Introduction

The purpose of this application note is to describe:

- how to connect the STA350BW 2.0-channel demonstration board
- how to evaluate the demonstration board performance with all the electrical curves
- how to avoid critical issues in the PCB schematic and layout of the STA350BW

The STA350BW demonstration board is specifically configured for 2.0 BTL channels, releasing up to 2 x 50 W into 6 ohm of power output at 25 V of supply voltage using reduced components. It is a complete solution for the digital audio power amplifier.

Figure 1. STA350BW 2.0-channel demonstration board
Contents

1 Functional description of the demonstration board 4
 1.1 Connections ... 4
 1.2 Output configuration .. 4
 1.3 Schematic and block diagrams, PCB layout, bill of material 5

2 Test results .. 9

3 Thermal test results ... 14

4 Design guidelines for schematic and PCB layout 16
 4.1 Schematic ... 16
 4.1.1 Main driver for selection of components 16
 4.1.2 Decoupling capacitors ... 16
 4.1.3 Output filter ... 16
 4.2 PCB layout .. 19

5 Revision history .. 28
List of figures

Figure 1. STA350BW 2.0-channel demonstration board ... 1
Figure 2. Schematic diagram .. 5
Figure 3. Block diagram of test connections with equipment 6
Figure 4. Top view of PCB layout .. 7
Figure 5. Bottom view of PCB layout ... 7
Figure 6. Efficiency (2 channels, BTL configuration), V_{CC} = 26 V, R_{L} = 6 ohm 9
Figure 7. Efficiency (2 channels, BTL configuration), V_{CC} = 26 V, R_{L} = 8 ohm 10
Figure 8. Output power vs. supply voltage, R_{L} = 6 ohm .. 10
Figure 9. Output power vs. supply voltage, R_{L} = 8 ohm .. 11
Figure 10. Frequency response, V_{CC} = 24 V, R_{L} = 6 ohm, 0 dB (Pout = 1 W) 11
Figure 11. Crosstalk, V_{CC} = 24 V, R_{L} = 6 ohm, 0 dB (Pout = 1 W) 12
Figure 12. SNR, V_{CC} = 24 V, R_{L} = 6 ohm, 0 dB (Pout = 1 W) 12
Figure 13. THD vs. frequency, V_{CC} = 24 V, R_{L} = 6 ohm, Pout = 1 W 12
Figure 14. FFT (0 dBFS), V_{CC} = 24 V, R_{L} = 6 ohm, 0 dBFS (Pout = 1 W) 13
Figure 15. FFT (-60 dBFS), V_{CC} = 24 V, R_{L} = 6 ohm, 0 dBFS (Pout = 1 W) 13
Figure 16. THD vs. output power, V_{CC} = 24 V, R_{L} = 6 ohm, f = 1 kHz 13
Figure 17. Output power = 2 x 5 W, V_{CC} = 26 V, load = 6 ohm, frequency = 1 kHz .. 14
Figure 18. Output power = 2 x 10 W, V_{CC} = 26 V, load = 6 ohm, frequency = 1 kHz 14
Figure 19. Output power = 2 x 15 W, V_{CC} = 26 V, load = 6 ohm, frequency = 1 kHz 15
Figure 20. Output power = 2 x 38 W, V_{CC} = 26 V, load = 8 ohm, frequency = 1 kHz 15
Figure 21. Output filter .. 16
Figure 22. Power dissipated over the series resistance [P = C*f*(2*V)^2] 17
Figure 23. Power dissipated over the series resistance [P = C*f*2(V^2)] 17
Figure 24. Damping network .. 18
Figure 25. Main filter ... 18
Figure 26. Recommended power-up and power-down sequence 19
Figure 27. Snubber network soldered as close as possible to the related IC pin 19
Figure 28. Electrolytic capacitor used first to separate the V_{CC} branches 20
Figure 29. Path between V_{CC} and ground pin minimized in order to avoid inductive paths 20
Figure 30. Large ground planes on the top and bottom sides of the PCB 21
Figure 31. PLL filter soldered as close as possible to the FILT pin 22
Figure 32. Symmetrical paths created for output stage (for differential applications) 22
Figure 33. Coils separated in order to avoid crosstalk .. 22
Figure 34. V_{CC} filter for high frequency ... 23
Figure 35. Decoupling capacitors ... 23
Figure 36. Snubber filter for spike high frequency in PWM ... 24
Figure 37. Correct common-mode and differential snubber placement 24
Figure 38. Correct output routing .. 25
Figure 39. Comparison of output routing .. 25
Figure 40. Thermal layout with large ground (1/3 for top and bottom layers) 26
Figure 41. Thermal layout with large ground (2/3 for thermal and soldering holes) 26
Figure 42. Comparison of thermal layout (top layer) .. 27
Figure 43. Comparison of thermal layout (bottom layer) .. 27
1 Functional description of the demonstration board

