AC/DC input stage for onboard chargers with built-in inrush-current limitation

ABSTRACT

Thyristor-based topologies offer many advantages for the AC/DC input stage of onboard chargers (OBCs) used in electric vehicles. In addition to controlling the inrush-current and allowing full OBC disconnection in standby to suppress undesired losses, these full-silicon solutions do not require any inrush-current limiting resistors or mechanical relays.

FEATURES AND BENEFITS

- **Smart inrush current limitation:**
 - Peak current controlled by software
 - Increased system power-up speed
- **High reliability:**
 - No moving mechanical parts
 - No EMI noise
 - No contact aging issues
 - Zero Current Switching thanks to SCRs
- **High power density:**
 - SMD packages available
 - Power density increased
 - Industrial production costs optimized
- **Embedded disconnection function:**
 - DC bus is disconnected from the line thanks to the SCRs
 - Stable and predictable efficiency
- **Automotive grade**

MIXED SCR / RECTIFIER BRIDGE

BRIDGELESS TOTEM POLE

INRUSH CURRENT LIMITATION OPERATION

- Bulk capacitor is smoothly charged thanks to the SCR's phase angle control
- T1 and T2 are synchronized according to the zero crossing (ZVS) of the AC line

→ At system start-up or after line drops, the peak line current is controlled by choosing the most adapted SCR gate driving strategy

→ Thin designs possible through SMD packages

→ Both line and neutral functional disconnection ensured by the SCRs (valid for both mixed bridge and bridgeless totem poles)

→ Mechanical relay contact aging makes the solid state solution more stable and predictable