前言

通过描述围绕 STM8L 和 STM8AL 8-位微控制器器件建立应用所需的最小硬件和软件环境，本应用笔记对 STM8L 和 STM8AL 数据手册中的信息作了补充。

简要介绍了主要硬件元件。对电源、模拟数字转换器 (ADC)、时钟管理、复位控制进行了详细描述。除此之外，给出了一些硬件建议。本应用笔记还包含详细的对主要元件作了描述的参考设计原理图。STM8 开发工具和软件工具链对 STM8L、STM8S、STM8AL 和 STM8AF 都适用，并且在第 8 节和第 9 节中对此有所描述。第 10 节描述了如何设置 STM8 开发环境。最后，第 11 节提供了相关文档的清单和在线支持资源。

表 1. 适用产品

<table>
<thead>
<tr>
<th>产品系列</th>
<th>产品料号</th>
</tr>
</thead>
<tbody>
<tr>
<td>微控制器</td>
<td>– STM8L051/52</td>
</tr>
<tr>
<td></td>
<td>– STM8L101</td>
</tr>
<tr>
<td></td>
<td>– STM8L151x4， STM8L151x5， STM8L152x4， STM8L152x6</td>
</tr>
<tr>
<td></td>
<td>– STM8L151x8， STM8L152x8， STM8L151R6， STM8L152R6， STM8L162R8， STM8L162M8</td>
</tr>
<tr>
<td></td>
<td>– STM8AL313x， STM8AL314x， STM8AL316x， STM8AL3L4x， STM8AL3L6x</td>
</tr>
</tbody>
</table>
目录

1 硬件要求汇总 ... 6

2 电源 ... 6
 2.1 电源概述 ... 6
 2.2 主要工作电压 .. 7
 2.3 上电/掉电复位（POR/PDR） ... 8

3 模数转换器（ADC） .. 9
 3.1 模拟电路电源 .. 9
 3.2 模拟输入 ... 9

4 时钟管理 ... 10
 4.1 时钟管理概述 .. 10
 4.2 内部时钟 ... 10
 4.3 外部时钟 ... 10
 4.3.1 HSE 时钟 .. 10
 4.3.2 LSE 时钟 .. 12

5 复位控制 ... 14
 5.1 复位管理概述 .. 14
 5.1.1 输出特性 .. 15
 5.1.2 输入特性 .. 15
 5.2 硬件复位实现 .. 16

6 建议 ... 17
 6.1 印刷电路板 .. 17
 6.2 元件位置 ... 17
 6.3 接地和供电（VSS、VDD） ... 17
 6.4 去耦 ... 17
 6.5 其它信号 ... 18
 6.6 不使用的 I/O 和特性 .. 18
 6.7 用户选项 ... 18
 6.8 自举程序 ... 18
表格索引

<table>
<thead>
<tr>
<th>表</th>
<th>内容</th>
<th>页码</th>
</tr>
</thead>
<tbody>
<tr>
<td>表 1</td>
<td>适用产品</td>
<td>1</td>
</tr>
<tr>
<td>表 2</td>
<td>元件清单</td>
<td>19</td>
</tr>
<tr>
<td>表 3</td>
<td>SWIM 连接器引脚</td>
<td>22</td>
</tr>
<tr>
<td>表 4</td>
<td>文档修订历史</td>
<td>40</td>
</tr>
<tr>
<td>表 5</td>
<td>中文文档修订历史</td>
<td>41</td>
</tr>
</tbody>
</table>
图片索引

图 1. 电源... 7
图 2. VDD/VSS 对的典型布局................................. 8
图 3. 模拟输入接口 ... 9
图 4. HSE 时钟源... 11
图 5. 外部时钟.. 12
图 6. 晶振/陶瓷谐振器 13
图 7. 复位管理.. 14
图 8. 输出特性.. 15
图 9. 输入特性.. 15
图 10. 参考设计... 20
图 11. 调试系统框图... 21
图 12. 硬件连接.. 22
图 13. 连接说明.. 23
图 14. STice 仿真配置... 24
图 15. 在线编程和调试....................................... 25
图 16. STM8 软件工具链.................................... 26
图 17. STVD 开放示例工作区................................. 29
图 18. STVD MCU 编辑模式................................. 30
图 19. STM8 固件库在线帮助手册........................... 31
图 20. STVD：建立工程.................................... 32
图 21. STVD：选择调试工具................................. 33
图 22. 连接调试工具到 STM8L101-EVAL 评估板......... 34
图 23. 连接调试工具到 STM8L152x-EVAL 评估板....... 35
图 24. STVD：开始调试会话................................. 36
图 25. STVD：运行软件.................................... 37
图 26. STM8 评估板... 38
1 硬件要求汇总

为了围绕 STM8L 或 STM8AL 构建应用，应用板至少需要提供以下特性:

- 电源（必备）
- 时钟管理（可选）
- 复位管理（可选）
- 调试工具支持：单线接口模块 (SWIM) 连接器（可选）

2 电源

2.1 电源概述

STM8L 或 STM8AL 的外部电源范围可以从 1.65 V 到 3.6 V（STM8L05xxx 电源范围是 1.8 V 到 3.6 V）。对于中等容量的 STM8L15xxx、中等容量的 STM8AL31xx/STM8AL3Lxx 和高容量的具有BOR 的 STM8L15xxx/STM8L162xx，供电电压必须在上电时高于 1.8 V，能够在掉电时降低至 1.65 V。

