Introduction

The EV board concept is intended to provide customers with an easy way to connect ST's surface mounted VIPower® drivers into their existing prototype circuitry. The EV boards come pre-assembled with one of ST's VIPower high-side drivers.

Figure 1. PowerSSO-12 evaluation board

These boards provide mounting solutions and some heat sinking capability for prototype development. There are still external components required to make these devices work in any application.

Figure 2. PowerSSO-12 package

This document provides application schematics for the following evaluation boards:

Table 1. EV board

<table>
<thead>
<tr>
<th>12 V analog devices</th>
<th>12 V digital devices</th>
<th>24 V system device</th>
</tr>
</thead>
<tbody>
<tr>
<td>EV-VN5016AJ</td>
<td>EV-VN5E050J</td>
<td>EV-VND5T100AJ</td>
</tr>
<tr>
<td>EV-VN5E025AJ</td>
<td>EV-VND5E050J</td>
<td></td>
</tr>
<tr>
<td>EV-VN5E050AJ</td>
<td>EV-VND5E160J</td>
<td></td>
</tr>
<tr>
<td>EV-VND5E050AJ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EV-VND5E160AJ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contents

1. **Application schematics** ... 4
 1.1 Digital feedback designs .. 4
 1.1.1 VN5E050J-E application schematic 5
 1.1.2 VND5E160J-E application schematic 5
 1.1.3 VND5E050J application schematic 6
 1.2 Analog feedback drivers .. 6
 1.2.1 VN5016AJ-E / VN5E025AJ application schematic 7
 1.2.2 VN5E050AJ application schematic 7
 1.2.3 VND5E160AJ application schematic 8
 1.2.4 VND5E050AJ application schematic 8
 1.3 24 V system devices ... 9
 1.3.1 VND5T100AJ application schematic 9

Appendix A Reference documents ... 10

Revision history ... 11
List of figures

Figure 1. PowerSSO-12 evaluation board ... 1
Figure 2. PowerSSO-12 package .. 1
Figure 3. Typical single output HSD with digital feedback block diagram ... 4
Figure 4. VN5E050J-E evaluation board application schematic 5
Figure 5. VND5E160J evaluation board application schematic ... 5
Figure 6. VND5E050J evaluation board application schematic ... 6
Figure 7. Typical dual output analog feedback high-side driver block diagram 6
Figure 8. VN5016AJ or VN5E025AJ evaluation board application schematic 7
Figure 9. VN5E050AJ evaluation board application schematic ... 7
Figure 10. VND5E160AJ evaluation board application schematic ... 8
Figure 11. VND5E050AJ evaluation board application schematic ... 8
Figure 12. VNDST100AJ evaluation board application schematic ... 9
1 Application schematics

The evaluation boards themselves do not have any components other than the high-side driver that is mounted on it. The schematics provided in this document are recommended for their proper functionality. All designs have different needs and requirements. Whatever design you decide to use, it will still need to be verified in order to meet your application specifications. ST implies no guarantee or warranty (see Appendix A: Reference documents).

Note: When more than one pin is used for an output, all output pins must be tied together for proper operation.

ST has produced two user manuals: the UM1556 (for 12 V devices) and the UM1557 (for 24 V devices) (see Appendix A: Reference documents). Those user manuals are VIPower hardware design guides that provide the necessary information to successfully design your circuit using our VIPower drivers.

1.1 Digital feedback designs

These devices have a logic level fault pin that is pulled low when a fault is detected and the status disable (STAT_DIS) pin is held low. The feedback is an open Drain configuration and requires a pull-up resistor for proper operation. For this package type (PowerSSO-12) there are single, and dual output devices.

Figure 3. Typical single output HSD with digital feedback block diagram
1.1.1 VN5E050J-E application schematic

Figure 4. VN5E050J-E evaluation board application schematic

1.1.2 VND5E160J-E application schematic

Figure 5. VND5E160J evaluation board application schematic
1.1.3 VND5E050J application schematic

Figure 6. VND5E050J evaluation board application schematic

1.2 Analog feedback drivers

Analog feedback devices have a sense resistor that, when properly scaled, provides a reasonable representation of the output current in terms of voltage that can be measured as well as its diagnostic information. How to properly scale that resistor can be found in the user manual UM1556 (see Appendix A: Reference documents).

Figure 7. Typical dual output analog feedback high-side driver block diagram
1.2.1 VN5016AJ-E / VN5E025AJ application schematic

Figure 8. VN5016AJ or VN5E025AJ evaluation board application schematic

1.2.2 VN5E050AJ application schematic

Figure 9. VN5E050AJ evaluation board application schematic
1.2.3 VND5E160AJ application schematic

Figure 10. VND5E160AJ evaluation board application schematic

1.2.4 VND5E050AJ application schematic

Figure 11. VND5E050AJ evaluation board application schematic
1.3 24 V system devices

1.3.1 VND5T100AJ application schematic

The VND5T100AJ is a 24 V system device. The maximum voltage rating for this device is elevated from the standard 41 V to 58 V. 24 V products are equipped with a latch-off feature keeping the device switched-off once power limitation or thermal shutdown is triggered. This latch can be activated by holding the FR_STBY pin high. Resetting the device to retry the load requires pulling the FR_STBY pin low. Leaving the FR_STBY pin low disables the latch off feature and lets the part automatically retry shorted loads. More details can be found in the user manual UM1557 (see Appendix A: Reference documents).

Figure 12. VND5T100AJ evaluation board application schematic
Appendix A Reference documents

1. VN5016AJ evaluation board (EV-VN5016AJ, DocID 023957)
2. VN5E025AJ evaluation board (EV-VN5E025AJ, DocID 023956)
3. VN5E050AJ evaluation board (EV-VN5E050AJ, DocID 023952)
4. VND5E050AJ evaluation board (EV-VND5E050AJ, DocID 023958)
5. VND5E160AJ evaluation board (EV-VND5E160AJ, DocID 023959)
6. VN5E050J evaluation board (EV-VN5E050J, DocID 023960)
7. VND5E050J evaluation board (EV-VND5E050J, DocID 023961)
8. VND5E160J evaluation board (EV-VND5E160J, DocID 023962)
9. VND5T100AJ evaluation board (EV-VND5T100AJ, DocID 023967)
10. VIPower M0-5 and M0-5Enhanced high-side drivers (UM1556, DocID 023520)
11. VIPower MO-5T: high-side switches for 24V systems (UM1557, DocID 023521)
Revision history

Table 2. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>03-Dec-2012</td>
<td>1</td>
<td>Initial release.</td>
</tr>
<tr>
<td>17-Sep-2013</td>
<td>2</td>
<td>Updated disclaimer.</td>
</tr>
</tbody>
</table>