Introduction

This document describes a firmware (X-CUBE-SMCARD) and hardware Smartcard interface solution based on the USART peripheral integrated in STM32 microcontrollers. The main purpose of this firmware and hardware package is to provide resources that facilitate the development of applications using the USART peripheral in Smartcard mode.

The X-CUBE-SMCARD firmware interface consists of library source files developed to support the ISO 7816-3/4 specification.

An application example based on STM3210B-EVAL, STM3210E-EVAL, STM3210C-EVAL, STM32L152C-Discovery and STM32L0538-Discovery evaluation boards is also provided.

This application note is related to STM32Cube firmware. For standard library firmware refer to AN2598:“Smartcard interface with STM32F10x and STM32L1xx microcontrollers”.

This document, its associated firmware and the cited references are available on the STMicroelectronics website www.st.com.
Contents

1 Definitions ... 6

2 Smartcard interface description 7
 2.1 Introduction .. 7
 2.2 External interface .. 7
 2.3 Protocol ... 8
 2.4 Smartcard clock generator 8
 2.5 Advanced features supported by HW 8

3 Smartcard reader hardware connection 10

4 ISO 7816: protocol overview 13
 4.1 Introduction .. 13
 4.2 ISO 7816-2 – pin location 13

5 ISO 7816-3 – Electronic signal and transmission protocol 15
 5.1 Card power-up and reset 15
 5.2 Data transfer .. 17
 5.3 Answer to reset (ATR) .. 18

6 ISO 7816-4 – Smartcard commands 20
 6.1 T0 protocol ... 20
 6.2 T1 protocol (only on STM32L0) 22
 6.3 Application-level protocols 23
 6.3.1 The ISO 7816-4 APDU 24
 6.3.2 File system API ... 25
 6.3.3 ISO 7816-4 functions 26
 6.3.4 Security API .. 28

7 Smartcard interface library: description 30
 7.1 File organization ... 30
 7.2 The protocol context ... 30
 7.3 How to send APDU commands to the Smartcard 33
7.3.1 Smartcard command example with T=0 33
7.3.2 Smartcard command example with T=1 34
7.4 Parity error management .. 34
 7.4.1 Data sent from card to reader ... 34
 7.4.2 Data sent from reader to card .. 34
7.5 EDC processing ... 35

8 Smartcard interface example ... 36
 8.1 Operation with a card that indicates T=0 support 36
 8.1.1 Startup: Answer to reset (ATR) 36
 8.1.2 Reading a file at a specified path 36
 8.1.3 Enabling/disabling the PIN1 (CHV1) code 37
 8.1.4 Verifying the PIN1 (CHV1) code 37
 8.2 Operation with a T=1 card .. 38
 8.3 Firmware description ... 38

9 Conclusion ... 40

10 Revision history .. 41
List of tables

Table 1. List of acronyms .. 6
Table 2. Smartcard pins ... 7
Table 3. Features by MCU line .. 9
Table 4. STM32F10x/STM32L1xx and Smartcard connections 10
Table 5. Connections between different STM32L0/L1 boards and Smartcard ... 10
Table 6. Pin assignment .. 14
Table 7. Answer to reset structure 19
Table 8. CLA instruction set definitions 21
Table 9. ISO 7816-4 INS codes .. 21
Table 10. Block structure .. 22
Table 11. File library description 30
Table 12. SC_State_t ... 31
Table 13. Document revision history 41
List of figures

Figure 1. ISO 7816-3 asynchronous protocol ... 8
Figure 2. Smartcard interface hardware connection ... 12
Figure 3. Contact definitions for Smartcards .. 13
Figure 4. Reader and card FSM ... 15
Figure 5. Answer to reset ... 16
Figure 6. Character waiting time .. 23
Figure 7. Block waiting time .. 23
Figure 8. Application communication architecture ... 24
Figure 9. Command APDU structure .. 24
Figure 10. Response APDU structure .. 25
Figure 11. Smartcard file system architecture(1) ... 26
Figure 12. State machine for Smartcard operation ... 31
Figure 13. Smartcard example: file system description 36
Figure 14. Smartcard software (T=1) flow .. 39
1 Definitions

Table 1. List of acronyms

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCU</td>
<td>Microcontroller</td>
</tr>
<tr>
<td>UART</td>
<td>Universal asynchronous receiver transmitter</td>
</tr>
<tr>
<td>USART</td>
<td>Universal synchronous-asynchronous receiver transmitter</td>
</tr>
<tr>
<td>GPIO</td>
<td>General purpose input/output</td>
</tr>
<tr>
<td>CPU</td>
<td>Central processing unit</td>
</tr>
<tr>
<td>TPDU</td>
<td>Transmission protocol data unit</td>
</tr>
<tr>
<td>APDU</td>
<td>Application protocol data unit</td>
</tr>
<tr>
<td>ATR</td>
<td>Answer to reset</td>
</tr>
</tbody>
</table>
2 Smartcard interface description

2.1 Introduction

The Smartcard interface is developed using the USART Smartcard mode. For the description of the USART registers, please refer to the specific reference manual.

The USART Smartcard mode supports asynchronous protocol Smartcards as defined in the ISO 7816-3 standard.

With the Smartcard mode enabled, the USART must be configured as:

- eight data bits plus parity;
- 0.5 or 1.5 stop bits.

A 5-bit prescaler and the Smartcard clock generator provide the clock to the Smartcard. GPIO pins in conjunction with software are used to provide the rest of the functions required to interface to the Smartcard.

Some hardware features (e.g. receiver timeout, end of block detection) allow an easy implementation of the T = 1 protocol. These features are available only on some STM32 microcontrollers, hence the T = 1 example provided in this application note is based on STM32L0 products.

The inverse signaling convention as defined in ISO 7816-3, inverted data and MSB first, is supported by HW on some STM32 microcontrollers, while others rely on partial support provided with SW workaround.

2.2 External interface

<table>
<thead>
<tr>
<th>STM32 pin / function</th>
<th>Smartcard pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>USART_CK</td>
<td>CLK</td>
<td>Smartcard clock</td>
</tr>
<tr>
<td>USART_TX</td>
<td>IO</td>
<td>IO serial data: open drain</td>
</tr>
<tr>
<td>Any GPIO</td>
<td>RST</td>
<td>Reset to card</td>
</tr>
<tr>
<td>Any GPIO</td>
<td>V_CC</td>
<td>Supply voltage</td>
</tr>
<tr>
<td>Any GPIO</td>
<td>V_PP</td>
<td>Programming voltage</td>
</tr>
</tbody>
</table>

As interface between STM32Fx/STM32Lx pins and Smartcard pins, the ST8024 device - Smartcard interface is used. ST8024 is used as voltage level translator, pin driver, protection and Smartcard power supply between microcontroller and Smartcard. For connection details, see Figure 2 and ST8024 device datasheet. Application note AN2269, available on www.st.com, provides useful info on use of the ST8024 device.

The Smartcard_RST (Smartcard reset), Smartcard_3/5V (3 V or 5 V), Smartcard_CMDVCC (command for V_CC), and Smartcard_OFF signals (signal for card detection) are provided by GPIO bits of the I/O ports under software control. Programming the GPIO bits of the port for alternate function open-drain mode connects the USART_TX data signal to the Smartcard_IO pin with the correct driver type and the clock generator to the Smartcard_CLK pin configured in alternate function output push-pull.
Note: With Discovery boards, Nucleo boards and some newer EVAL boards it may be necessary to use either direct connection of card to MCU pins, or provide another translator.