一个片上电源管理系统提供了到内核逻辑的恒定数字电源，具有正常和低功耗两种模式。这保证了逻辑电路在整个电压范围内消耗恒定的电流。它也能够检测电压降，同时产生复位以避免异常行为。

STM8L 和 STM8AL 器件提供了:

- 取决于封装，一对 (VDD/VSS) 焊盘，或者几对从 1.65 V 或 1.8 V 到 3.6 V(VDDx/VSSx) 的焊盘。
- 所有的 VDDx 和 VSSx 必须分别在相同的电位上。VDDx 引脚必须通过两个外部去耦电容（对每个 VDDx 引脚的 100 nF 陶瓷电容和一个 1 μF 钽电容或陶瓷电容）。

STM8L15xxx、STM8AL31xx 和 STM8L162xx 器件还在某些封装中提供了:

- 一对专门用于模拟功能引脚 VDDA/VSSA 供电的焊盘。VDDA 和 VSSA 必须分别在相同的电位上，正如 VDD 和 VSS 那样。参考第 3 节：模数转换器 (ADC) 获取更多详细信息。VDDA 引脚必须连至两个外部去耦电容（一个 100 nF 陶瓷电容 + 一个 1 μF 钽电容或陶瓷电容），可采用更多措施过滤模拟噪声：VDDA 可通过铁氧体磁环连接至 VDDx。

STM8L152xx、STM8AL3Lxx 和 STM8L162xx 器件通过三种不同的方式管理 LCD 所需的供电电压（参见图 1）:

1. 如果没有使用 LCD 特性，连接 VLCD 引脚到 VDDx。
2. 将加到 LCD 上的电压加到 VLCD 上。
3. 连接 VLCD 引脚到一个 1μF 电容，通过可编程 LCD 升压器使 STM8L152xx/STM8L162xx/STM8AL3Lxx 提供正确的电压。
1. 可选：若在 VREF+ 上施加了一个单独的外部参考电压，则必须将一个 100 nF 和一个 1 µF 电容连至此引脚。VREF+ 连至 VDDA 或 VREF。

2. N 为 VDD 和 VSS 输入数目。

注：电容必须尽可能靠近器件电源连接。

可选择在 OSCIN/OSCOUT 上放置一个晶体 / 谐振器。谐振器必须尽可能靠近 OSCIN 和 OSCOUT 引脚连接。负载电容地必须尽可能靠近 VSS 连接。

2.2 主要工作电压

STM8L 和 STM8AL 器件采用 0.13 µm 工艺制作。STM8L 和 STM8AL 内核以及 I/O 外设需要不同的电源供电。实际上，STM8L 和 STM8AL 器件有一个标称目标输出为 1.8 V 的内部稳压器。
2.3 上电 / 掉电复位 (POR/PDR)

对主调压器和低功耗调压器的输入供电由上电 / 掉电复位电路监控。监控电压从 0.7 V 起。

在电源开启时，POR/PDR 保持器件处于复位，直到电源电压（V_{DD} 和 V_{DDA}）达到它们指定的工作区域。必须遵守时间 t_{VDD[\text{max}]} 的最大功率，因为用于电源稳定的内部复位保持 ~1 ms。

在开机时，应维持一个 0.7 V 以下的预定义复位。复位释放的上限在产品数据手册的电气特性一节中定义。

迟滞 (POR > PDR) 用以确保准确检测电压上升和下降。

当电源电压下降到 V_{PDR} 门限值（孤立和重複的事件）以下时，POR/PDR 也会产生一个复位。

当 t_{VDD[\text{max}]} 满足时，即可保证上电期间正确的复位条件。

当 V_{PDR} < V_{DD} < V_{DD[\text{min}]} 时，建议使用内部 BOR 或外部复位电路（特别是对 STM8L101xx 器件），以确保在掉电期间正确的复位条件。

为了实现更好的电源监控，STM8L15xxx、STM8L162xx、STM8AL31xx 和 STM8AL3Lxx 提供了一个欠压复位 (BOR) 和可编程电源电压检测 (PVD)，用于提前检测电压降。

建议

所有的引脚需要正确地连接到电源上。这些连接，包括焊盘、线和过孔，都应该有尽可能低的阻抗。典型情况下，这可通过使用粗的线宽做到，最好在多层印刷电路板 (PCB) 中使用专用供电层。

此外，每个供电电源对都应使用滤波陶瓷电容 (100nF) 和化学电容 (1..2 µF) 去耦，它们与 STM8L/STM8AL 器件并联。这些陶瓷电容应放置在 PCB 另一侧尽可能接近或低于适当引脚的位置。其典型值为 10 nF 至 100 nF，但准确值取决于应用需要。图 2 显示了这种 V_{DD}/V_{SS} 对的典型布局。

图 2. V_{DD}/V_{SS} 对的典型布局
3 模数转换器（ADC）

本章不适用于 STM8L101xx 器件。

3.1 模拟电路电源

对于某些封装，ADC 单元具有一个独立的模拟电源电压，它与输入引脚 VDDA 保持隔离，这样使得 ADC 有一个非常干净的电源。该模拟电压 VDDA 应该与 VDD 引脚上的数字电源电压相同。为了滤除某些噪声，可以在 VDD 和 VDDA 之间加入一个铁氧体磁环。该铁氧体磁环应该根据被滤除的频率进行选择。

某些封装还在 VREF+ 引脚上提供了一个独立的用于 ADC 单元的外部模拟参考电压输入。这在低电压输入时提供了更好的准确性，如下:

- VREF+ 引脚可连至 VDDA 外部供电电源。若在 VREF+ 上施加了一个单独的外部参考电压，则必须将一个 100 nF 和一个 1 µF 电容连至此引脚。若需补偿 VREF 上的峰值耗电，当采样速度低时，可将 1 µF 电容增加至最大 10 µF。在所有情况下，VREF+ 必须保持在 2.4 V 和 VDDA 之间。如果 VDDA 小于 2.4，VREF+ 必须等于 VDDA。在没有内部 VREF+ 引脚的器件中，该输入内部连接到了 VDDA。
- VREF-（输入，模拟参考负极）：低端/负极参考电压内部连接至 VSSA。

3.2 模拟输入

器件包含多达 28 个模拟输入通道（包括四个快速通道），每个通道复用一个 I/O，每次只有一个通道被 ADC 转换。

外部输入电阻 (R_{AIN}) 的最大值是 50 kΩ。如果 R_{AIN} 小于 0.5 kΩ，四个快速通道能够在最大速度 (1 MHz) 下进行转换。

请参见 图 3。

图 3. 模拟输入接口

更多信息，请参考应用数据手册和参考手册。
4 时钟管理

STM8L101xx 器件没有外部时钟，因此不需要预防措施。

4.1 时钟管理概述

STM8L05xxx、STM8L15xxx、STM8L162xx, STM8AL31xx 和 STM8AL3Lxx 器件提供了一个灵活的选择内核和外设（ADC、存储器、数字外设）时钟的方式。器件具有内部和外部时钟源输入，两者都有一个高速和低速版本。通过一个可编程预分频器，任何上述四种时钟都可以用于 CPU 和大部分外设。I/O 可以编程作为输出时钟 (CCO)，用以输出四个时钟中的一个（有或没有预分频）。

离开 I/O 的信号代表了一个按照分频系数分频的输出时钟 (CCO)。

4.2 内部时钟

STM8L 和 STM8AL 器件具有两种类型的内部时钟：一个频率为 16 MHz 的高速内部时钟 (HSI) 和一个频率为 38 kHz 的低速内部时钟 (LSI)。

复位之后，CPU 在内部 RC（HSI 时钟信号）8 分频的频率下启动，即 2 MHz。

4.3 外部时钟

STM8L05xxx、STM8L15xxx、STM8L162xx, STM8AL31xx 和 STM8AL3Lxx 器件具有两种类型的外部时钟：一个频率高达 16 MHz 的高速外部时钟 (HSE) 和一个频率为 32.768 kHz 的低速外部时钟 (LSE)。

4.3.1 HSE 时钟

STM8L05xxx、STM8L15xxx、STM8L162xx, STM8AL31xx 和 STM8AL3Lxx 器件可以连接到一个外部晶振或一个外部振荡器。

注：当没有使用外部时钟时，OSCIN 和 OSCOUT 可以用作通用 I/Os。

图 4 显示了外部时钟连接。

外部时钟

- 频率：0 kHz … 16 MHz
- 输入迟滞：100 mV

注意：没有预分频器情况下，高速时必须满足最大 45/55% 的占空比。
晶振 / 陶瓷谐振器

- 频率范围：1 至 16 MHz
- 稳定时间：可从 1 到 4096 周期编程
- 振荡器模式：首选基频
- 输出占空比：最大 55/45%
- I/O：标准 I/O 引脚，与 OSCIN 和 OSCOUT 复用
- Cload：10 到 20 pF
- 驱动水平最大值：至少 100 µW

图 4. HSE 时钟源

硬件配置

1. R_{EXT} 的值取决于晶振特性，一个 0 Ω 电阻适用于大多数振荡器，但这不是最优的。典型值的范围为 5 至 6 R_S （谐振串联电阻）。若需精确 R_{EXT} 的值，请参考 AN2867（ST 微控制器振荡器设计指南）。

负载电容 C_{L1} 和 C_{L2} 的值很大程度上取决于晶振类型和频率。用户可以参考晶振制造商的数据手册来选择电容。为实现最佳的振荡稳定性，C_{L1} 和 C_{L2} 一般具有相同的值。典型值的范围是小于 20 pF 到 40 pF 之间（cload：10 到 20 pF）。也需要考虑到板子版图的寄生电容，一般在元件值上加上几 pF（参考 AN2867）。

时钟安全系统预防任何来自 HSE 失效的 CPU 致命错误，它可安全地切换到 HSI。
时钟管理

建议
在 PCB 布局上，所有的连接都应该尽可能短。任何额外信号，特别是那些可能干扰振荡器的信号，应该使用合适的屏蔽以使其与振荡器电路的 PCB 区域保持局部隔离。

4.3.2 LSE 时钟
低速外部时钟信号 (LSE) 有 2 个时钟源：
- LSE 外部晶振/陶瓷谐振（参见图 6）
- LSE 用户外部时钟（参见图 6）

外部源（LSE 旁路）
在此模式下，必须提供外部时钟源。频率必须为 32.768 kHz。必须使用占空比约为 50% 的外部时钟信号（方波、正弦波或三角波）来驱动 OSC_IN 引脚，同时 OSC_OUT 引脚必须保持为高阻抗（请参见图 5 和图 6）。

图 5. 外部时钟

1. OSC32_IN 和 OSC32_OUT 引脚也可用作 GPIO，但建议在同一应用中不要既用作 RTC 又用作 GPIO 引脚。

外部晶振/陶瓷谐振器（LSE 晶振）
LSE 晶振是 32.768 kHz 低速外部晶振或陶瓷谐振器。可作为实时钟外设 (RTC) 的时钟源来提供时钟/日历或其他定时功能，具有功耗低且精度高的优点。