The following terms used in this application note are defined as follows:

- THD+N vs. Freq: Total harmonic distortion plus noise versus frequency curve
- THD+N vs. Pout: Total Harmonic Distortion (THD) plus noise versus output power
- S/N ratio: Signal-to-noise ratio
- FFT: Fast Fourier Transform Algorithm (method)
- CT: Channel separation L to R, or R to L channel crosstalk

The equipment used includes the following:

- Audio Precision (System 2700) by AP Co., USA
- DC power supply (4.5 V to 26 V)
- Digital oscilloscope (TDS3034B by Tektronix)
- PC (with APWorkbench GUI control software installed)

1.1 Connections

Power supply signal and interface connection

1. Connect the positive voltage of 24V DC power supply to the +Vcc pin and negative to GND.
2. Connect the APWorkbench board to the J1 connector of the STA350BW demonstration board.
3. Connect the S/PDIF signal cable to the RCA jack on the APWLink board, connecting to the signal source such as Audio precision or DVD player.

Note: The voltage range of the DC power supply for V_cc is 4.5 V to 26 V.

1.2 Output configuration

The STA350BW demo board is specifically configured in 2 BTL channels. For the software setup, please refer to the APWUserManualR1.0.pdf.
1.3 Schematic and block diagrams, PCB layout, bill of material

Figure 2. Schematic diagram
Figure 3. Block diagram of test connections with equipment

Audio Precision Equipment

Output to AP

S/PDIF Signal

Monitor

Digital Oscilloscope
TDS3034B Tektronix

STA350BW Demo B’D

I²S Input
(DC3V3)

