Introduction

The STEVAL-CCA036V1 demonstration board is designed to help characterize single operational amplifiers housed in SO8 packages.

This application note provides:
- a brief description of the STEVAL-CCA036V1 demonstration board
- a view of the top and bottom layers of the STEVAL-CCA036V1 demonstration board
- some examples of classic configurations that can be tested with the board
Contents

1 STEVAL-CCA036V1 description ... 3
2 STEVAL-CCA036V1 layout ... 4
3 STEVAL-CCA036V1 possible configurations 5
 3.1 Low-pass Sallen-Key configuration 6
 3.2 High-pass Sallen-Key configuration 7
 3.3 Differential amplifier .. 8
 3.4 In-the-loop compensation configuration 9
 3.5 Out-of-loop compensation configuration 10
 3.6 AC coupled circuit configuration 11
4 Associated products in the SO8 package 12
5 Related demonstration boards ... 13
6 Revision history ... 13
1 STEVAL-CCA036V1 description

The STEVAL-CCA036V1 demonstration board is designed with versatility in mind. In particular, its components allow it to be configured as:

- a low-pass Sallen-Key circuit
- a high-pass Sallen-Key circuit
- a differential amplifier
- an AC-coupled circuit
- an in-the-loop compensation circuit
- an out-of-loop compensation circuit
- numerous other possible configurations not described here

The STEVAL-CCA036V1 demonstration board is designed for surface-mounted components and can be used to perform on-board characterization prior to the integration of STMicroelectronics’ products in designs. Resistor and capacitor footprints are implemented for the 0805 series. A set of two decoupling capacitors have been implemented on both power supply pins of the op-amp so as to benefit from the maximum performance of ST products. In order to reject a wide range of frequencies, 10 nF and 4.7 μF are good values for these capacitors.

Figure 1. STEVAL-CCA036V1 demonstration board schematic
2 STEVAL-CCA036V1 layout

The STEVAL-CCA036V1 demonstration board has a triangular shape which looks like the op-amp symbol.

The board is a two-layer printed circuit board (PCB) with the following dimensions: 3040 mils x 2140 mils (77.2 mm x 54.4 mm)

For the V_{out} connection, either a BNC connector or a 2 mm female connector can be implanted. V_{in+} and V_{in-} can be directly connected by BNC connectors to ease the design. You can also implant test points on these three voltages which will facilitate the visualization of the signals.

The STEVAL-CCA036V1 top and bottom layers are shown in Figure 2.

Figure 2. STEVAL-CCA036V1 top and bottom layers
3 STEVAL-CCA036V1 possible configurations

Section 3.1 through to Section 3.6 give some instruction on how to set up the STEVAL-CCA036V1 demonstration board to perform several classical configurations. The configurations are shown in the following figures:

- Figure 3: Low-pass Sallen-Key configuration
- Figure 4: High-pass Sallen-Key configuration
- Figure 5: Differential amplifier
- Figure 6: In-the-loop compensation configuration
- Figure 7: Out-of-loop compensation configuration
- Figure 8: AC coupled configuration

To obtain a more complex configuration, put several boards in cascade.
3.1 Low-pass Sallen-Key configuration

The low-pass Sallen-Key configuration \((\text{Figure 3})\) is a second order filter configuration. This circuit has 40 dB roll-off per decade.

\(Z4\) and \(Z9\) set the gain.

\textit{Equation 1} describes the filter cut-off frequency.

\textbf{Equation 1}

\[
f_c = \frac{1}{2\pi Z_1 Z_2 Z_5 Z_6}
\]

\(Z7, Z8, Z12,\) and \(Z14\) must not be connected.
\(Z3\) and \(Z13\) must be shorted.

\textbf{Figure 3. Low-pass Sallen-Key configuration}
3.2 High-pass Sallen-Key configuration

The high-pass Sallen-Key configuration (Figure 4) is also a second order filter configuration. It has a slope of 40 dB per decade.

Z4 and Z9 set the gain.

Equation 2 describes the filter cut-off frequency.

Equation 2

\[f_c = \frac{1}{2\pi Z_1 Z_2 Z_5 Z_6} \]

Z7, Z8, Z12, and Z14 must not be connected.
Z3 and Z13 must be shorted.
3.3 Differential amplifier

The differential amplifier (Figure 5) allows two voltages to be subtracted. Equation 3 describes the output voltage of the op-amp.

Equation 3

\[V_{\text{out}} = V_{\text{in+}} \left(\frac{Z_8 + Z_4}{Z_8 + Z_1 + Z_5} \right) - V_{\text{in-}} \frac{Z_4}{Z_8} \]

Choosing \(Z_8 = Z_1 \) and \(Z_4 = Z_5 \) gives Equation 4.