谐振器和负载电容必须尽可能地靠近振荡器的引脚，以尽量减小输出失真和起振稳定时间。负载电容值必须根据所选振荡器的不同做适当调整。
1. 为避免超过 C_{L1} 和 C_{L2} 的最大值（15 pF），强烈建议使用负载电容 $C_L=7$ pF 的谐振器。如需细化选择，请参考 AN2867（ST 微控制器振荡器设计指南）中的 g_m 计算部分。

2. OSC32_IN 和 OSC32_OUT 引脚也可用作 GPIO，但建议在同一应用中不要既用作 RTC 又用作 GPIO 引脚。

3. R_{EXT} 的值取决于晶振特性。一个 0 Ω 电阻适用于大多数振荡器，典型值范围是 5 到 6 R_S。若需精确调节 R_{EXT} 的值，请参考 AN2867（ST 微控制器振荡器设计指南）。

图 6. 晶振 / 陶瓷谐振器
复位控制

5.1 复位管理概述

复位引脚是一个 3.3 V 双向 I/O。启动之后它可以由软件编程为一个通用 I/O。

它的输出缓冲器包括一个 ~45 k 的上拉电阻，驱动能力锁定为 $I_{OL\text{MIN}} = 2 \text{mA} @ 0.45 \text{V}$ （1.8V 到 3.6V 范围）。输出缓冲器简化为 n 沟道 MOSFET (NMOS)。接收器包括一个干扰滤波器，这里输出缓冲器具有 20 μs 的延迟。

有很多复位源，包括:

- 通过 NRST 引脚外部复位
- 上电复位 (POR) 和欠压复位 (BOR): 在上电期间，POR 保持器件处于复位，直到电源电压（V_{DD} 和 V_{DDx}）达到 BOR 开始工作的电压水平。STM8L101xx 器件只有一个 POR。
- 独立看门狗复位 (IWDG)
- 窗口看门狗 (WWDG)，同样具有软件复位：仅适用于 STM8L05xx、STM8L15xxx、STM8L162xx、STM8AL31xx 和 STM8AL3Lxx。
- SWIM 复位: 一个连接到 SWIM 接口的外部器件可以请求 SWIM 模块生成微控制器复位。
- 非法操作代码复位: 如果执行的代码不与任何操作代码或字节前值相符，就会生成一个复位。

图 7 显示了一个简化功能的 I/O 复位图。
5.1.1 输出特性

- 内部输出缓冲器上≥ 20 ns 的脉冲持续时间保证了引脚上的有效脉冲。
- 在有效脉冲被识别后，可保证从 A 的下降沿开始，引脚上有一个至少 20 µs 的脉冲。

![图 8. 输出特性]

5.1.2 输入特性

- 所有持续时间小于 50 ns 的脉冲都被滤除
- 所有具有1/10比例的连续/突发尖峰都被滤除。这意味着当一个5 ns间隔出现在尖峰之间时（比例 1/10），长达 50 ns 的负尖峰必然被滤除。
- 所有持续时间大于 300 ns 的脉冲被识别为有效脉冲

![图 9. 输入特性]
5.2 硬件复位实现

STM8L 和 STM8AL 不需外部复位电路即可正确上电。建议只使用一个下拉电容（参见图 7）。但是通过内部电阻对下拉电容进行充电/放电会对器件功耗产生负面的影响。因此该电容的建议值 (100 nF) 可降至 10 nF，以限制此功耗。

在 POR 的值达到（1.35 V 至 1.65 V）后，STM8L101xx 复位状态释放 1 ms。在这段时间内，VDD 应该在 1.65 V 到 3.6 V 范围内。

对于上电时工作在 1.8 V 以上的中等容量器件和中等以上及高容量器件：在达到 BOR 最小值 (~1.75 V) 后，复位状态释放 1 ms。
6 建议

6.1 印刷电路板
由于技术原因，最好使用多层 PCB 的单独一层专用于接地 (VSS)，另一层专用于 VDD 供
电。这样可实现良好的去耦和屏蔽效果。对于很多应用，由于经济要求不能使用此类板。在
这种情况下，最重要的特性就是确保 VSS 和电源有良好的结构。

6.2 元件位置
PCB 的初始布局必须对不同的电路的电磁干扰 (EMI) 贡献进行区分。这样减少了 PCB 上
的交叉耦合，比如噪声、高电流电路、低电压电路和数字部分。

6.3 接地和供电 (VSS、VDD)
VSS 应该分别单独在每个模块（噪声、低电平敏感和数字）单独接地，以汇集所有的接地回
流。必须避免出现环，或使环有最小面积。供电应靠近地线实现，以最小化供电环的面积。
这是因为供电环的行为类似天线，因此它是 EMI 的主要发送者和接收者。所有无元件的
PCB 表面必须用额外的接地填充，以创造屏蔽（尤其是使用单层 PCB 时）。

