains 12-Track Critical-Path Replica (CPR) cells used for process compensation and voltage scaling, with three dedicated sensors, based on Low-Power & Low-Vt process option
	CPR_LR	Contains 12-Track Critical-Path Replica (CPR) cells used for process compensation and voltage scaling, with three dedicated sensors, based on Low-Power & Regular-Vt process option
	RCM5_COUP_LL	Monitors back-end process
Controllers	CONTROL8T_LL	8-Track Process-Monitoring Controller for on-chip compensation to save power, based on Low-Power & Low-Vt process option
	CONTROL_LL	12-Track Process-Monitoring Controller for on-chip compensation to save power, based on Low-Power & Low-Vt process option
	CONTROL_LR	12-Track Process-Monitoring Controller for on-chip compensation to save power, based on Low-Power & Regular-Vt process option
	CONTROL8T_LL_ASYNC	8-Track Process-Monitoring asynchronous controller with soft CPR, based on Low-Power & Low-Vt process option
	CONTROL8T_LR_ASYNC	8-Track Process-Monitoring asynchronous controller with soft CPR, based on Low-Power & Regular-Vt process option
	CONTROL_LR_ASYNC	12-Track Process-Monitoring asynchronous controller with soft CPR, based on Low-Power & Regular-Vt process option
	WRAPPER_LL	Contains controller logic for sensors used in process monitoring and on-chip compensation to save power

* Other electrical parameters will be disclosed under NDA

VOLTAGE & THERMAL SENSORS

Voltage Sensor library allows to embed voltage-measurement feature in SoC, and Thermal Sensor provides digital measurement of the junction temperature.

The advantages of using these sensors in 28nm FD-SOI technology are:

- Dynamic Frequency Scaling (DFVS) for high performance
- Thermal and Voltage profiling, security, thermal (fan) control
- IR-Drop Analysis, Smart power management

Sensor	Features/Specification
Low Area Temperature Sensor	 Measures on-chip temperature Accuracy: ±4 °C Sense range: -40 °C to 125 °C Suitable for small SOCs, safety features
High-Performance Distributed Voltage & Temperature Sensor	 Remote V & T sensing with centralized processing Temperature accuracy: ±1 °C over -40 °C to 125 °C Voltage accuracy: ±5 mV over 0.6 V - 1.25 V Temperature-independent voltage-based calibration

LINEAR REGULATORS

28nm FD-SOI Linear Regulators offer flexibility to designers in terms of generated outputs from the required inputs thus delivering customized solutions, with other exciting features.

Regulator features in 28nm FD-SOI technology are:

- Customized solution for input & output voltages
 - put & output voltages
- Configurable load current
- Low drop-out, <200 mV
- No external capacitance required
- Fast-transient response, High PSR
- Voltage-handling capacity higher than device breakdown
- Low-power mode for Standby
- Safety Features: Power-on-Reset, Supply monitoring, Over-current protection, Safe Startup

Regulator	Key Features/Specification
DC_LN_1V8T01V0_PHY_EG	• Generates 1.0 V output from 3.3 V and 1.8 V inputs for various PHY IPs • Main input supply is from 3.3 V \pm 10% and 1.8 V \pm 150 mV • Regulated output supply is 1.0 V \pm 100 mV
DC_LN_1V8T01V0_USB_EG	 Supports main/input supply of 1.65 V - 1.95 V and digital regulated output supply: 1.0 V ±100 mV No off-chip capacitor required for regulator stability
DC_LN_1V81V0_STBY_LR_EG	 Generates multiple outputs (1.8 V, 1.0 V) from 3.3 V and 1.35 V inputs. The regulated output supply is 1.0 V ± 100 mV, which can be programmed down to 0.6 V, 1.8 V ± 150 mV
DC_LN_2V51V81V0_LR_EG	 Generates multiple outputs (2.5 V, 1.8 V, 1.0 V) from 3.3 V and 1.35 V inputs. Main/input supply1: 3.0 V - 3.6 V and DDR4 supply (1.2 V - 5% to 1.8 V + 10%) Regulated output supply is 1.0 V ± 100 mV, which can be programmed down

* Other electrical parameters will be disclosed under NDA

HIGH-SPEED SERIAL LINKS

A dedicated portfolio of High-Speed Serial Links is supported in 28nm FD-SOI technology.

Interfaces PHYs	Description
MIPIDPHY_MCNN_4MFAA_1500MBP_LR_EG	MIPI DPHY Master 4 DataLane
MIPIDPHY_SCNN_1SFAA_1500MBP_LR_EG	MIPI DPHY Slave 1 DataLane
MIPIDPHY_SCNN_2SFAA_1500MBPS_LR_EG	MIPI DPHY Slave 2 DataLane
USB2_1PHY	Physical layer of USB2 Host & Device ports
USB2_2PHY	Physical layer of USB2 Host & Device ports
USB2_3PHY	Physical layer of USB2 Host & Device ports
USB2PHY_S	Physical layer of USB2 Host & Device ports
OTG2	Adds host functionality to USB peripherals
HDMITX_3G4_1V8_LL_EG	Electrical layer of the HDMI Transmitter
HDMITX_6G0_1V8_LLR_EG	Electrical layer of the HDMI Transmitter
MIPIDIGRF4GPHY_1TX2RX	Electrical layer of the DIGRF4G PHY transmitter and receiver
LVDS1V8_EG	Low Voltage Differential Signaling 1.8V IO in standard frame
DPTX_4L_IM5G4_1V8_LLR_EG	Analog physical layer of DisplayPort transmitter
HDMIDPRX_5G4_3V3_LLR_EG	DP/HDMI/DVI Combo Receiver

life.augmented

© STMicroelectronics - June 2016 - All rights reserved The STMicroelectronics corporate logo is a registered trademark of the STMicroelectronics group of companies All other names are the property of their respective owners