INTRODUCTION

The digital output of the 10-bit A/D Controller is not always linear when compared to the analog input voltage.

This application note explains in brief the non-linearity effect around the center of the analog input range and its impact on applications.

1 ERROR DISTRIBUTION

The errors are not evenly distributed on entire voltage range.

Figure 1. Diagram for error recorded Vs analog voltage range

There can be cross-over points where, the error changes from positive polarity to negative or vice versa.
1.1 TRANSFER CURVE

In ideal case, if we draw a transfer curve between the analog input and digital expected values, there is a linearity and one-to-one correspondence.

Figure 2. Approximate transfer curve around center of analog range

In practice, the curve between analog input and digital recorded value is not perfectly linear. There is a potential non-linearity at the center of analog input range i.e around digital code of 512.

1.2 AFFECTED VOLTAGE RANGE

(approximate, only for reference) for $V_{AREF} = 5V$

Table 1. Affected voltage range

<table>
<thead>
<tr>
<th>Analog Voltage</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital code corresponding to analog voltage</td>
<td>$V_{AREF}/2 - 20mV$</td>
<td>$V_{AREF}/2 + 25mV$</td>
</tr>
<tr>
<td>509</td>
<td>511</td>
<td>513</td>
</tr>
<tr>
<td>510</td>
<td>512</td>
<td>514</td>
</tr>
<tr>
<td>511</td>
<td>513</td>
<td>515</td>
</tr>
<tr>
<td>512</td>
<td>514</td>
<td>516</td>
</tr>
<tr>
<td>513</td>
<td>515</td>
<td>517</td>
</tr>
</tbody>
</table>

The behavior described above is less than the typical accuracy error specified in the ST7 datasheets (typical TUE, DLE), but there is a possible impact if the user does not consider the strong non-linearity in transfer curve and change in polarity of errors of digital values for increasing analog input between 509 to 516.

1.3 WORKAROUND

To handle this non-linearity the user has to take care in the software depending on the application.

Please note that the digital codes are linear below and above the 512. For majority of the applications this behavior will have no impact. But for sensitive applications related to process control there is a possible impact if not taken care.
2 REFERENCES

AN1636: Understanding and minimizing ADC conversion errors.

AN1711: Software techniques for compensating ADC errors.
“THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF THE INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.”