6.4 去耦
用于外部电源的标准去耦器是一个 1 µF 池电容。为了减少电流回路的面积，补充的 100 nF
电容必须放置在尽可能靠近 VSS/VDD 宏引脚。
通常情况下，对所有敏感或者噪声信号去耦提高了电磁兼容 (EMC) 性能。
有两种类型的去耦器：
- 靠近元件的电容。必须要考虑所有电容在某一频率外的电感特性。如果可能，应该将逐
渐减小的电容 (0.1、0.01、... µF) 并联。
- 电感。比如尽管铁氧体磁环经常被忽略，但它也是不错的电感，因为它具有良好的 EMI 能
量分布特性，并且没有 DC 电压损失（当使用一个简单电阻时就不是这种情况）。
6.5 其它信号
当设计一个应用时，以下区域需要详细研究以提高 EMC 性能：
• 噪声信号（时钟）
• 敏感信号（高阻）
• 暂时性干扰会永久影响用于运行过程的信号，例如中断和握手选通信号（但不是 LED 指令）。

对于这些信号，使用 VSS 周围接地跟踪可以提高 EMC 性能，正如更短的长度或无噪声和敏感跟踪（串扰影响）那样。

对于数字信号，两个逻辑状态必须达到可能的最佳电气边界。建议使用慢速施密特触发器以消除寄生状态。

6.6 不使用的 I/O 和特性
微控制器都是为多种应用设计的，通常一个应用不会使用 100% 的微控制器资源。

为了避免不必要的功率消耗（对电池供电应用特别重要），同时提高 EMC 性能，闲置时钟、计数器或 I/O 都不应浮空。I/O 应该外部强制（上拉或者下拉到闲置 I/O 引脚），并且不使用功能应被“冻结”或禁用。

或者，不用的 I/O 可以编程为推挽“低”，以使它们保持在一个指定的电平，而且不使用外部元件。但是在这种情况下，上电期间直到 I/O 完成配置前，I/O 都没有驱动。这将导致少量额外的功耗，同时可能不适用于在对功耗非常敏感的应用中。

6.7 用户选项
STM8L 和 STM8AL 器件具有用户选项特性，可以用来重映射或启用 / 禁用一个自动复位或低速看门狗。详情请参见产品数据手册。

6.8 自举程序
STM8L05xx、STM8L15xxx、STM8L162xx、STM8AL31xx 和 STM8AL3Lxx 器件在 ROM 存储器中集成了一个自举程序。通过这一固件，器件存储可以通过以下接口重新编程：
• 用于中等容量器件的 USART 通信接口
• 用于中等以上或高容量器件的 USART1、USART2、USART3、SPI1 和 SPI2 通信接口。
7 参考设计

7.1 元件参考

表 2. 元件清单

<table>
<thead>
<tr>
<th>ID</th>
<th>元件名称</th>
<th>参考</th>
<th>数量</th>
<th>注释</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>微控制器</td>
<td>STM8L，STM8AL</td>
<td>1</td>
<td>参考 STM8L 和 STM8AL 数据手册的“引脚排列和引脚描述”和“封装特性”部分，来选择正确的封装。</td>
</tr>
<tr>
<td>2</td>
<td>电池</td>
<td>1.65 V 到 3.6 V(1)</td>
<td>1</td>
<td>当 BOR 启用时，最小值为 1.8 V</td>
</tr>
<tr>
<td>3</td>
<td>电容</td>
<td>1 µF</td>
<td>n</td>
<td>(去耦电容)</td>
</tr>
<tr>
<td>4</td>
<td>电容</td>
<td>100 nF</td>
<td>n</td>
<td>陶瓷电容（去耦电容）</td>
</tr>
<tr>
<td>5</td>
<td>电容</td>
<td>10 µF</td>
<td>1</td>
<td>陶瓷电容（去耦电容）</td>
</tr>
<tr>
<td>6</td>
<td>晶振</td>
<td>1 到 16 MHz</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>电容</td>
<td>20 到 40 pF</td>
<td>2</td>
<td>用于晶振</td>
</tr>
<tr>
<td>8</td>
<td>电容</td>
<td>32 kHz</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>电容</td>
<td>5 到 20 pF</td>
<td>2</td>
<td>用于晶振</td>
</tr>
<tr>
<td></td>
<td>铁氧体磁环</td>
<td></td>
<td></td>
<td>取决于被过滤的噪声</td>
</tr>
<tr>
<td>10</td>
<td>SWIM 连接器</td>
<td>4 个引脚</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

1. 1.8 V 到 3.6 V（对于 STM8L05xxx）。
7.2 原理图

1. 如果去除了这些元件，则必须短连接替换它们。
2. 可选：若在 VREF 上施加了一个单独的外部参考电压，则必须将一个 100 nF 和一个 1 µF 电容连至此引脚。VREF 连至 VDD 或 VREF。
3. 每个 VDDx 引脚一个 100 nF 陶瓷电容和一个单独的 1 µF 钽电容或陶瓷电容。
8 STM8 开发工具

通常需要以下工具:

- STVD 用于集成开发环境
- STM C 编译器（来自 Cosmic、Raisonance 或 IAR）
- 来自意法半导体的 ST 工具套件和 STM8 固件库
 STM8L101xx 标准外设库，STM8L05x/STM8L15x/STM8L16x/STM8AL31x/STM8AL3Lx 标准外设库
- 意法半导体的 STM8 评估板（用于 STM8L101xx 的 STM8L101-EVAL，用于中等容量 STM8L15xxx 和 STM8AL31xx/STM8AL3Lxx 的 STM8L1526-EVAL 和用于高容量 STM8L15xxx/STM8L162xx 的 STM8L1528-EVAL）
- 如果用户使用 STM8L101-EVAL，还需要来自 Raisonance 公司的 “Rlink” 和 ST-Link 或 STice-SWIM 的 HW SWIM 调试接口。调试接口 ST-LINK 包括在 STM8L1526-EVAL 和 STM8L1528-EVAL 中。
- STM8L-DISCOVERY

