Introduction

The aim of this application note is to give users of the STR73x family devices a number of recommendations on the HW circuitry connected to the main special pins. It covers the pins for power supply (digital and analog), reset, crystal oscillator, the decoupling of the internal voltage regulator, boot modes, test pin, RC oscillator biasing pin and the JTAG debug port.

Detailed reference design schematics of the STR730-EVAL board are also contained in this document with descriptions of the main components, interfaces and modes.
Contents

1. **Power management** .. 4
 1.1 Power supply pins VDD/VSS .. 4
 1.2 Analog supply and reference VDDA/VSSA 4
 1.3 Decoupling of the internal voltage regulator V18 5

2. **Clock management** ... 7
 2.1 Crystal oscillator pins XTAL1, XTAL2 7
 2.2 On-chip RC oscillator and VBias pin 7

3. **Reset management** .. 8
 3.1 Reset pin nReset .. 8

4. **Boot management** ... 9
 4.1 SystemMemory / User Boot mode pins M0, M1 9
 4.2 Test mode ... 11

5. **Debug management** ... 12
 5.1 JTAG debug port pins .. 12

6. **Reference design** ... 15
 6.1 Main ... 15
 6.2 Clock ... 15
 6.3 Reset ... 15
 6.4 Boot mode .. 15
 6.5 Wake-Up .. 15
 6.6 Power supplies .. 15
 6.7 CAN interface ... 16
 6.8 RS232 serial interface ... 16
 6.9 Serial ROM .. 16
 6.10 JTAG interface ... 16

7. **Schematics** ... 17
8 Revision history .. 23
1 Power management

1.1 Power supply pins VDD/VSS

All current STR73x devices are supplied with a nominal voltage of 5V. The power supply pins are organized in VDD/VSS pairs around the chip and exceptionally all pins need to be properly connected to the power supplies, VDD to 5V, VSS to GND. These connections including pads, tracks and vias should have an impedance as low as possible. This is typically achieved with thick track widths and preferably dedicated power supply planes in multi layer PCBs.

In addition, each VDD/VSS pair should be decoupled with ceramic capacitors which need to be placed as close as possible to the appropriate pins or below the pins on the contrary side of the PCB. Typical values are 10nF to 100nF, but exact values depend on the application needs. The following figure shows the typical layout on such a VDD/VSS pair.

![Typical layout for VDD/VSS pair](image)

1.2 Analog supply and reference VDDA/VSSA

The VDDA pin is used to supply the ADC and to provide it with the analog reference.

As for the supply pins, VDDA/VSSA decoupling with short connections is recommended and an X7R ceramic capacitor of 47nF to 100nF can be used for this.

When full accuracy is needed, and depending on the noise rejection of the voltage regulator used to supply the STR73x device, a low pass filter may be considered. As the pin is also used as the ADC supply, the use of a serial resistor must be avoided to reduce the risk of offset error generation. An EMI component from Murata is proposed instead.
1.3 Decoupling of the internal voltage regulator V18

All existing STR73x derivates are supplied with a single external voltage of 5V. The additional voltages needed are generated by internal charge pump circuits for the flash programming/erasing and an internal linear voltage regulator which provides the 1.8V for the internal logic. The output of the internal voltage regulator is connected to one or two pins V18, where an external capacitance needs to be connected for decoupling/stabilization between the V18 pin and VSS/GND. There are two important notes:

1. V18 is probably the most critical pin regarding EMC emissions. Therefore the external capacitor(s) must be placed as close as possible (few mm) to the V18/VSS pair(s) or below on the other side of the PCB. If this is done, a very good EMC performance can be achieved.

2. Depending on the device, different capacitances are needed. The values mainly depend on the type of the internal voltage regulator used. Please refer to the tables below which cover the devices available or planned at the time of writing. In case of future devices which are not covered by this application note please refer to the datasheet or contact your support engineer.