From 4.5V to 26V

DC Power Supply

APWLlink Board

PC with GUI to control the chipset

AM045232v1
Figure 4. Top view of PCB layout

Figure 5. Bottom view of PCB layout
Table 1. Bill of material

<table>
<thead>
<tr>
<th>No.</th>
<th>Type</th>
<th>Footprint</th>
<th>Description</th>
<th>Qty</th>
<th>Reference</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jack</td>
<td>Through-hole</td>
<td>4P Speaker Jack</td>
<td>1</td>
<td>J7</td>
<td>Any source</td>
</tr>
<tr>
<td>2</td>
<td>MCAP</td>
<td>Through-hole</td>
<td>680NF-M(63V) Capacitor</td>
<td>2</td>
<td>C415SL, C416S</td>
<td>Any source</td>
</tr>
<tr>
<td>3</td>
<td>Terminal</td>
<td>Through-hole</td>
<td>2P Pitch: 5 mm Connector Terminal</td>
<td>1</td>
<td>CN2</td>
<td>Phoenix Contact</td>
</tr>
<tr>
<td>4</td>
<td>CNN</td>
<td>Through-hole</td>
<td>16P (8 x 2 row) 2.5 mm male CNN</td>
<td>1</td>
<td>J1</td>
<td>Any source</td>
</tr>
<tr>
<td>5</td>
<td>CCAP</td>
<td>Through-hole</td>
<td>50 volt NPO 330 pF +/- 10%</td>
<td>2</td>
<td>C418A, C425</td>
<td>Murata</td>
</tr>
<tr>
<td>6</td>
<td>CCAP</td>
<td>Through-hole</td>
<td>50 volt NPO 680 pF +/- 10%</td>
<td>1</td>
<td>C9</td>
<td>Murata</td>
</tr>
<tr>
<td>7</td>
<td>CCAP</td>
<td>Through-hole</td>
<td>50 volt 1 nF +/- 10%</td>
<td>1</td>
<td>C3</td>
<td>Murata</td>
</tr>
<tr>
<td>8</td>
<td>CCAP</td>
<td>Through-hole</td>
<td>50 volt 4.7 nF +/- 10%</td>
<td>1</td>
<td>C7</td>
<td>Murata</td>
</tr>
<tr>
<td>10</td>
<td>CCAP</td>
<td>CAP1206</td>
<td>50 volt 1 µF +/-10%</td>
<td>2</td>
<td>C426A, C426B</td>
<td>Murata</td>
</tr>
<tr>
<td>11</td>
<td>RES</td>
<td>R1206</td>
<td>4R7, +/-5% 1/4W</td>
<td>4</td>
<td>R424A, R424B, R425A, R425B</td>
<td>Murata</td>
</tr>
<tr>
<td>12</td>
<td>RES</td>
<td>R1206</td>
<td>20 +/-5% 1/4W</td>
<td>2</td>
<td>R422A, R423</td>
<td>Murata</td>
</tr>
<tr>
<td>13</td>
<td>RES</td>
<td>R0603</td>
<td>0 ohm 1/16W</td>
<td>1</td>
<td>R31</td>
<td>Murata</td>
</tr>
<tr>
<td>14</td>
<td>RES</td>
<td>R0603</td>
<td>2R2 +/-5% 1/16W</td>
<td>1</td>
<td>R32</td>
<td>Murata</td>
</tr>
<tr>
<td>15</td>
<td>RES</td>
<td>R0603</td>
<td>10K +/-5% 1/16W</td>
<td>1</td>
<td>R1</td>
<td>Murata</td>
</tr>
<tr>
<td>16</td>
<td>RES</td>
<td>R0603</td>
<td>2.2K +/-5% 1/16W</td>
<td>1</td>
<td>R6</td>
<td>Murata</td>
</tr>
<tr>
<td>17</td>
<td>RES</td>
<td>R0603</td>
<td>NS</td>
<td>2</td>
<td>R4, R5</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>ECAP</td>
<td>Through-hole</td>
<td>22 µF/ 16 V</td>
<td>1</td>
<td>C12</td>
<td>Rubycon/ Panasonic</td>
</tr>
<tr>
<td>19</td>
<td>ECAP</td>
<td>Through-hole</td>
<td>1000 µF / 35 V 105 Centigrade</td>
<td>1</td>
<td>C428</td>
<td>Rubycon/ Panasonic</td>
</tr>
<tr>
<td>20</td>
<td>Plastic rod</td>
<td></td>
<td>Hexagonal rod 15 mm length, male type</td>
<td>4</td>
<td>Four Corner</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Plastic rod</td>
<td></td>
<td>Hexagonal rod 8 mm length, female type</td>
<td>4</td>
<td>Four Corner</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>IC</td>
<td>PSSO36</td>
<td>STA350BW</td>
<td>1</td>
<td>IC1</td>
<td>ST</td>
</tr>
<tr>
<td>23</td>
<td>Coil</td>
<td>Through-hole</td>
<td>15 µH Choke Coil (1014P-01-150L)</td>
<td>4</td>
<td>L421A, L421B, L422A, L422B</td>
<td>KwangSung</td>
</tr>
<tr>
<td>24</td>
<td>PCB</td>
<td></td>
<td>STA350BW 2.0 CH VER1.0</td>
<td>1</td>
<td></td>
<td>Fastprint</td>
</tr>
</tbody>
</table>
2 Test results

All the results and graphs are from measures using equipment from Audio Precision.