8.1 单线接口模块（SWIM）

8.1.1 SWIM 概述

在线调试模式或在线编程模式通过一个单线硬件接口管理，该接口基于开漏线，具有超快存储编程特性。除了与在线调试模块耦合，SWIM 也可以进行 RAM 和外设的非侵入式读/写操作。这使得在线调试器非常强大，接近全功能仿真器的性能。

SWIM 引脚可以用作标准 I/O（具有 8 mA 能力），如果用户想使用它调试，会存在一些限制。最安全的方式是用它作为一个 PCB 上的跳线选择。更多 SWIM 协议相关信息，请参考 STM8 SWIM 通信协议和调试模块用户手册 (UM0470)。

图 11. 调试系统框图

![图 11. 调试系统框图](MS32527V1)
8.1.2 SWIM 连接器引脚

SWIM 连接器引脚包括表 3 中描述的 4 个引脚。

<table>
<thead>
<tr>
<th>引脚号</th>
<th>引脚名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 1</td>
<td>VDD</td>
</tr>
<tr>
<td>Pin 2</td>
<td>SWIM 引脚</td>
</tr>
<tr>
<td>Pin 3</td>
<td>VSS</td>
</tr>
<tr>
<td>Pin 4</td>
<td>复位</td>
</tr>
</tbody>
</table>

8.1.3 硬件连接

图 12. 硬件连接

注意: 建议将 SWIM 头尽可能靠近 STM8L/STM8AL 器件放置，因为这样会减小任何可能由长 PCB 走线带来的信号恶化。
8.2 STice 仿真器

8.2.1 STice 概述
STice 是一个模块化的高端仿真系统，它通过 USB 接口连接 PC 和应用板，而不是目标微控制器。

它由免费的 STM8 工具套件支持：IDE ST Visual Develop (STVD) 编程器、ST Visual Programmer (STVP) 和 STM8 汇编器。更多详细信息，请参考 STM8 的 STice 仿真器。

STice 具有两个不同的工作模式，本节将介绍这两种模式：
• 仿真模式
• 在线模式

它也可以替换 RLink 用于 SWIM 连接。

图 13. 连接说明

仿真系统：STice
• 仿真盒
• 用于 USB、电源、触发器和分析器输入的电缆

连接线
• 用于连接应用板的 60 引脚或 120 引脚电缆

连接适配器
• 连接连接线到 STM8L/STM8AL 微控制器封装

适配器插座
• 用于连接适配器和 STM8L/STM8AL 微控制器的特定封装插座
8.2.2 STice 仿真配置

在仿真配置中，STice 通过 USB 接口连接 PC 和应用板，而不是使用的目标微控制器。

- 连接线：柔性电缆（60 引脚或 120 引脚，取决于目标微控制器），用于从 STice 到应用板传递信号。
- 连接适配器：将连接线连接到用户应用板上的目标微控制器封装。
- 适配器插座：焊接在应用板而不是微控制器上的插座，同时接收连接适配器。

STice 系统不包括上述附件。为了确定支持的微控制器具体需要什么，参考 www.st.com 网站上的在线产品选择器。

图 14. STice 仿真配置
8.2.3 在线编程和调试

在线调试 / 程序配置过程中，当应用运行在应用板上的微控制器上时，STice 允许在微控制器上对应用进行编程和调试。STice 支持 SWIM 协议，这使得只用一个通用 I/O 就可以在线编程和调试微控制器。

在仿真和在线编程 / 调试配置中，STice 由运行在主 PC 上的 ST Visual Develop (STVD) 或 ST Visual Programmer (STVP) 集成开发环境驱动。这样提供了一个单独的简便易用的接口，可以对高级应用构建、调试和编程特性进行完全控制。

图 15. 在线编程和调试

8.3 RLink 和 STLink

RLink 和 STLink 调试工具可将 STM8L 评估板或任何带有 SWIM 接口的用户应用板通过 USB 连接到一个主 PC，用于实现编程与调试。请参见第 10.3.3 节：连接硬件第 34 页。
为了在 STM8L/STM8AL 器件上编写、编译和运行第一个软件，需要下列软件工具链的组件（参见图 16）：

- 集成开发环境
- 编译器
- 固件库（可选，用于方便启动）

图 16. STM8 软件工具链
9.1 集成开发环境

集成开发环境 ST Visual Develop (STVD) 为全程控制应用开发（从构建和调试应用代码到微控制器编程）提供了简便易用且高效的环境。STVD 是免费 ST 工具套件的一部分，该套件还包括 ST Visual Programmer (STVP) 编程接口和 ST Assembler Linker。

为了构建应用程序，STVD 为 ST 无缝集成了 C 和汇编语言工具链，包括 Cosmic 和 Raisonance C 语言编译器与 ST Assembler Linker。在调试时，STVD 提供了一个集成的仿真器（软件），同时支持包括低成本 RLink 在线调试 / 编程器、高端 STice 仿真器和低成本 ST-LINK 工具等全套硬件工具。

为了对 STM8L/STM8AL 进行应用编程，STVD 也提供了一个从微控制器存储器读取、写入和验证的接口。该接口基于 ST Visual Programmer (STVP)，适合 STVP 支持的所有目标器件和编程工具。