The figure below shows the two affected pins (V18 and VBias) of the TQFP144 package as well as the TQFP100 package. In order to support all devices with a single PCB design, it is necessary to provide on both pins footprints for 10µF tantalum and 47-100nF ceramic capacitors. The footprint for the ceramic capacitor on pin 64 should be reusable to be soldered with a resistor instead for the biasing functionality. This may be achieved with 0805 or 0603 SMD footprints. Please refer to the tables below for the different component values and assembly options depending upon the device derivate.
1 - Power management

Figure 3. Pin availability for V18 functionality

Table 1. Component values for TQFP144 package

<table>
<thead>
<tr>
<th>Package Derivate</th>
<th>CMU / RC osc.</th>
<th>Pin 64 Function</th>
<th>Component Value</th>
<th>Pin 126 Function</th>
<th>Component Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TQFP144/ LFBGA144 STR730 STR735</td>
<td>yes</td>
<td>VBias resistor (*)</td>
<td>1.3MΩ</td>
<td>V18 ceramic cap</td>
<td>100nF</td>
</tr>
</tbody>
</table>

(*) only necessary for 32kHz mode of RC oscillator

Table 2. Component values for TQFP100 package

<table>
<thead>
<tr>
<th>Package</th>
<th>Derivate</th>
<th>CMU/RC osc.</th>
<th>Pin 46 Function</th>
<th>Component Value</th>
<th>Pin 88 Function</th>
<th>Component Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TQFP100</td>
<td>STR731 STR736</td>
<td>yes</td>
<td>VBias resistor (*)</td>
<td>1.3MΩ</td>
<td>V18 ceramic cap</td>
<td>100nF</td>
</tr>
</tbody>
</table>

(*) only necessary for 32kHz mode of RC oscillator
2 Clock management

2.1 Crystal oscillator pins XTAL1, XTAL2

All current STR73x devices have an on-chip oscillator that allows the driving of external crystals or resonators with a fundamental frequency of 4-8 MHz. The recommended circuitry for a crystal is shown below. C1, C2 and R1 values depend greatly on the crystal type and manufacturer. It is suggested that you ask your crystal supplier for the best values for these components.

Figure 4. Recommended circuitry for crystal oscillator pins XTAL1 and XTAL2

Resistor R1 is recommended for feedback stability and has a value of around 1MΩ. As the oscillator of STR73x devices has automatic gain control, there is no need to add a resistance in series.

The values of the load capacitors C1 and C2 are also heavily dependent on the crystal type and frequency. For best oscillation stability they normally have the same value. Typical values are in the range from below 10pF up to 30pF. The parasitic capacitance of the board layout also needs to be considered and typically adds a few pF to the component values.

In the PCB layout all connections should be as short as possible. Any additional signals, especially those that could interfere with the oscillator, should be locally separated from the PCB area around the oscillation circuit using suitable shielding.

2.2 On-chip RC oscillator and VBias pin

All devices of the STR73x family have an on-chip RC oscillator in addition to the main oscillator. This on-chip RC oscillator is capable of running at either 2MHz or 32kHz.

- The default 2MHz mode requires no external components.
- The 32 kHz mode requires an external bias resistor of 1.3 MΩ from the VBias pin towards GND.

Note: The oscillator frequencies can be adjusted through software after reset, where the reset frequencies are around 2.34Mhz / 29Khz.
3 Reset management

3.1 Reset pin nReset

All current STR73x devices are specified for a nominal voltage of 5V with a tolerance of ±10%, thus between 4.5V and 5.5V. The external reset circuitry should apply a reset whenever the supply voltage is outside this voltage supply range and only release it when inside the supply range.

Being within the supply range of 5V ±10%, the absolute minimum duration of the hardware reset pulse is 100µs, but it is recommended that the reset circuitry adds increased time margin, e.g. 200µs.

Note: During power-on, a reset must be provided externally.

At power-on, the nRSTIN pin must be held low by an external reset circuit until VDD is reached. *Figure 5* gives an example of the hardware implementation of the RESET circuit for STR73x devices.

The STM1001 low-power CMOS microprocessor supervisory circuit is used to assert a reset signal whenever the VDD voltage falls below a preset threshold or whenever a manual reset is asserted.

Figure 5. Hardware reset implementation
4 Boot management

4.1 SystemMemory / User Boot mode pins M0, M1

The recommended circuitry around the mode pins M0 and M1 depends upon the end of line programming strategy for virgin devices. The device always operates (i.e. executes the application) in user boot mode and it is also possible to program the device via the JTAG debug port in this mode. Field updates, where the application is already running and updating itself, also use this mode. Depending solely on the application, any interface may be used for field updates such as CAN or UART.

The support of SystemMemory boot mode is necessary only when virgin devices or applications which are not able to update themselves, are programmed via CAN or UART. Please note that circuitry is needed that supports both user and SystemMemory boot modes.