2.3 Protocol

The ISO 7816-3 standard defines the bit times for the asynchronous protocol in terms of time units called ETUs (elementary time units), that are related to the clock frequency input to the card. The length of an ETU is a bit time. The USART transmitter output and receiver input are internally connected together in Smartcard mode. For the transmission of data from the STM32 microcontroller to the Smartcard, the USART must be set up in Smartcard mode.

![Figure 1. ISO 7816-3 asynchronous protocol](ai14612)

2.4 Smartcard clock generator

The Smartcard clock generator provides a clock signal to the connected Smartcard. The Smartcard uses this clock to derive the baud rate clock for the serial I/O between the Smartcard and another USART. The clock is also used for the CPU in the card, if present.

Operation of the Smartcard interface requires that the clock rate to the card is adjusted while the CPU in the card is running code so that the baud rate can be changed or the performance of the card can be increased. The protocols that govern the negotiation of these clock rates and the altering of the clock rate are detailed in the ISO 7816-3 standard.

The clock is used as the CPU clock for the Smartcard, therefore updates to the microcontroller clock rate must be synchronized to the Smartcard clock, that is the clock high or low pulse widths must not be shorter than either the old or new programmed value.

2.5 Advanced features supported by HW

Some MCUs feature USART peripheral with extended HW support of the Smartcard interface. Table 3 highlights the main differences.
<table>
<thead>
<tr>
<th>Feature</th>
<th>STM32L0/L4</th>
<th>STM32L1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STM32F0/F3/F7</td>
<td>STM32F1/F2/F4</td>
</tr>
<tr>
<td>In case of transmission error, according to the protocol specification,</td>
<td>The USART can handle</td>
<td>The data retry must be</td>
</tr>
<tr>
<td>the USART must send the character.</td>
<td>automatic re-sending of</td>
<td>managed by software.</td>
</tr>
<tr>
<td></td>
<td>data. The number of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>retries is programmable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(up to 8).</td>
<td></td>
</tr>
<tr>
<td>In case of reception error, according to the protocol specification,</td>
<td>The number of maximum</td>
<td></td>
</tr>
<tr>
<td>the Smartcard must resend the same character.</td>
<td>retries is programmable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(up to 8).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>If the received character</td>
<td></td>
</tr>
<tr>
<td></td>
<td>is still erroneous after</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the programmed number of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>retries, the USART will</td>
<td></td>
</tr>
<tr>
<td></td>
<td>stop transmitting the NACK</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and will signal the error</td>
<td></td>
</tr>
<tr>
<td></td>
<td>as a parity error.</td>
<td></td>
</tr>
<tr>
<td>Character Wait Time (CWT)</td>
<td>Implemented using the new</td>
<td>All block transfer features to</td>
</tr>
<tr>
<td></td>
<td>timeout feature.</td>
<td>be implemented by software.</td>
</tr>
<tr>
<td>Block Wait Time (BWT)</td>
<td>Block length and End of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>block detection</td>
<td></td>
</tr>
<tr>
<td>Inverse convention</td>
<td>Binary data inversion and</td>
<td>Inversion and bit order</td>
</tr>
<tr>
<td></td>
<td>byteendiannes configurable</td>
<td>change must be handled by</td>
</tr>
<tr>
<td></td>
<td>in USART registers.</td>
<td>software.</td>
</tr>
</tbody>
</table>

Character Wait Time (CWT) Implemented using the new timeout feature.
Block Wait Time (BWT) All block transfer features to be implemented by software.
Block length and End of block detection
Inverse convention Binary data inversion and byteendiannes configurable in USART registers.
3 Smartcard reader hardware connection

To interface to the Smartcard, the ST8024 device was used. The ST8024 is a complete low-cost, analog interface for asynchronous 3 V and 5 V Smartcards. It is placed between the Smartcard and the MCU with few external components to perform all supply protection and control functions.

Other boards, such as STM32L152-EVAL board (based on STM32L152VBT6), do not have a Smartcard reader. There are three ways to run this example:

- Replace STM3210C-EVAL original microcontroller by the STM32L152VBT6 (they are pin compatible).
- Use an external Smartcard reader. Connections between STM32L152-EVAL and external Smartcard pins (on ST8024) are described in Table 5.
- Connect the Smartcard directly to the STM32 I/O pins (while this method may be good for evaluation using 3 V card, it cannot be recommended as a permanent solution). This is the method used in the example projects, running on Discovery boards.

Table 4. STM32F10x/STM32L1xx and Smartcard connections

<table>
<thead>
<tr>
<th>Smartcard pins (on ST8024)</th>
<th>STM3210B-EVAL</th>
<th>STM3210E-EVAL</th>
<th>STM3210C-EVAL</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3: CLK</td>
<td>USART3_CK: PB12</td>
<td>USART3_CK: PB12</td>
<td>USART3_CK: PD10</td>
<td>Smartcard clock: alternate function push-pull</td>
</tr>
<tr>
<td>C7: IO</td>
<td>USART3_TX: PB10</td>
<td>USART3_TX: PB10</td>
<td>USART3_TX: PD08</td>
<td>IO serial data: alternate function open drain</td>
</tr>
<tr>
<td>C2: RST</td>
<td>PB.11</td>
<td>PB.11</td>
<td>PD.09</td>
<td>Reset to card: output push-pull</td>
</tr>
<tr>
<td>C1: VCC</td>
<td>PE.07</td>
<td>PC.06</td>
<td>PD.07</td>
<td>Supply voltage: output push-pull</td>
</tr>
<tr>
<td>OFF</td>
<td>PE.14</td>
<td>PC.07</td>
<td>PE.07</td>
<td>Smartcard detect: input floating</td>
</tr>
<tr>
<td>3/5V</td>
<td>PD.11</td>
<td>PB.00</td>
<td>PC.00</td>
<td>3 V or 5 V: output push-pull</td>
</tr>
</tbody>
</table>

Table 5. Connections between different STM32L0/L1 boards and Smartcard

<table>
<thead>
<tr>
<th>External Smartcard pin (on ST8024)</th>
<th>STM32L152-EVAL</th>
<th>STM32L053-Discovery</th>
<th>STM32L152-Discovery</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK</td>
<td>PD10</td>
<td>PA.08</td>
<td>PA.08</td>
<td>Smartcard clock: alternate function push-pull</td>
</tr>
<tr>
<td>IO</td>
<td>PD.08</td>
<td>PA.09</td>
<td>PA.09</td>
<td>IO serial data: alternate function open drain</td>
</tr>
<tr>
<td>RST</td>
<td>PD.09</td>
<td>PB.15</td>
<td>PC.10</td>
<td>Reset to card: output push-pull</td>
</tr>
<tr>
<td>VCC</td>
<td>PD.07</td>
<td>PB.14</td>
<td>PC.12</td>
<td>Supply voltage: output push-pull</td>
</tr>
</tbody>
</table>
Table 5. Connections between different STM32L0/L1 boards and Smartcard (continued)