免费的用于 STM8 的 ST 工具套件可以从意法半导体主页上获取（参见 www.st.com）。

9.2 编译器

STM8L/STM8AL 器件可以由一个包括在 ST 工具套件中的免费汇编工具链编程。

由于内核是为了支持高级语言而优化设计，因此建议使用 C 编译器！

STM8 的 C 编译器由第三方公司 Cosmic、Raisonance 和 IAR 提供。

从 www.cosmic-software.com 和 www.raisonance.com 上可以获取一个能够生成高达 32 Kbytes 代码的免费 C 编译器版本。

9.3 固件库

对于每个 STM8 外设，STM8 固件库就是一整套源代码示例。它是由严格的 ANSI-C 编写，完全与 MISRA C 2004 兼容。

所有的示例都可以使用四个工作区和项目定义文件，一个用于 STVD 和 Cosmic C 编译器，一个用于 STVD 和 Raisonance 编译器，一个用于 Raisonance 集成调试环境和编译器 (RIDE7 IDE)，一个用于 STM8 的 IAR 嵌入式工作站 (EWSTM8)。这使得用户可以在它们喜欢的开发环境中轻松载入和编译。

运行在意法半导体 STM8L 评估板上的示例可以轻松地根据其它类型硬件进行移植。

关于 STM8L/STM8AL 固件库的更多信息和下载，请访问 www.st.com/mcu。
10 设置 STM8 开发环境

10.1 安装工具

所有软件工具都配有一个设置向导，用于在整个安装过程中引导用户。建议按照下列顺序安装工具：
1. C 编译器
2. ST 工具套件
3. STM8 固件库

ST-LINK 不需要在 STM8 开发环境中安装任何专用软件，因为 ST 工具套件配有必需的驱动器。

R-link 驱动器必须从以下位置单独启动：
Start/Programs/STtoolset/Setup/Install Rlink driver。
10.2 使用工具

一旦工具安装完成，ST Visual Develop (STVD) 集成开发环境就可以启动。

用户可以选择新建一个新项目的工作区或者打开一个已有的工作区。如果是第一次使用STVD，建议从STM8固件库中打开一个已有的项目。

注：即使用户不打算使用库，已有的库项目也可以用作配置所有编译器选项的模板。在main()之后输入代码。

STM8固件库包括几个用于每个外设的示例和一个工作区，工作区包括一个准备接受用户C代码的空白项目。它位于固件的子目录\Project\Template（参见图17）。用户可以在STVD\Cosmic、STVD\Raisonance、RIDE或EWSTM8之间做出选择。

图17. STVD开放示例工作区
10.2.1 项目编辑
所有的项目源文件都可见，同时可以编辑（参见图18）。

图18. STVD MCU 编辑模式
10.2.2 在线帮助

在线帮助手册可以从固件安装目录里获得（参见图19），该手册用来帮助用户理解STM8固件库的结构。

图19. STM8固件库在线帮助手册
10.3 运行演示软件

- 访问 www.st.com/mcu 查找 STM8L/STM8AL 产品
- 选择 STM8L1x-EVAL、STM8L1526-EVAL 或 STM8L1528-EVAL 固件
- 打开选择的演示固件包里面所需的项目工作区。

为了在 STM8 评估板上运行演示软件，项目需要编译，同时需要在调试会话启动之前选择正确的 HW 工具。

10.3.1 编译项目

可以使用 “Build” 菜单中的 “Build” 功能对项目进行编译（参见图 20）。

图 20. STVD：建立工程

![STVD: 建立工程](image)
10.3.2 选择正确的调试工具

在下面的示例中，Rlink 工具用于通过 SWIM 接口与 STM8 的板上调试模块通信。Rlink 工具可以从“Debug Instrument Settings”对话框中的“Debug Instrument Selection”选择（参见图 21）。

图 21. STVD：选择调试工具
10.3.3 连接硬件

调试工具 STLink 集成在 STM8L1526-EVAL 和 STM8L1528-EVAL 板上。用户可以连接 PC 到 USB 连接器。该连接确保调试连接和供电。如果板子上的跳线不在默认位置，请阅读评估板用户手册来选择电源和调试支持跳线。

对于 STM8L101-EVAL，Rlink 工具可以通过一个标准的 USB 与 PC 连接。它还通过 USB 接口供电。在控制器这一边，连接 STM8 评估板用的是 SWIM 接口电缆。STM8L101-EVAL 评估板由一个外部 5 V 电源供电（参见图 22）。

图 22. 连接调试工具到 STM8L101-EVAL 评估板
图 23. 连接调试工具到 STM8L152x-EVAL 评估板

注意：在 STM8 的 Rlink 适配器板上，必须设置“SWIM”跳线。如果在应用中 SWIM 线没有上拉，则还要设置“ADAPT”跳线。不得设置“PW-5V”和“12MHz”跳线。
10.3.4 开始调试会话

可以通过“Debug Start Debugging”命令进入调试模式（参见图24）。

图24. STVD：开始调试会话
10.3.5 运行软件

在进入调试模式后，可以通过菜单“Debug Run”菜单中的运行命令启动软件（参见图25）。

图 25. STVD：运行软件
STM8 评估板上的 LCD 显示屏表明成功完成调试会话（参见图 26）。

图 26. STM8 评估板

10.3.6 后续操作

接着从上面描述的初始调试会话开始，STM8L/STM8AL 器件的额外外设就可以逐个开始运行。

STM8L/STM8AL 器件的许多特性是由 STM8 评估板上的专用硬件支持。STM8L1x 固件库中提供了必要的软件驱动，包括 STM8L/STM8AL 外设驱动 (USART、ADC、SPI) 和用于 EVAL 板模块的驱动（LCD、串联存储）。