Figure 6. Efficiency (2 channels, BTL configuration), $V_{CC} = 26$ V, $R_L = 6$ ohm
Figure 7. Efficiency (2 channels, BTL configuration), $V_{CC} = 26\, \text{V}$, $R_L = 8\, \text{ohm}$

Figure 8. Output power vs. supply voltage, $R_L = 6\, \text{ohm}$
Figure 9. Output power vs. supply voltage, $R_L = 8$ ohm

Figure 10. Frequency response, $V_{CC} = 24$ V, $R_L = 6$ ohm, 0 dB (Pout = 1 W)
Figure 11. Crosstalk, $V_{CC} = 24$ V, $R_L = 6$ ohm, 0 dB (Pout = 1 W)

Figure 12. SNR, $V_{CC} = 24$ V, $R_L = 6$ ohm, 0 dB (Pout = 1 W)

Figure 13. THD vs. frequency, $V_{CC} = 24$ V, $R_L = 6$ ohm, Pout = 1 W
Figure 14. FFT (0 dBFS), $V_{CC} = 24$ V, $R_L = 6$ ohm, 0 dBFS (Pout = 1 W)

Figure 15. FFT (-60 dBFS), $V_{CC} = 24$ V, $R_L = 6$ ohm, 0 dBFS (Pout = 1 W)

Figure 16. THD vs. output power, $V_{CC} = 24$ V, $R_L = 6$ ohm, $f = 1$ kHz
3 Thermal test results

Figure 17. Output power = 2 x 5 W, $V_{CC} = 26$ V, load = 6 ohm, frequency = 1 kHz

Figure 18. Output power = 2 x 10 W, $V_{CC} = 26$ V, load = 6 ohm, frequency = 1 kHz
Figure 19. Output power = 2 x 15 W, V_CC = 26 V, load = 6 ohm, frequency = 1 kHz

Figure 20. Output power = 2 x 38 W, V_CC = 26 V, load = 8 ohm, frequency = 1 kHz

The device works properly during the entire test time (30 minutes).
4 Design guidelines for schematic and PCB layout

4.1 Schematic

4.1.1 Main driver for selection of components

The characteristics of the main driver are as follows:

- Absolute maximum rating: STA350BW $V_{CC} = 30$ V
- Bypass capacitor 100 nF in parallel to $1 \mu F$ for each power V_{CC} branch. Preferable dielectric is X7R
- Vdd and Ground for PLL filter separated from the other power supply
- Coil saturation current compatible with the peak current of application

4.1.2 Decoupling capacitors

For the decoupling capacitor(s), one decoupling system can be used per channel. The decoupling capacitor must be as close as possible to the IC pins in order to avoid parasitic inductance with the copper wire on the PC board.

4.1.3 Output filter

Figure 21. Output filter

1. The key function of a snubber network is to absorb energy from the reactance in the power circuit. The purpose of the snubber RC network is to avoid unnecessary high pulse energy such as a spike in the power circuit which is dangerous to the system.
The snubber network allows the energy (big spike) to be transferred to and from the snubber network in order for the system to be worked on safely.

2. The purpose of the main filter is to limit the frequency higher than the audible range of 20 kHz, which is mandatory in order to have a clean amplifier response. The main filter is designed using the Butterworth formula to define the cutoff frequency.

3. The purpose of the damping network is to avoid the high-frequency oscillation issue on the output circuit. The damping network allows the THD to be improved and also allows avoiding the inductive copper on the PCB route when the system is working on high frequency with PWM or PCM.

Snubber filter

The snubber circuit must be optimized for the specific application. Starting values are 330 pF in series to 22 ohm. The power on this network is dependent on the power supply, frequency and capacitor value according to the following formula:

\[P = C \cdot f \cdot (2 \cdot V)^2 \]

This power is dissipated over the series resistance as shown in Figure 22.