<table>
<thead>
<tr>
<th>External Smartcard pin (on ST8024)</th>
<th>STM32L152-EVAL</th>
<th>STM32L053-Discovery</th>
<th>STM32L152-Discovery</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF</td>
<td>PE.07(1)</td>
<td>PA.10</td>
<td>PA.10</td>
<td>Smartcard detect: input floating</td>
</tr>
<tr>
<td>3/5V</td>
<td>PC.00</td>
<td>NA (3 V only)</td>
<td>NA (3 V only)</td>
<td>3 or 5 V: output push-pull</td>
</tr>
</tbody>
</table>

1. Remove R75 resistor
Figure 2. Smartcard interface hardware connection
4 ISO 7816: protocol overview

4.1 Introduction

“ISO 7816: Identification cards - Integrated circuit(s) cards with contacts” provides the basis to transition the relatively simple identification card from a token that can be compromised through forgery, theft, or loss into a tamper-resistant and "intelligent" integrated circuit card (ICC), more popularly known as a Smartcard. ISO 7816 includes at least six approved parts and has several additional parts under review:

- Part 1: Physical characteristics
- Part 2: Dimensions and location of the contacts
- Part 3: Electrical interface and transmission protocols
- Part 3: Amendment 2 - Revision of protocol type selection
- Part 4: Organization, security and commands for interchange
- Part 5: Registration of application providers

4.2 ISO 7816-2 – pin location

ISO 7816-2 specifies an ICC with eight electrical contacts present in a standardized position on the front face of the card. These are referred to as C1 through C8. Some of these contacts are electrically connected to the microprocessor chip embedded within the card; some are not, having been defined to allow for enhancements but unused at the present time. Figure 3 shows the contact positions.

Figure 3. Contact definitions for Smartcards
<table>
<thead>
<tr>
<th>Pins</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>$V_{CC} = 5,\text{V or 3.3,V}$</td>
</tr>
<tr>
<td>C2</td>
<td>Reset</td>
</tr>
<tr>
<td>C3</td>
<td>Clock</td>
</tr>
<tr>
<td>C4</td>
<td>RFU</td>
</tr>
<tr>
<td>C5</td>
<td>GND</td>
</tr>
<tr>
<td>C6</td>
<td>V_{PP}</td>
</tr>
<tr>
<td>C7</td>
<td>I/O</td>
</tr>
<tr>
<td>C8</td>
<td>RFU</td>
</tr>
</tbody>
</table>
5 ISO 7816-3 – Electronic signal and transmission protocol

ISO 7816-3 begins to delve into the specification of the “intelligent” aspects of the Smartcard. This standard describes the relationship between the Smartcard and the reader as one of “slave” (the Smartcard) and “master” (the reader). Communications are established by the reader signaling to the Smartcard through the contacts noted previously and are continued by the Smartcard responding accordingly.

Communication between the card and reader proceed according to the state transitions illustrated in Figure 4.

![Figure 4. Reader and card FSM](image)

The communication channel is single-threaded; once the reader sends a command to the Smartcard, it blocks until a response is received.

5.1 Card power-up and reset

When a card is inserted into a reader, no power is applied to any of the contacts. The chip on the card can be seriously damaged by applying power to the wrong contacts, and this
situation could easily occur when a card is inserted across powered contact points. The contacts remain unpowered until an edge detector determines that the card is properly aligned with the contact points within acceptable (for the reader) mechanical tolerance.

When the reader detects that the card is properly inserted, power is applied to the card. First, the contacts are brought to a coherent idle state, as shown in Table 6. A reset signal is then sent to the card via the RST contact line. The idle state occurs when the power \(V_{CC} \) contact is brought up to a normal, stable operating voltage of 5 V. An initial power setting of 5 V is always applied first, even though some microprocessor chips being introduced operate at 3 V when in an I/O state. The I/O contact is set to a reception mode on the reader side and a stable clock (CLK) is applied. The reset line is in a low state. It must remain in a low state for at least 40000 CLK cycles before a valid reset sequence can be started by the reader, raising the reset line to a high state.

Figure 5. Answer to reset

1. \(t_3 = 40 \, 000 \) clock cycles.
2. ATR must be issued by card between 400 clock cycles and 40 000 clock cycles after RST goes high.
5.2 Data transfer

Data transfer between the reader and the card occurs through the concerted action of two of the contact lines: CLK and I/O. The I/O line conveys a single bit of information per unit of time as defined by the CLK depending on its voltage relative to GND. A 1 bit can be conveyed either through a +5 V value or through a 0 V value. The actual convention used is determined by the card and is conveyed to the reader through the "initial character" of the ATR, which is referenced as TS. To transfer 1 byte of information, 10 bits are actually moved across the I/O line; the first is always a "start bit" and the last is always a parity bit used to convey even parity. Considering that the I/O line can be (in one bit period) either in a high (H) state or a low (L) state, the TS character of the form HLHLLLLLLH signals that the card wants to use the "inverse convention," meaning that H corresponds to a 0 and L corresponds to a 1. A TS character of the form HLHHLHHHLLH signals that the card wants to use the "direct convention", meaning that H corresponds to a 1 and L corresponds to a 0.

Note: As detailed in Table 3, in some MCUs the direct or inverse convention are programmed using features in the USART peripheral like data inversion and MSB first.

The direct convention and the inverse convention also control the bit ordering with each byte transferred between the card and the reader. In the direct convention, the first bit following the start bit is the low-order bit of the byte. Successively higher-order bits follow in sequence. In the inverse convention, the first bit following the start bit is the high-order bit of the byte. Successively lower-order bits follow in sequence. Parity for each byte transferred should be even; this means that the total number of 1 bits in the byte, including the parity bit, must be an even number.

The I/O line comprises a half-duplex channel; that is, either the card or the reader can transmit data over the same channel, but they both cannot be transmitting at the same time. So as part of the power-up sequence, both the reader and the card enter a receive state in which they are listening to the I/O line. With the start of the reset operation, the reader remains in the receive state while the card must enter a send state in order to send the ATR back to the reader. From this point on, the two ends of the channel alternate between send states and receive states. With a half-duplex channel, there is no reliable way for either end to asynchronously change a state from send to receive or from receive to send. Rather, if this is desired, that end must go into a receive state and allow a timeout of the operation in progress; then a reader end will always try to re-establish a known sequence by re-entering a send state. The CLK and I/O lines can support a wide variety of data transmission speeds. The specific speed is defined by the card and is conveyed back to the reader through an optional character in the ATR. The transmission speed is set through the establishment of one bit time on the I/O line, which means that an interval is established at which the I/O line may be sampled in order to read a bit and then each successive bit. This time is defined as an elementary time unit (ETU) and is established through a linear relationship between several factors. Note that the TS character is returned before any definition of the ETU can be made. This is possible because the ETU during the ATR sequence is always specified to be ETU0 = 372 / (CLK frequency), where the CLK frequency is between 1 and 5 MHz; in fact, the frequency is almost always selected to have the initial data transfer rate at 9,600 bits per second.
5.3 **Answer to reset (ATR)**

Once an RST signal is sent from the reader to the card, the card must respond with the first character of the ATR within 40000 CLK cycles. The card might not respond with an ATR for a number of reasons, the most prevalent being that the card is inserted incorrectly into the reader (probably upside down). In some instances, the card may not be functioning because it has been damaged or broken. Whatever the case, if the ATR is not returned within the prescribed time, the reader should begin a sequence to power down the card. During this sequence, the reader sets the RST, CLK, and I/O lines low and drops voltage on the V_{CC} line to nominal 0 (that is, less than 0.4 V).