STM8 评估环境
11 文档和在线帮助

与工具使用相关的文档资源包括：

应用
- STM8L/STM8AL 数据手册
- 如何对 STM8L 的 Flash 程序存储器和数据 EEPROM 编程 (PM0054)
- STM8 CPU 编程手册 (PM0044)
- STM8L05xx、STM8L15xx、STM8L162x、STM8AL31xx 和 STM8AL3Lxx 微控制器系列 (RM0031)
- STM8L101xx 微控制器系列 (RM0013)

工具
- STM8L/STM8AL 固件库和版本说明（作为帮助文件包含详细的固件库描述）
- 用于 ST 微控制器数据简介的 STice 高级仿真系统
- STice 用户手册
- Cosmic、Raisonance 或 IAR 的 C 编译器用户手册
- STM8L101-EVAL、STM8L1526-EVAL 或 STM8L1528-EVAL 评估板用户手册。
- STM8L1x-EVAL、STM8L1526-EVAL 或 STM8L1528-EVAL 固件
- ST Visual Develop 指导（在 ST-工具链中作为帮助文件）
- ST Visual Develop (STVD) 用户手册
- STM8 SWIM 通信协议和调试模块用户手册 (UM0470)

开发者可以利用 www.st.com 网站上的微控制器讨论区交流思想。这是寻找不同应用思路的最好的地方。除此之外，网站还有一个关于微控制器的 FAQ 技术资料，它提供了许多问题和解决方案。
修订历史

表 4. 文档修订历史

<table>
<thead>
<tr>
<th>日期</th>
<th>版本</th>
<th>变更</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009 年 9 月 9 日</td>
<td>1</td>
<td>初始版本</td>
</tr>
<tr>
<td>16-Sep-2010</td>
<td>2</td>
<td>对于中等容量，中等以上和高容量器件，更新了所有章节和参考。添加了 STM8L16x 器件。用 VDDx 和 VSSx 分别替换了 VDDIO 和 VSSIO+。用“某些封装”替换了 48 引脚封装。添加了 IAR C 编译器。第 2.1 节：电源概述：更新了文字。图 1：添加了注释 2：去除 VLCD 上的 + 符号。晶振/陶瓷谐振器：添加了参考到 AN2867。第 3.2 节：模拟输入：更新了文字。第 4.3.2 节：LSE 时钟：重新组织章节。第 5.1 节：复位管理概述：去掉了"电磁敏感性 (EMS) 复位 (只在 STM8S 系列中呈现)。图 7：去掉了 EMS 复位；添加了外部复位电路。第 5.2 节：硬件复位实现：添加了关于下拉电容的文本。表 2：元件清单：更新了 ID 数 2（电池）的“评论”信息；添加了 ID 数 5（陶瓷电容）。图 10：添加了外部复位电路和注释 1。第 9.2 节：编译器：在生成的代码中用"32 Kbytes"替换了"16 Kbytes"。第 9.3 节：固件库：更新了解释工作区和项目定义文件的文本。第 10 节：设置 STM8 开发环境：去掉了引言。第 10.2 节：使用工具：添加了 EWSTM8。</td>
</tr>
<tr>
<td>2011 年 3 月 7 日</td>
<td>3</td>
<td>图 1：更新了图片内容和脚注。第 2.1 节：电源概述：更新了各项目内容。第 3.1 节：模拟电路电源：更新了有关 VREF+ 的内容。第 6.4 节：去耦：更新池电容的值（1 μF，而不是 100 μF）。图 10：更新了图片内容和脚注。第 8 节：STM8 开发工具：更新了关于 STM8L101-EVAL 的第 5 点。第 9.1 节：集成开发环境：在 STVD 支持的硬件工具清单中添加了低成本 ST-Link 工具。</td>
</tr>
<tr>
<td>2012 年 11 月 6 日</td>
<td>4</td>
<td>更新文档以包括 STM8AL 产品。增加表 1：适用产品。添加了注释(1)到表 2：元件清单。更新了第 8 节：STM8 开发工具中的参考</td>
</tr>
<tr>
<td>2013 年 7 月 23 日</td>
<td>5</td>
<td>更新了：– 第 2.1 节：电源概述– 第 2.3 节：上电 / 掉电复位 (POR/PDR)</td>
</tr>
<tr>
<td>日期</td>
<td>版本</td>
<td>变更</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>2015年10月12日</td>
<td>1</td>
<td>中文初始版本</td>
</tr>
</tbody>
</table>
重要通知 - 请仔细阅读

意法半导体公司及其子公司（"ST"）保留随时对 ST 产品和 / 或本文档进行变更、更正、增强、修改和改进的权利，恕不另行通知。买方在订货之前应获取关于 ST 产品的最新信息。ST 产品的销售依照订单确认时的相关 ST 销售条款。

买方自行负责对 ST 产品的选择和使用，ST 概不承担与应用协助或买方产品设计相关的任何责任。

ST 不对任何知识产权进行任何明示或默示的授权许可。

转售的 ST 产品如有不同于此处提供的信息的规定，将导致 ST 针对该产品授予的任何保证失效。

ST 和 ST 徽标是 ST 的商标，所有其他产品或服务名称均为其各自所有者的财产。

本文档中的信息取代本文档所有早期版本中提供的信息。

© 2015 STMicroelectronics - 保留所有权利 2015