ST prefers programming via the JTAG port, since it provides the fastest possible method, no interface resources are necessary, the handling is easier and a lot of professional end-of-line programming solutions already exist from well known companies such as PLS and BP Microsystems.

4.1.1 End of line programming via JTAG

If you know already that you will program the devices only via the JTAG debug port, simply connect both mode pins M0 and M1 directly or via pull-down resistors to GND.

![M0 and M1 pin connections](image)

4.1.2 End of line programming via UART or CAN

If you are not yet sure which end of line programming method to use or you know that you will use the SystemMemory boot mode method, you need dynamic handling of the mode pins.

The voltage levels on the mode pins are latched with a rising edge on the reset pin. When both M0 and M1 are low at this time then user boot mode is entered. When M0 is low and M1 high at this time then SystemMemory boot mode is entered and the testflash sector is aliased at address 0 instead of the normal sector 0.

As long as M1 stays high the clock is stretched and no code is executed. So in order to run the bootstraploader code of the testflash sector a falling edge on M1 is needed some time after the rising edge on reset. This time is not critical but must exceed 500ns. The following figure shows the timing.
SystemMemory Boot mode with support of external HW such as a Tester

The easiest way to support the SystemMemory boot mode without adding much complexity and cost is to replace the direct connection of M0 and M1 pins towards GND with pull-down resistors and to add one test pin each directly connected to M0 and M1. The pull-down resistors should have a value of around 10kΩ. If no further hardware is connected to the testpins the user boot mode will be selected. If however a tester provides the necessary dynamic voltages to the testpins via a needle adaptor the SystemMemory bootmode can be used.

SystemMemory Boot mode with onboard circuitry

The necessary dynamic signals can also be generated by onboard circuitry so that no external hardware is necessary. The following schematic shows how this could be done. During active reset (nRSTIN low) the transistor is in high impedance and the capacitor is uncharged through the two resistors R1, resulting in M1 being high. As soon as the reset signal is deasserted high the transistor switches to low impedance after the charge of the capacitor via resistor R1 and R3.(when the Vbe of the transistor is upper than 0.7V). As a consequence M0 will become low after a period of a few µs.
4.2 Test mode

The TST pin must always be connected to GND to disable testmode. Testmode is ST’s reserved mode and must never be used by the application.
5 Debug management

5.1 JTAG debug port pins

The JTAG interface is a special synchronous serial port and provides access to the internal scanchains and the debug logic. Some of these scanchains are around the ARM core and the Embedded ICE Unit. With these it is possible to insert data into and read from the processor's pipeline, to program breakpoints and watchpoints and to control the debugging.

Since the JTAG port is an integral part of the ARM core it is available on every device and thus also allows in-system debugging and in-system flash-programming directly in the target application. The JTAG interface pins consist of the following signals:

<table>
<thead>
<tr>
<th>Table 3. JTAG interface signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Std name</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>nTRST</td>
</tr>
<tr>
<td>TDI</td>
</tr>
<tr>
<td>TMS</td>
</tr>
<tr>
<td>TCK</td>
</tr>
<tr>
<td>RTCK</td>
</tr>
</tbody>
</table>
The JTAG input signals have weak internal pull-up and pull-down resistors, but these are not always active:

- When debug protection is activated (JTAG permanently held in reset internally)
- At power up and down there may be a short duration where the power on reset is already released internally, but where the resistors are not yet active.

To avoid any floating input pins even for a very short period it is highly recommended to always provide additional external pull-up and pull-down resistors. This recommendation is valid whether the JTAG port is used or not.

The following table shows the recommended values and types:

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Recommended external Resistor type</th>
<th>Recommended value</th>
</tr>
</thead>
<tbody>
<tr>
<td>JTCK</td>
<td>Pull-down between pin and VSS/ GND</td>
<td>10kΩ</td>
</tr>
<tr>
<td>JTDI</td>
<td>Pull-up between pin and VDD/ VCC</td>
<td>10kΩ</td>
</tr>
<tr>
<td>JPDO</td>
<td>Output, no resistor needed</td>
<td>N.A.</td>
</tr>
<tr>
<td>JTMS</td>
<td>Pull-up between pin and VDD/ VCC</td>
<td>10kΩ</td>
</tr>
<tr>
<td>JTRST</td>
<td>Pull-down (*) between pin and VSS/GND</td>
<td>10kΩ</td>
</tr>
</tbody>
</table>

To connect the target with a debugger some additional signals are needed, mainly the System Reset nRSTIN, so that the debugger can also reset the whole MCU, not only the JTAG part. nRSTIN should be an open collector so that the different reset sources (power-on reset circuitry, ext. watchdog if available and the JTAG equipment/Debugger) can be connected together. The Debugger itself will also monitor the level on nRSTIN, so that it recognizes when a reset is forced by some other circuitry.

Finally the target supply voltage must be provided so that the Debugger may adapt voltage levels appropriately.
All signals should be made accessible at least as testpoints that can then be fed via some needle adaptors to the ARM standard JTAG connector. If cost and space allow, the connector can also be directly put on the target PCB. The connector is a standard two row, 20-pin header connector with a pitch of 0.1 inch / 2.54 mm and should have a collar to avoid incorrect mounting.
6 Reference design

6.1 Main

The STR730-EVAL board is based on the STR730FZ2T7, a highly integrated microcontroller, running at up to 36 MHz that uses the popular ARM7TDMI™ 32-bit RISC CPU featuring on-chip high speed single voltage flash memory and high-speed RAM, clock generation via PLL, and numerous on-chip peripherals.

6.2 Clock

Clocking is performed by a +5 V surface mounted 8 MHz quartz. Please refer to the Section 2.1: Crystal oscillator pins XTAL1, XTAL2 for more details.

6.3 Reset

One push button SW_PB:S100 is used to generate a hardware reset. Please refer to the Section 3: Reset management for more details.

6.4 Boot mode

There are three different modes available and can be enabled by means of two dedicated Input only pins:

User Boot Mode 1: In this mode, Flash sector B0F0 is mapped in both Block 010 and Block 000 of the memory map. The system boots from block 0, segment 0 of Flash (normal operation)

User Boot Mode 2: This mode has the same mapping as User Boot mode 1 except Flash sector B0F1 is reserved and any attempt to access address range 0x8000 2000 to 0x8000 3FFF will generate an ABORT.

SystemMemory Boot mode: This mode has the same mapping as User Flash boot mode 1, except that the SystemMemory flash sector is accessible in address range 0x8010 C000 to 0x8010 DFFF and is aliased in Block 0 This allows the system to boot from SystemMemory (for initial Flash Programming).

Please refer to the Section 4: Boot management for more details.

6.5 Wake-Up

Push button S103 is connected to Wake-up line 16 and is used to exit from Stop mode.

For more details, please refer to the STR73x Reference Manual.

6.6 Power supplies

Power to the board is supplied using a lump in cord power supply providing 5 V to the board.

For more details, refer to Section 1: Power management.
6.7 CAN interface
A general purpose, asynchronous serial I/O data port connected through a 9-pin D-type male connector with micro switches selectable between High or Low bus output S702, and between Standby or Slope control S50.

For more details, refer to the CAN transceiver L9616 datasheet.

6.8 RS232 serial interface
A general purpose, asynchronous serial I/O data port connected through a 9-pin D-type male connector.
RS232 connects directly to UART0, transmit and receive only (null modem).
RTS is shorted to CTS and DTR is shorted to DSR at the connector.

For more details, refer to the RS232 transceiver ST3232 datasheet.

6.9 Serial ROM

6.9.1 SPI EEPROM
8 Kbit SPI serial EEPROM connected to the buffered serial peripheral interface (BSPI). Switch S41 is used to enable or disable write protect (pull down = Write protect, pull up = Write enabled).

For more details, refer to the SPI EEPROM M95080 datasheet.

6.9.2 I2C EEPROM:
8 Kbit EEPROM connected to the I2C0 interface, Switch S40 is used to enable or disable write protect (pull down = Write protect, pull up = Write enabled).

For more details, refer to the I2C EEPROM M24C08 datasheet.
The values R43 and R45 depend essentially on the I2C communication speed.

For more details on these values, please refer to the STR73x Reference Manual.

6.10 JTAG interface
Refer to the Section 5: Debug management.
The values R43 and R45 depend essentially on the I2C communication speed. For more details on these values, please refer to the STR73x reference manual.
8 Revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>23-Sep-2005</td>
<td>1</td>
<td>Initial release</td>
</tr>
</tbody>
</table>