The ATR is a string of characters returned from the card to the reader following the successful completion of the power-up sequence. As defined in ISO/IEC 7816-3, the ATR consists of 33 or fewer characters comprising the following elements:

- **TS** - a mandatory initial character
- **T0** - a mandatory format character
- **TAi TBi TCi TDi** - optional interface characters
- **T1, T2,TK** - optional historical characters
- **TCK** - a conditional check character

The historical characters can be defined at the discretion of the card manufacturer or the card issuer. These characters are typically used to convey some type of designation of the type, model, and use of this specific card. When used in this way, the historical characters provide a mechanism through which systems can automatically detect the use of an inserted card (within that system) and can initiate other actions (or software) accordingly. The check character provides a mechanism through which the integrity of the ATR can be measured; that is, whether a transmission error has occurred in sending the characters from the card to the reader.

The structure of the ATR is illustrated in Table 7. As discussed previously, the initial TS character is used to establish the bit-signaling and bit-ordering conventions between the reader and the card. The T0 character is used to signal the presence or absence of subsequent interface characters or historical characters. The interface characters are used to tailor the characteristics of the I/O channel, including the specific protocol used by the card and reader during subsequent exchange of commands (from the reader to the card) and responses (from the card to the reader). The historical characters, if present, are used to convey card-manufacturer-specific information from the card to the reader, and hence to the application system being served by the reader. There is really no established standard for the information presented in the historical bits.
The total length of the ATR sequence is limited to 33 bytes and must adhere to the format shown in Table 7.

Table 7. Answer to reset structure

<table>
<thead>
<tr>
<th>Character section</th>
<th>Character</th>
<th>ID</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial character section</td>
<td>TS</td>
<td></td>
<td>Mandatory initial character</td>
</tr>
<tr>
<td>Format character section</td>
<td>T0</td>
<td></td>
<td>Indicator of presence of interface characters</td>
</tr>
<tr>
<td>Interface character section</td>
<td>TA1</td>
<td></td>
<td>Global, codes F1 and D1</td>
</tr>
<tr>
<td></td>
<td>TB1</td>
<td></td>
<td>Global, codes 11 and PI1</td>
</tr>
<tr>
<td></td>
<td>TC1</td>
<td></td>
<td>Global, code N</td>
</tr>
<tr>
<td></td>
<td>TD1</td>
<td></td>
<td>Codes Y2 and T</td>
</tr>
<tr>
<td></td>
<td>TA2</td>
<td></td>
<td>Specific</td>
</tr>
<tr>
<td></td>
<td>TB2</td>
<td></td>
<td>Global, code PI2</td>
</tr>
<tr>
<td></td>
<td>TC2</td>
<td></td>
<td>Specific</td>
</tr>
<tr>
<td></td>
<td>TD2</td>
<td></td>
<td>Codes Y3 and T</td>
</tr>
<tr>
<td></td>
<td>TA3</td>
<td></td>
<td>TAi, Tbi and Tci are specific</td>
</tr>
<tr>
<td></td>
<td>...TDi</td>
<td></td>
<td>Codes Yi+1 and T</td>
</tr>
<tr>
<td></td>
<td>T1</td>
<td></td>
<td>Card specific information</td>
</tr>
<tr>
<td>Historical character section</td>
<td>...TKi</td>
<td></td>
<td>(Maximum of 15 characters)</td>
</tr>
<tr>
<td>Check character section</td>
<td>TCK</td>
<td></td>
<td>Optional check character</td>
</tr>
</tbody>
</table>
6 ISO 7816-4 – Smartcard commands

The ATR mechanism described in Section 5.3 establishes a basic communication channel between the Smartcard and the reader. This channel is a half-duplex physical channel. This section details the use of more complex protocols on top of this physical channel.

A link-level communication protocol resides directly on top of the physical channel, providing error-free communication between the reader and the Smartcard. Once this link-level protocol is established, application-level protocols can be defined. ISO 7816-4 defines two such application-level protocols:

- File system API providing a set of functions to manipulate files (for example read, write, select, etc.).
- Security service API allowing the Smartcard and the reader to mutually authenticate themselves and also to encrypt data to be exchanged between the card and the reader.

ISO 7816-4 defines a protocol message structure to support the application protocol APIs. This message structure consists of application protocol data units (APDUs) which are exchanged between the reader application and the Smartcard application by the link-level protocol. This section will provide an overview of the file access and security APIs.

6.1 T0 protocol

The T0 protocol is a byte-oriented protocol where a character is transmitted across the channel between the reader and the card. In addition, error handling is performed on each byte by looking at the parity bit. If the actual parity bit does not correspond to the parity of the transmitted data, then an error must have occurred. In the T0 protocol, the receiving side signals that it requires the byte to be retransmitted in the case of detecting a parity error. This is done by holding the I/O line low (normally the I/O line is set high preceding the transfer of a byte). When the transmitting side detects this, it resend the byte that was not received correctly.

The reader and the Smartcard exchange data structures known as transmission protocol data units (TPDUs). It consists of two distinct structures:

- a command that is sent from the reader to the card
- a response that is sent from the card to the reader.

The command header includes the following five fields each of one byte in length:

- CLA: class designation of the command set to establish a collection of instructions
- INS: specifies a specific instruction from within the set of instructions
- P1: used to specify the addressing used by the [CLA, INS] instruction
- P2: also used to specify the addressing used by the [CLA, INS] instruction
- P3: specifies the number of data bytes transferred to or from the card as part of the [CLA, INS] instruction execution.

Each value of CLA defines an application-specific set of instructions. Table 8 lists values for some sets of instructions.
The **INS** byte is used to identify a specific instruction within a class of instructions identified by the value of **CLA**. Table 9 lists the instructions in the ISO 7816-4 standard used to access file system and security functions.

Table 8. CLA instruction set definitions

<table>
<thead>
<tr>
<th>CLA byte</th>
<th>Instruction set</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x</td>
<td>ISO 7816-4 instructions (files and security)</td>
</tr>
<tr>
<td>10 to 7F</td>
<td>Reserved for future use</td>
</tr>
<tr>
<td>8x or 9x</td>
<td>ISO 7816-4 instructions</td>
</tr>
<tr>
<td>Ax</td>
<td>Application/vendor specific instructions</td>
</tr>
<tr>
<td>B0 to CF</td>
<td>ISO 7816-4 instructions</td>
</tr>
<tr>
<td>D0 to FE</td>
<td>Application/vendor specific instructions</td>
</tr>
<tr>
<td>FF</td>
<td>Reserved for protocol type selection</td>
</tr>
</tbody>
</table>

Table 9. ISO 7816-4 INS codes

<table>
<thead>
<tr>
<th>INS value</th>
<th>Command name</th>
<th>INS value</th>
<th>Command name</th>
</tr>
</thead>
<tbody>
<tr>
<td>0E</td>
<td>Erase Binary</td>
<td>C0</td>
<td>Get Response</td>
</tr>
<tr>
<td>20</td>
<td>Verify</td>
<td>C2</td>
<td>Envelope</td>
</tr>
<tr>
<td>70</td>
<td>Manage Channel</td>
<td>CA</td>
<td>Get Data</td>
</tr>
<tr>
<td>82</td>
<td>External Authenticate</td>
<td>D0</td>
<td>Write Binary</td>
</tr>
<tr>
<td>84</td>
<td>Get Challenge</td>
<td>D2</td>
<td>Write Record</td>
</tr>
<tr>
<td>88</td>
<td>Internal Authenticate</td>
<td>D6</td>
<td>Update Binary</td>
</tr>
<tr>
<td>A4</td>
<td>Select File</td>
<td>DA</td>
<td>Put Data</td>
</tr>
<tr>
<td>B0</td>
<td>Read Binary</td>
<td>DC</td>
<td>Update Record</td>
</tr>
<tr>
<td>B2</td>
<td>Read Record(s)</td>
<td>E2</td>
<td>Append Record</td>
</tr>
</tbody>
</table>

The parameters **P1** and **P2** are defined at the link level but are actually dependent on the specific instruction (application level). They provide control or addressing parameters for the various application-specific instructions. For example, in the Select File instruction, **P1** is used to indicate how the file will be referred to (by identifier, name, path etc.) and **P2** offers further refinement as to which file is to be selected. **P3** defines the number of bytes to be transmitted during the execution of the INS specified instruction. The convention used to indicate movement of data is card-centric that is, outgoing refers to data moving from the card to the reader and incoming refers to data moving from the reader to the card.