Figure 22. Power dissipated over the series resistance \([P = C \cdot f \cdot (2 \cdot V)^2]\)

In the following case the formula to evaluate power is:

\[P = C \cdot f \cdot 2 \cdot (V^2) \]

This power is dissipated over the series resistance as shown in Figure 23.

Figure 23. Power dissipated over the series resistance \([P = C \cdot f \cdot 2(V^2)]\)
Damping network

The C-R-C is a damping network. It is mainly intended for high inductive loads.

Figure 24. Damping network

![Damping network diagram](image)

Main filter

The main filter is an L and C based Butterworth filter. The cutoff frequency must be chosen between the upper limit of the audio band (~20 kHz) and the carrier frequency (384 kHz).

Figure 25. Main filter

![Main filter diagram](image)

Recommended values

<table>
<thead>
<tr>
<th>Table 2. Recommended values</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{\text{load}})</td>
</tr>
<tr>
<td>(L_{\text{load}})</td>
</tr>
<tr>
<td>(C_{\text{load}})</td>
</tr>
<tr>
<td>C dump-S</td>
</tr>
<tr>
<td>C dump-P</td>
</tr>
<tr>
<td>R dump</td>
</tr>
</tbody>
</table>
Recommended power-up and power-down sequence

Figure 26. Recommended power-up and power-down sequence

4.2 PCB layout

The following figures illustrate layout recommendations.

Figure 27. Snubber network soldered as close as possible to the related IC pin
Figure 28. Electrolytic capacitor used first to separate the V_{CC} branches

Figure 29. Path between V_{CC} and ground pin minimized in order to avoid inductive paths
For better thermal dissipation, it is recommended that 2-ounce copper be used in the PCB.
It is mandatory to have a large ground plane on the top and bottom layer and solder the slug on the PCB.

Figure 30. Large ground planes on the top and bottom sides of the PCB
Figure 31. PLL filter soldered as close as possible to the FILT pin

Figure 32. Symmetrical paths created for output stage (for differential applications)

Figure 33. Coils separated in order to avoid crosstalk
Figure 34. VCC filter for high frequency

Placing the VCC filter capacitors close to the pins avoids an inductive coil generated by the copper wire because the system is working in PWM with fast switching (the frequency is about 340 kHz) so the longer copper wire is very easy to become an inductor. To improve this we suggest using ceramic capacitors to balance the reactance.

It is mandatory to put the ceramic capacitors as close as possible to the related pins. The distance between the capacitor to the related pins is suggested to be within 5 mm.

Figure 35. Decoupling capacitors

Solder the decoupling capacitors as close as possible to the related IC pin in order to reduce the inductive coil with copper wire (parasitic inductor). As shown in Figure 35, the first example is a correct layout while the second example is incorrect.
A strong spike could occur if the snubber network is far from the pins and could possibly damage the IC. It is recommended that the distance between snubber network and the pins be within 3 mm, which takes into consideration the diameter of the copper wire.
Figure 38. Correct output routing

Figure 39. Comparison of output routing
Figure 40. Thermal layout with large ground (1/3 for top and bottom layers)

Figure 41. Thermal layout with large ground (2/3 for thermal and soldering holes)

Figure 41 shows an example of the thermal resistance junction to ambient on the bottom side of the STA335B, obtainable with a ground copper area of 7 x 8 cm and with 24 via holes.

Please note that the thermal pad must be connected to ground in order to properly set the IC references. It is necessary that the heat flow freely to the sides of the IC, not only to the top of board but also to the bottom of board, which allows better dissipation of the high temperature using the soldered via holes of the PCB.
Figure 42. Comparison of thermal layout (top layer)

- Good Thermal Layout (Top) – Heat can flow freely to the sides
- Bad Thermal Layout (Top) – Heat flow is cut off by the snubbers

Figure 43. Comparison of thermal layout (bottom layer)

- Good Thermal Layout (Bottom) – Plenty of copper area
- Bad Thermal Layout (Bottom) – Little copper area on three sides
5 Revision history

Table 3. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>08-Apr-2011</td>
<td>1</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>