Equation 4

\[V_{\text{out}} = (V_{\text{in+}} - V_{\text{in-}}) \frac{Z_4}{Z_8} \]

Z6, Z7, Z9, Z12, and Z14 must not be connected.
Z2, Z3, and Z13 must be shorted.

Figure 5. Differential amplifier
3.4 **In-the-loop compensation configuration**

The goal of in-the-loop compensation configuration (Figure 6) is to stabilize the amplifier configuration with a capacitive load. This compensation is called "in-the-loop" because the additional components (Z14 and Z4) used to improve the stability are inserted in the feedback loop.

Z5, Z6, and Z8 must not be connected.

Z1, Z2, and Z3 must be shorted.

![Figure 6. In-the-loop compensation configuration](image-url)
3.5 Out-of-loop compensation configuration

Out-of-loop compensation configuration (Figure 7) is a simple compensation method, using only one extra component. The component is a resistor (Z13) which is added in series between the output of the amplifier and its load. It is often referred to as the out-of-loop compensation method because the additional component is added outside of the feedback loop.

Z3, Z5, Z6, Z8, Z9, and Z14 must not be connected.
Z1, Z2, and Z4 must be shorted.

Figure 7. Out-of-loop compensation configuration
3.6 **AC coupled circuit configuration**

The AC coupled circuit configuration (*Figure 8*) allows the AC part of the input signal to be amplified.

Z2, Z6, Z7, Z9, Z12, and Z14 must not be connected.

No component is shorted.

Figure 8. AC coupled configuration
Table 1. Associated products in the SO8 package

<table>
<thead>
<tr>
<th>Generic part number</th>
<th>General description</th>
<th>V_{CC} range (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF351</td>
<td>JFET inputs, low input bias, and offset current, (15 nV/√Hz and 0.01 %)</td>
<td>6 – 32</td>
</tr>
<tr>
<td>LM201A</td>
<td>Input and output overload protection, low input offset current</td>
<td>5 – 40</td>
</tr>
<tr>
<td>LM301A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MC33171</td>
<td>Low consumption versus speed</td>
<td>4 – 44</td>
</tr>
<tr>
<td>TL061</td>
<td></td>
<td>6 – 36</td>
</tr>
<tr>
<td>TL071</td>
<td>JFET inputs, low input bias current</td>
<td>5 – 36</td>
</tr>
<tr>
<td>TL081</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS1851</td>
<td>1.8 V minimum voltage supply, micropower</td>
<td>1.8 – 6</td>
</tr>
<tr>
<td>TS1871</td>
<td>1.8 V input/output, rail-to-rail, low-power op-amps</td>
<td>1.8 – 6</td>
</tr>
<tr>
<td>TS271</td>
<td>Micropower, programmable op-amp</td>
<td>3 – 16</td>
</tr>
<tr>
<td>TS461</td>
<td>Output, rail-to-rail op-amps</td>
<td>2.7 – 10</td>
</tr>
<tr>
<td>TS507</td>
<td>High-precision, single-supply, rail-to-rail op-amp</td>
<td>2.7 – 5.5</td>
</tr>
<tr>
<td>TS921</td>
<td>Rail-to-rail, high-output current op-amps</td>
<td>2.7 – 12</td>
</tr>
<tr>
<td>TS931</td>
<td>Micropower amplifier with CMOS inputs</td>
<td>2.7 – 10</td>
</tr>
<tr>
<td>TS941</td>
<td>Ultra-micropower amplifier with CMOS inputs</td>
<td>2.5 – 10</td>
</tr>
<tr>
<td>TS951</td>
<td>Real input and output, rail-to-rail/low distortion (0.01 %)</td>
<td>2.7 – 12</td>
</tr>
<tr>
<td>TS971</td>
<td>Output rail-to-rail, very low-noise op-amps</td>
<td>2.7 – 10</td>
</tr>
<tr>
<td>TSV321</td>
<td>General-purpose, low-voltage, rail-to-rail input/output op-amp</td>
<td>2.5 – 6</td>
</tr>
<tr>
<td>TSV911</td>
<td>Rail-to-rail, input/output, widebandwidth op-amps</td>
<td>2.5 – 5.5</td>
</tr>
<tr>
<td>TSV991</td>
<td>Rail-to-rail, input/output, high merit factor op-amps</td>
<td></td>
</tr>
<tr>
<td>UA741</td>
<td>Wide application range</td>
<td>5 – 44</td>
</tr>
<tr>
<td>UA748</td>
<td></td>
<td>5 – 40</td>
</tr>
</tbody>
</table>
5 Related demonstration boards

The STEVAL-CCA022V1 demonstration board is designed especially for characterizing ST operational amplifiers in SOT23 and SC70 packages.

More information can be found on:

6 Revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-Jun-2013</td>
<td>1</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com