For each command TDPU sent from the reader, a response TPDU is sent by the card. The response includes three mandatory fields and one optional field (all one byte in length):

- **ACK**: indicates that the card has received the [CLA, INS] command.
- **NULL**: used for flow control on the I/O channel by the card. It signals (to the reader) that the card is still processing the command and so the reader must wait before sending another command.
- **SW1**: status response of the current command.
- **SW2**: (optional) also conveys a status response to the reader.
The ACK byte is a repeat of the INS byte from the command TPDU. If the response does not reach the reader within a specified time, the reader may initiate an RST sequence to restart the protocol between the reader and the card. This can be prevented if the reader receives at least one NULL byte from the card. SW1 informs the reader of the result of the requested instruction. The values allowed for SW1 are defined as part of the application protocol. Some instructions require the card to send data to the reader. In this case SW2 is returned to the reader, triggering the reader to get a response. The card will then return the data bytes generated by the execution of the previous command.

6.2 T1 protocol (only on STM32L0)

In microcontrollers of the STM32L0 series the USART peripheral features functionalities that ease the implementation of the T=1 protocol.

The T=1 protocol is a block oriented protocol, making a block the smallest meaningful data unit transferred between the card and the terminal. Compared to T=0 it features better layer separation and allows all varieties of secure data transmission without compromises. It is also not limited to Smartcard - terminal communication use. Its disadvantage may be higher complexity and the presence of overhead bytes.

Note: In the X-CUBE-SMCARD firmware the T=1 protocol is only supported by STM32L0 MCUs. For code portability options refer to Table 3.

As indicated in Table 10, the transmission block consists of prologue, optional information and epilogue fields. Minimum block length is then 4 bytes, maximum is 259 bytes.

There are 3 basic types of blocks in T=1: Information blocks, receipt blocks and system blocks. Only information blocks do transfer actual application layer data. Receipt blocks are used for either positive or negative reception confirmation and system blocks only carry information related to protocol layer itself.

<table>
<thead>
<tr>
<th>Field</th>
<th>Prologue</th>
<th>Information</th>
<th>Epilogue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content</td>
<td>Node address (NAD)</td>
<td>Protocol control byte (PCB)</td>
<td>Length (LEN)</td>
</tr>
<tr>
<td>Size</td>
<td>1 byte</td>
<td>1 byte</td>
<td>1 byte</td>
</tr>
</tbody>
</table>

Notes:
- Contains identifiers of message source and destination
- Legacy bits used to control EEPROM programming voltage
- Determines the block type
- 0xFF value reserved for future use
- May be 16-bit CRC, or simple XOR checksum (referred to as LRC)

The T=1 protocol uses two waiting time parameters:
- Character Waiting Time (CWT)
- Block Waiting Time (BWT)

The character waiting time (see Figure 6) is defined as the maximum time between two successive characters in a block, while the block waiting time (Figure 7) is defined as the maximum delay between the leading edge of the last character of the block received by the card and the leading edge of the first character of the next block transmitted by the card.
There is also a Block guard time (BGT) which is defined as the minimum time between the leading edge of the last character of one block and the leading edge of the first character in the new block to be sent in the alternative direction.

The CWT and BWT are calculated using the CWI and BWI data elements in the ATR using the following formulas:

\[
CWT = (11 + 2^{CWI}) \times ETU
\]

\[
BWT = 11 \times ETU + 2^{BWI} \times 960 \times 372 / f
\]

where \(f \) is the clock frequency.

These parameters are configured using the receiver timeout feature available in the STM32L0 USART peripheral.

6.3 Application-level protocols

The ISO 7816-4 standard addresses two areas of functionality for application software:

- **File system**: a set of functions is provided in the form of an API. By using this API application software on the reader side can access files in the file system.
- **Security functions**: these can be used to limit access to application software or to files on the card.

The T0 protocol is used to support application-level protocols between the Smartcard application and the reader application. These application protocols exchange data structures called application protocol data units (APDUs).

Figure 8 illustrates this architecture.
The APDU structure defined by ISO 7816-4 is very similar to the TPDU structure used in the T0 protocol. In fact, when an APDU is transported by the T0 protocol, the elements of the APDU directly overlay the elements of the TPDU.

6.3.1 The ISO 7816-4 APDU

There are two types of messages used to support the ISO 7816-4 application protocols: the command APDU (sent from the reader to the card) and the response APDU (sent from the card to the reader).

As shown in Figure 9, the command APDU consists of a header and a body. The header includes CLA, INS, P1 and P2 fields. As in the T0 protocol, CLA and INS specify an application class and instruction. P1 and P2 are used to qualify specific instructions and are given specific definitions by each [CLA, INS] instruction. The body of the APDU can vary in size and is used to transmit data to the card’s APDU processor as part of a command or to convey a response from the card to the reader. The Lc field specifies the number of bytes to be transmitted to the card as part of the instruction, that is, the length of the data field. The data field contains information that must be sent to the card to allow its APDU processor to execute the command specified in the APDU. The Le field specifies the number of bytes that will be returned to the reader in the response APDU.
The body of the APDU can take on four different forms:

- **Case 1:** No data is transferred to or from the card, so the APDU only contains the header.
- **Case 2:** No data is transferred to the card, but data is returned from the card. The body of the APDU only contains a non-null Le field.
- **Case 3:** Data is transferred to the card, but none is returned from it. The body of the APDU includes the Lc and data fields.
- **Case 4:** Data is transferred to the card and is also returned from the card as a result of the command. The body of the APDU includes the Lc, data and Le fields.

![Figure 10. Response APDU structure](image)

The response APDU (see Figure 10) has a much simpler structure than that of the command APDU. It consists of a body and a trailer. The body is either null or it includes a data field - depending on the specific command. The length of the data field is determined by the Le field in the corresponding command APDU. The trailer consists of up to two fields of status information called SW1 and SW2. These fields return a status code in which one byte is used to specify an error category and the other is used to specify a command-specific status or error indication.

6.3.2 File system API

The file system is used on the non-volatile memory or EEPROM. It is defined as a simple hierarchical structure (similar to conventional file systems). The file system may contain three types of files (identified by a 2-byte identifier):

- **Master file (MF)**
- **Dedicated file (DF)**
- **Elementary file (EF).**

There is one master file found on each Smartcard and it is the root of the file system. A master file may contain dedicated files or elementary files. The file identifier reserved for the master file is 3F00. The directory file is essentially a container (or directory) for elementary files - a DF may contain zero or more EFs. Dedicated files partition the Smartcard into an ordered structure of elementary files. A dedicated file must be given a unique file identifier within the dedicated file or master file that contains it - allowing for a unique path for each file. A dedicated file can also be referenced by name (1-16 bytes long). The naming convention can be found in ISO 7816-5. An elementary file is a leaf node in the hierarchy and contains the actual data. An elementary file can be identified by a 5-bit identifier within a dedicated file. This file system hierarchy is illustrated in Figure 11.
1. MF = master file, DF = dedicated file, EF = elementary file.

There are four types of elementary files:
- Transparent file
- Linear, fixed-length record file
- Linear, variable-length record file
- Cyclic, fixed-length record file

A transparent file is essentially a string of bytes, that is an unstructured binary file. Consequently a byte offset from the start of the file is required when data is to be read or written to this type of file. In addition, a command to read or write to a transparent file will contain the length of the byte string to be read or written to the file.

Fixed- and variable-length files contain records that are identified by a sequence number. In a fixed-length record file, all the records contain the same number of bytes. In contrast, a variable-length record file contains records that may vary in length. As a result, variable-length record files have a higher overhead in read/write access times as well as a higher administrative overhead required by the file system.

A cyclic file allows applications to access records in a consistent and transparent manner. It can be thought of as a ring of files. Write operations are performed on the next physical record in the ring.

6.3.3 ISO 7816-4 functions

The few functions that are defined in ISO 7816-4 for selecting, reading and writing to files will be briefly discussed below.

Select File

This command establishes a logical pointer to a particular file in the Smartcard's file system. This pointer is required for any file manipulation operation. Access to the Smartcard's file system is not multithreaded, however it is possible to have several file pointers defined at any point in time. This is accomplished by the Manage Channel command, which establishes multiple logical channels between the reader side application and the card. This
allows different files on the card to be in various states of access by the reader application at the same time. The identification of the file can be provided in the following ways:

- file identifier (2-byte value);
- DF name (string of bytes);
- path (concatenation of file identifiers);
- short ID.

Note that not all Smartcards support all four naming mechanisms.

Read Binary

This command is used by the application on the reader side to retrieve a part of an EF on the card. However, the EF must be a transparent file (not record-oriented). If the Read Binary command is attempted on a record-oriented EF, the command will abort with an error indicator being returned from the card.

The Read Binary command takes two parameters: an offset pointer from the start of the file to the initial byte to be read, and the number of bytes to be read and returned to the reader.

Write Binary

This command is used to insert data into a transparent EF on the card. This command can be used to set a series of bytes in the EF (that is set selected bits within a specified byte to a value of 1), clear a series of bytes or perform a write of a series of bytes in the EF.

Update Binary

A reader-side application can utilize this command to directly erase and store a contiguous sequence of bytes in a transparent EF on the card. It effectively works as a write command, that is a string of bytes provided in the command are written into the EF on the card. The input parameters consist in an offset pointer from the start of the file as well as the number of bytes to be written.

Erase Binary

The Erase Binary command is used to clear bytes within a transparent EF on a card. Similarly to the previous commands, the input parameters comprise an offset from the start of the EF to the segment of bytes to be erased as well as the number of bytes to be erased.

Read Record

This command is used to read and return the contents of one or more records in an EF on a card. Unlike the previous command, the EF for the Read Record command must be a record-oriented file. If it is applied to a transparent EF, the command will abort and an error will be returned to the reader.

The following may be returned from this command, depending on the input parameters:

- A specified record
- All the records from the beginning of the file to a specific record
- All the records from a specific record to the end of the file
Write Record
This command is used to write a record into a record-oriented EF. As with the Write Binary command, this command can be used to write a record into an EF, set or clear specific bits within a specific record in an EF.

Append Record
The Append Record command is used to add a record to the end of a linear, record-oriented EF or to write the first record to a cyclic, record-oriented EF on a card.

Update Record
This command writes a specific record into a record-oriented EF on a card. As with the Update Binary command, the old record is erased and the new one is written into the EF.

Get Data
This command reads and returns the contents of a data object stored within the file system on the card. The Get Data command is card-specific as the definition of a data object varies between different cards.

Put Data
This command (as the name suggests) puts information into a data object on the card. As with the previous command, this is a card-specific command.

6.3.4 Security API
Each component of the file system on a Smartcard has an associated list of access properties. The access properties ensure that only authorized parties are allowed to access the particular component of the file system. The authentication can be simple, such as requiring the reader to provide a predefined personal identification number (PIN). Alternatively, it may be more complicated, such as requiring the reader to prove that it possesses some shared secret with the card (for example a key) by encrypting or decrypting a string of bytes provided by the card.

A few of the functions provided by the security API are briefly discussed below.

Verify
This command is sent by the application on the reader side to the security system on the card. Its purpose is to convince the card that the reader knows a password maintained by the card in order to restrict access to sensitive information stored on the card. The password-type information may be associated with a specific file or to some or all of the file hierarchy. If the Verify command fails i.e. the reader provides an incorrect password, an error is returned to the reader.

Internal Authenticate
This command allows the card to authenticate itself to the reader by proving that it possesses a secret key shared with the reader. The reader application software first generates a random number and encrypts it with some algorithm known to both card and reader. This constitutes a challenge to the card. The card then decrypts this challenge with the secret key (that is stored on the card) and sends the resulting data back to the reader. If
the data received by the reader matches the random number that it generated then the reader application software is assured of the identity of the card.

External Authenticate

This command is used in conjunction with the Get Challenge command to enable the reader application software to authenticate itself to the card. The reader receives challenge data (a random number) from the card and encrypts it with a secret key. This is then sent to the card using the External Authenticate command. The card decrypts the data and compares it to the random number that it generated in the previous Get Challenge command. If there is a match, then the card is assured of the identity of the reader application.

Get Challenge

This command is sent by the reader to the card. Its purpose is to provide the reader application with a random number generated by the Smartcard. As previously described, this number is used in the External Authenticate command.

Manage Channel

The Manage Channel command is used by the reader application to open and close the logical communication channels between it and the card. Initially the card opens a basic communication channel by establishing an application-level protocol with the reader application through the completion of an ATR sequence. This channel is then used to open or close additional logical channels through the Manage Channel command.

Envelope

This command supports the use of secure messaging using the T0 protocol. It enables an APDU to be encrypted and then incorporated into the Envelope command's data section (of its APDU). The APDU processor on the card can then extract and execute the command.

Get Response

As with the previous command, the Get Response command allows the use of the T0 protocol for transferring APDUs. The Case 4 type of APDU cannot be supported by the T0 protocol i.e. it is not possible to send a block of data to the card and then receive a block of data in return. So when using the T0 protocol, the initial command results in a response which indicates that more data is waiting to be sent by the card. The Get Response command is then used to retrieve this data.
7 Smartcard interface library: description

This section describes an example implementation of the Smartcard communication library using the STM32Cube HAL.

7.1 File organization

Table 11 presents the Smartcard library modules:

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>smartcard.h, smartcard.c</td>
<td>Smartcard definitions, types definitions and function prototypes</td>
</tr>
<tr>
<td></td>
<td>Link protocol management</td>
</tr>
<tr>
<td></td>
<td>Physical layer</td>
</tr>
<tr>
<td>atr.c, atr.h</td>
<td>Reception and decoding of the answer to reset</td>
</tr>
<tr>
<td>pps.c, pps.h</td>
<td>Functions used for protocol parameter selection</td>
</tr>
<tr>
<td>t1_protocol_param.c, t1_protocol_param.h</td>
<td>T=1 specific extension</td>
</tr>
</tbody>
</table>

7.2 The protocol context

As usual for other libraries building on the Cube HAL, the central point of the Smartcard management is a structure binding the actual device with current logical state and the configuration. In case of this library the structure type is called SCProtocol_t, defined in a generic form to handle both T=0 and T=1 cards.

The SCProtocol_t contains, among else:
- Pointer to the HAL device handler (SMARTCARD_HandleTypeDef)
- State (SC_State_t)
- General configuration of the reader (number of retries, maximum block length)
- Configuration of current card session (convention, timing, EDC function)
- Context of the ongoing communication (last R-block, more flags, number of expected block)

SC_State_t

SC_State_t informs the user about the Smartcard state and allows the user to power off the Smartcard. It can assume one of the values defined in Table 12.
Table 12. SC_State_t

<table>
<thead>
<tr>
<th>SCState</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC_POWER_OFF</td>
<td>No power is provided to the Smartcard ($V_{CC} = 0$)</td>
</tr>
<tr>
<td></td>
<td>The STM32 Smartcard interface is disabled</td>
</tr>
<tr>
<td></td>
<td>No clock is provided to the Smartcard</td>
</tr>
<tr>
<td>SC_POWER_ON</td>
<td>The Smartcard peripheral is enabled and initialized</td>
</tr>
<tr>
<td></td>
<td>No power is provided to the Smartcard</td>
</tr>
<tr>
<td></td>
<td>No clock is provided to the Smartcard</td>
</tr>
<tr>
<td>SC_RESET_LOW</td>
<td>In this state, the RST Smartcard pin (pin 2) is driven low ($RST = 0$)</td>
</tr>
<tr>
<td></td>
<td>$V_{CC} = 5$ V is provided to the Smartcard</td>
</tr>
<tr>
<td></td>
<td>Clock CLK is provided to the Smartcard</td>
</tr>
<tr>
<td></td>
<td>Answer to reset (ATR) procedure begins</td>
</tr>
<tr>
<td></td>
<td>The reader waits for an ATR frame from the Smartcard</td>
</tr>
<tr>
<td>SC_RESET_HIGH</td>
<td>If no answer is received, the reader forces the reset pin RST high ($RST = 1$) and holds it high until it receives an answer to reset</td>
</tr>
<tr>
<td>SC_ACTIVE</td>
<td>If an answer to reset is received, the reader goes in active state and decodes the ATR frame. It returns information about the used protocol</td>
</tr>
<tr>
<td>SC_ACTIVE_ON_T0</td>
<td>If the used protocol is T0, the reader goes in SC_ACTIVE_ON_T0 state and commands can then be sent to the Smartcard</td>
</tr>
<tr>
<td>SC_ACTIVE_ON_T1</td>
<td>If the protocol used is T=1, then the reader goes in SC_ACTIVE_ON_T1 state and blocks can be exchanged with the Smartcard</td>
</tr>
<tr>
<td>T1_RESYNCH</td>
<td>In case of repeated failure to communicate with the card, the reader attempts to re-synchronize</td>
</tr>
<tr>
<td>T1_SENDING</td>
<td>A T=1 block is being sent</td>
</tr>
<tr>
<td>T1_RECEIVING</td>
<td>A T=1 block is being received</td>
</tr>
</tbody>
</table>

Figure 12. State machine for Smartcard operation
SC_ADPU_Cmd_t

The \texttt{SC_ADPU_Cmd_t} structure is defined in the `smartcard.h` file:

```c
typedef struct {
    SC_Header_t Header;
    SC_Body_t Body;
} SC_ADPU_Cmd_t;
```

- **Header**
 - Specifies the APDU command header. It is of the \texttt{SC_Header} type, which is defined in the `smartcard.h` file:

  ```c
  typedef struct {
      uint8_t CLA;  /* Command class */
      uint8_t INS;  /* Operation code */
      uint8_t P1;   /* Selection Mode */
      uint8_t P2;   /* Selection Option */
  } SC_Header_t;
  ```

- **CLA**
 - Specifies the class designation of the command set to establish a collection of instructions.
- **INS**
 - Specifies a specific instruction from within the set of instructions.
- **P1**
 - Specifies the addressing used by the [CLA, INS] instruction.
- **P2**
 - Specifies the addressing used by the [CLA, INS] instruction.

- **Body**
 - Specifies the APDU command body. It is of the \texttt{SC_Body} type, which is defined in the `smartcard.h` file:

  ```c
  typedef struct {
      uint8_t LC;           /* Data field length */
      uint8_t Data[LCmax];  /* Command parameters */
      uint8_t LE;           /* Expected length of data to be returned */
  } SC_Body_t;
  ```
• **LC**
 Specifies the number of data bytes transferred to the card as part of the [CLA, INS] instruction execution.

• **Data**
 Specifies the pointer to the data buffer transferred to the card.

• **LE**
 Specifies the number of data bytes transferred from the card as part of the [CLA, INS] instruction execution.

• **APDU_R**
 Specifies the APDU command response. It is of SC_ADPU_Response type, defined in the `smartcard.h` file:

```c
typedef struct
{
    uint8_t Data[LC_MAX];    /* Data returned from the card */
    uint8_t SW1;              /* Command Processing status */
    uint8_t SW2;              /* Command Processing qualification */
} SC_ADPU_Resp_t;
```

• **Data**
 Specifies the pointer to the data buffer which will contain the returned card data.

• **SW1**
 Specifies the first status code byte. This byte stores the error category.

• **SW2**
 Specifies the second status code byte. This byte stores a command-specific status or error indication.

7.3 How to send APDU commands to the Smartcard

A description on how to use the `T0_APDU` or the `T1_APDU` functions to send the APDU command to the Smartcard and retrieve the card response is described below. The user has to update the SC_CLA and the Smartcard instruction values according to the Smartcard specifications.

7.3.1 Smartcard command example with T=0

```c
SC_ADPU_S.Header.CLA = SC_CLA;
SC_ADPU_S.Header.INS = SC_SELECT_FILE;
SC_ADPU_S.Header.P1 = 0x00;
SC_ADPU_S.Header.P2 = 0x00;
SC_ADPU_S.Body.LC = 0x02;
for(i = 0; i < SC_ADPU.Body.LC; i++)
{
    SC_ADPU_S.Body.Data[i] = FileName[i];
}
```
while(i < LCmax)
{
 SC_ADPU_S.Body.Data[i++] = 0;
}
SC_ADPU_S.Body.LE = 0;
T0_APDU(&SCState, &SC_ADPU, &SC_Response);

- **FileName**: It contains the 16 bit file identifier.
- **SCState**: It stores the current Smartcard context (SCProtocol_t).
- **SC_Response** and **SC_APDU** are SC_APDU_t structures for Smartcard command and response.

7.3.2 Smartcard command example with T=1

```c
    cAPDU.APDU_S.Header.CLA = SC_CLASS;       /* CLA */
    cAPDU.APDU_S.Header.INS = INS_READ_FILE;  /* INS: Read File */
    cAPDU.APDU_S.Header.P1  = 0x00;           /* P1 */
    cAPDU.APDU_S.Header.P2  = 0x00;           /* P2 */
    cAPDU.APDU_S.Body.LC    = 0x00;           /* Lc */

    /* Send/Receive APDU command/response: Read File */
    T1_APDU(&SCInterface, NAD, &cAPDU, &rAPDU);
```

The principle is very similar to the T=0 case, first the APDU structure is prepared, then the function is called to proceed with the data exchange. There is a new parameter, specific to the T=1 protocol, the node address (NAD).

7.4 Parity error management

In the T0 protocol, error handling is performed on each byte by looking at the parity bit. If the actual parity bit does not correspond to the parity of the transmitted data, then an error must have occurred; the receiving side signals that it requires the byte to be retransmitted in the case of detecting a parity error. This is done by holding the I/O line low (normally the I/O line is set high preceding the transfer of a byte). When the transmitting side detects this, it resends the byte that was not received correctly.

7.4.1 Data sent from card to reader

STM32 microcontrollers are able to detect a parity error on a received data via hardware, by pulling down the data line during the stop bit.

7.4.2 Data sent from reader to card

Vice versa if the Smartcard pulls down the I/O line to signal that a parity error occurred, the STM32 microcontroller is able to detect a frame error via hardware.
7.5 EDC processing

In T=1 protocol the EDC must be managed by software. This means that the protocol context must be aware of the EDC computing method and the length of the resulting redundancy code.

In case of CRC computation, some models of STM32 microcontrollers are equipped with a HW CRC computation module, which can be used to improve the system efficiency. It is however not used in the SW example related to this AN.

The communication library creates and checks the EDC autonomously, issuing and receiving appropriate R-blocks with the counterpart.
8 Smartcard interface example

An example is provided in conjunction with the Smartcard library in order to help the user develop its custom application.

The example includes two simple tests, one for T=0 and one for T=1 protocol. Both are built around basic file access commands which should work with many available cards, mainly GSM or Java.

The example analyzes the ATR and selects corresponding test based on the communication protocol supported by the card.

This example has been tested on the STM3210B-EVAL, STM3210E-EVAL and STM3210C-EVAL STMicroelectronics evaluation boards. The boards provide all the hardware needed to interface a Smartcard, and you can easily tailor them to any other hardware. Modifying the I/O configuration or adding support for other products may be done by altering the definitions in the `platform_config.h` file.

The example for STM32Lxxxx devices can run on the following platforms:

- STM32L152-EVAL board with an external Smartcard reader connected as shown in Table 5 (see Section 3 for more details);
- STM32L152-Discovery or STM32L053-Discovery board with a Smartcard connected to configured GPIO pins.

8.1 Operation with a card that indicates T=0 support

Three directories have been defined for the GSM Smartcard directory tree:

- MasterRoot[3]={0x3F, 0x00};
- GSMDir[3]={0x7F, 0x20};
- TelecomDir[3]={0x7F, 0x10};

![Figure 13. Smartcard example: file system description](image)

At the end of the example:

- The ICCID file located under the MasterRoot directory is read
- The IMSI file, under GSMDir, that has a secure access through PIN1, is read
- The PIN1 is enabled/disabled

8.1.1 Startup: Answer to reset (ATR)

The first action to perform when the reader wants to access a card is the Answer to reset procedure.

8.1.2 Reading a file at a specified path

The specified reading path is assumed to be: MasterRoot/GSMDir/IMSI
To reach it, the following actions are performed:

- Select GSMDir using a SelectFile APDU command
- Select IMSI File using a SelectFile APDU command

The user has to get the file characteristics to check its access conditions. The IMSI file has a CHV1(PIN1) read condition, so PIN1 has to be checked before reading it. The verify command must be executed under the directory containing the file to be read, the GSMDir must be selected in the example.

To get file characteristics:

- Select the file the characteristics of which are needed
- Get the data returned after issuing the SelectFile APDU command by sending a GETRESPONSE command

The IMSI file has 9 data bytes, so to run correctly the READ_BINARY commands, the following parameters are used:

- P1 = 0x00
- P2 = 0x00
- LE = 0x09

8.1.3 Enabling/disabling the PIN1 (CHV1) code

At the beginning of the application, the PIN1 (CHV1) status is checked. This can be done by a GET_RESPONSE command after a successful MasterRoot selection.

In this example, the PIN1 status is checked. If it is enabled, the PIN1 will be disabled to give access to all files that have a secure access conditions.

To check the PIN1 status, the procedure is the following:

- Select the MasterRoot directory using a SelectFile APDU command
- Get the data returned after issuing the MasterRoot SelectFile command by sending a GETRESPONSE command.
- Check the bit8 of the 14 received bytes: if bit8 is 0: PIN1 is enabled else the PIN1 is disabled.

To enable or disable PIN1, the CHV1 code must be sent to the card. The CHV1 code is 8-bytes long.

8.1.4 Verifying the PIN1 (CHV1) code

Some files have a restricted access conditions such as IMSI, CHV1 file, CHV2. The access conditions of these files must be met for the user to be allowed to execute the restricted operations (read, update, change CHV1).

To verify the PIN1 (CHV1) condition, the procedure is as follows:

- Go to the directory which contain the file to be accessed
- Use the Verify APDU command by presenting the CHV1 code
- Select the file and execute the selected operation
8.2 **Operation with a T=1 card**

The example of an application using the USART peripheral integrated in STM32 microcontrollers uses the Smartcard T=1 protocol driver to communicates with a Java Card. It consists of sending some APDU commands such as Select File, Read File and Write File.

8.3 **Firmware description**

As indicated in [Figure 14](#), at the start, the example applies the “Answer To Reset” procedure and then configures the Smartcard interface and the T=1 protocol according to the received ATR.

After that, the demo sends an IFSD request indicating that the reader would extend the length of the information field of the block from 32 to 254.

Then, it starts sending/receiving APDU commands/responses in the following sequence:

1. Select file having ID = 0x0001.
2. Read file: read 256 bytes from the same file (to view initial data saved in the file).
3. Write file: write 0x0 to 0xFF to this file.
4. Read file: read 256 bytes from the file (to verify the data written).
5. Write file: write 0xFF to 0x0 to this file.
6. Read file: read 256 bytes from the file (to verify the data written).
7. Demo END.
Figure 14. Smartcard software (T=1) flow

- Insert the card
- No
 - Smartcard detected
 - Yes
 - Power off
 - Power Command
 - Power on
 - Initialization
 - Reset card and wait for answer
 - Answer received
 - Decode answer
 - Smartcard active on T=1 protocol
 - T=1 Protocol initialization (CWT, BWT, EDC, ETU, …)
 - Negotiate IFSD
 - Send Select file command and get the response (File ID = 0x0001)
 - Send Read file command and get the response (256 bytes)
 - Send Write file command and get the response (write 0x00 to 0xFF)
 - Send Read file command and get the response (256 bytes)
 - Send Write file command and get the response (write 0xFF to 0x00)
 - Send Read file command and get the response (read 256 bytes)
 - Demo End

MS399998V1
9 Conclusion

Thanks to the STM32 USART Smartcard mode that supports the ISO 7816-3/4 specification, the user can develop a Smartcard-based application with limited firmware and hardware resources.
10 Revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-Dec-2015</td>
<td>1</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved