前言

本应用笔记描述了 STM32F7 系列微控制器的外设如何在不需 CPU 介入的情况下，通过名为“外设互连矩阵”的网络实现自主通信。

STM32F7 系列产品的这一新特性增强了 CPU 的实时性能，并显著降低了功耗。

本文档首先描述了外设互连矩阵的特性，然后概述了外设互连以及如何根据应用对其进行配置。详细的应用实例使描述更加完整。

本应用笔记必须与 STM32F75xxx 和 STM32F74xxx 参考手册 (RM0385) 一起阅读，后者可从 www.st.com/stm32 下载。

本应用笔记涉及 STM32F7 系列的所有器件。
目录

1 模块概述 .. 5

2 外设互连矩阵 .. 6
 2.1 定时器模块 .. 8
 2.1.1 从 TIM 到 TIM 8
 2.1.2 从 TIM 到 ADC 9
 2.1.3 从 TIM 到 DAC 9
 2.1.4 从 TIM 到 DMA 10
 2.2 模拟模块 .. 10
 2.2.1 从 ADC 到 ADC 10
 2.2.2 从温度传感器到 ADC1 10
 2.2.3 从模拟模块到 DMA 11
 2.3 时钟模块 ... 11
 2.3.1 从 CSS 到 TIM 11
 2.3.2 从 LSE、LSI、RTC 到 TIM 11
 2.4 系统模块 ... 11
 2.4.1 从 VBAT、VREFINT 到 ADC 11
 2.4.2 从 EXTI 到模拟模块 12
 2.5 通信接口模块 12
 2.5.1 从 SPDIFRX 到 TIM 12
 2.5.2 从 USB 模块到 TIM 12
 2.5.3 从 ETH 到 TIM 13
 2.5.4 从通信接口到 DMA 13
 2.6 DMA 模块 ... 13

3 应用程序示例 .. 14
 3.1 硬件说明 ... 14
 3.2 软件说明 ... 15

4 结论 ... 16

5 修订历史 .. 17
表格索引

表 1. STM32F7 系列的外设互连矩阵 ... 6
表 2. 外设互连配置信息 ... 15
表 3. 文档修订历史 ... 17
表 4. 中文文档修订历史 .. 17
图片索引

图 1.	STM32F7 系列的外设互连概览	5
图 2.	主/从定时器概述	8
图 3.	主 TIM/从 ADC 概述	9
图 4.	主/从 DAC 概述	9
图 5.	温度传感器和 VREFINT 通道框图	10
图 6.	SOF 连接	12
图 7.	PTP 触发输出与 TIM2 ITR1 的连接	13
图 8.	应用概述	14
模块概述

若干外设可以直接进行互连和配置，以发送或响应可以在内部连到器件中其他外设的事件信号。

STM32F7 系列的自带外设包括：
- 定时器 — 直接在内部互连或连到 DMA 或模拟模块。
- 模拟模块 — 接收来自定时器的事件或向 DMA 发送事件。
- 时钟模块 — 向定时器发送事件。
- 系统模块 — 向模拟模块发送事件。
- 通信接口模块 — 向定时器或 DMA 发送事件。

STM32F7 系列的外设互连见图 1：STM32F7 系列的外设互连概览。

图 1. STM32F7 系列的外设互连概览
2 外设互连矩阵

STM32F7 系列的外设通过名为“外设互连矩阵”的网络实现互连。该网络可以使某一外设在不唤醒 CPU 的情况下与另一个外设直接相连。根据外设不同，互连可以工作于运行 (Run)、休眠 (Sleep) 和停止 (Stop) 模式。

响应事件的外设称为用户，发送事件的外设则称为发生器。两种类型详见表 1。

<table>
<thead>
<tr>
<th>发生器</th>
<th>用户</th>
<th>定时器</th>
<th>DMA</th>
<th>模拟</th>
<th>模拟</th>
<th>ADC</th>
<th>DAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIM1</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>TIM2</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TIM3</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TIM4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TIM5</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TIM6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TIM7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TIM8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TIM10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TIM13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TIM14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TIM15</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ADC</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>DAC</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VSENSE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LSI</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LSE</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RTC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CSS</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

表 1. STM32F7 系列的外设互连矩阵
表 1. STM32F7 系列的外设互连矩阵（续）

<table>
<thead>
<tr>
<th>发生器</th>
<th>TIM1</th>
<th>TIM2</th>
<th>TIM3</th>
<th>TIM4</th>
<th>TIM5</th>
<th>TIM6</th>
<th>TIM7</th>
<th>TIM8</th>
<th>TIM9</th>
<th>TIM10</th>
<th>TIM11</th>
<th>TIM12</th>
<th>DMA1</th>
<th>DMA2</th>
<th>ADC</th>
<th>DAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>OTG_FS</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>OTG_HS</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SPI1</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SPI2</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SPI3</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SPI4</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SPI5</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SPI6</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CRYP</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>HASH</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ETH</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SPDIFRX</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>QSPI</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I2C1</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I2C2</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I2C3</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I2C4</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I2S2</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I2S3</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SAI1</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SAI2</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>USART1</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>USART2</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>USART3</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>USART6</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>UART4</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>UART5</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>UART6</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>UART8</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DCM1</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SDMMC1</td>
<td>-</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
2.1 定时器模块

2.1.1 从 TIM 到 TIM

一些定时器从内部连接在一起，以实现定时器同步或链接。当某个定时器配置为主模式时，
可对另一个配置为从模式的定时器的计数器执行复位、启动、停止操作或为其提供时钟。
关于该特性的描述见 RM0385 参考手册的定时器同步章节和 TIM2 选项寄存器 (TIM2_OR)。
输出 (自主设备) 在可配置定时器事件发生后，出现在 TIM_TRGO 信号上。输入 (至从设
备) 在 TIM_ITR0/ITR1/ITR2/ITR3 信号事件上。

图 2 简要介绍了触发选择和主模式选择框图。

关于主 / 从连接的更多细节，参见 RM0385 参考手册的 TIMx 内部触发连接表格。
2.1.2 从 TIM 到 ADC

如图3所示, 一些定时器可用于产生 ADC 触发事件。
关于 ADC 同步的相关描述见 RM0385 参考手册的外部触发转换和触发极性章节。
关于定时器和 ADC 常规及注入通道间连接的更多信息, 请参见 RM0385 参考手册的常规通
道外部触发表格和注入通道外部触发表格。
输出 (自定时器) 在 TIMx_TRGO 或 TIM_CHx 信号事件。
输入 (至 ADC) 在 EXTSEL [3:0], JEXTSEL [3:0] 信号事件上。

图 3. 主 TIM/从 ADC 概述

2.1.3 从 TIM 到 DAC

一些定时器可用于触发启动 DAC 转换的事件 (见图4)。
DAC 中输入触发的选择见 RM0385 参考手册中的 DAC 触发选择章节。
定时器的 TIM_TRGO 信号输出直接连接到相应的 DAC 输入上。

图 4. 主 / 从 DAC 概述
2.1.4 从 TIM 到 DMA
请参见第 2.6 节: DMA 模块。

2.2 模拟模块
模拟模块包括:
- ADC 模块 (三个 ADC)
- DAC 模块 (两个 DAC)
- 温度传感器模块

2.2.1 从 ADC 到 ADC
在多重 ADC 模式下，可以通过 ADC1 主器件来交替触发或同时触发从器件 ADC2 和 ADC3 启动转换。具体取决于 ADC_CCR 寄存器中的 MULTI[4:0] 位所选的模式。
关于更多信息，请参见 RM0385 参考手册的多重 ADC 模式章节。

2.2.2 从温度传感器到 ADC1
温度传感器可用于测量器件的环境温度 (Ta)。

V_{BAT} 和温度传感器连接到同一 ADC 内部通道 (ADC1_IN18)。一次只能选择一个转换 (温度传感器或 V_{BAT})。同时使能两个转换时，将只进行 V_{BAT} 转换。

图 5 显示了温度传感器框图。

图 5. 温度传感器和 V_{REFINT} 通道框图
2.2.3 从模拟模块到 DMA

请参见第 2.6 节：DMA 模块。

2.3 时钟模块

系统模块包括:
- LSE 时钟
- LSI 时钟
- 时钟安全系统 (CSS)
- 实时时钟 (RTC)

2.3.1 从 CSS 到 TIM

CSS 可以以面向定时器的定时器刹车形式生成系统错误。
刹车功能的目的是保护由这些定时器生成的 PWM 信号所驱动的功率器件。
可能的刹车源列表见 RM0385 参考手册的使用刹车功能 (TIM1/TIM8) 章节。

2.3.2 从 LSE、LSI、RTC 到 TIM

外部时钟（LSE）、内部时钟（LSI）和 RTC 唤醒中断可用作通用定时器（TIM5 通道 4/TIM11 通道 1）的输入。
该特性描述见 RM0385 参考手册的下列章节:
- 基于 TIM5/TIM11 的内部 / 外部时钟测量
- TIM5 选项寄存器 (TIM5_OR)
- TIM11 选项寄存器 (TIM11_OR)

2.4 系统模块

系统模块包括:
- 内部参考电压 (VREFINT)
- V_{BAT} 电源电压
- 外部中断 / 事件控制器 (EXTI)

2.4.1 从 V_{BAT}、V_{REFINT} 到 ADC

V_{BAT} 引脚在内部连到电桥分压器 (V_{BAT}/4)。通过 ADC_IN18 通道，它可以转换为注入通道或常规通道。
V_{REFINT} 连接到 ADC_IN17 通道。
该互连特性描述见 RM0385 参考手册的 ADC 一章中的下列章节：
- 通道选择
- 电池充电监视

2.4.2 从 EXTI 到模拟模块

EXTI 可用于生成 ADC 触发事件或启动 DAC 转换。
关于 ADC 同步的相关描述见 RM0385 参考手册的外部触发和触发极性章节。
DAC 中输入触发的选择见 RM0385 参考手册中的 DAC 触发选择章节。

2.5 通信接口模块

2.5.1 从 SPDIFRX 到 TIM

SPDIFRX (SPDIFRX_FRAME_SYNC) 连到 TIM11_CH1，测量所接收 SPDIFRX 帧的时钟漂移。
该互连特性描述见 RM0385 参考手册的 TIM11 选项寄存器 (TIM11_OR) 章节：

2.5.2 从 USB 模块到 TIM

USB 模块包括：
- USB on-the-go 全速 (OTG_FS)
- USB on-the-go 高速 (OTG_HS)

USB (OTG_FS SOF) 和 USB (OTG HS SOF) 可以生成面向通用定时器 (TIM2) 的触发信号，如图 6 所示。

![图 6. SOF 连接](image-url)
关于 USB 和 TIM2 互连的描述，详见 RM0385 参考手册的 SOF 触发章节。

2.5.3 从 ETH 到 TIM

MAC 可以生成面向通用定时器 (TIM2) 的触发信号。

该 PTP 触发信号会连接到可用软件选择的 TIM2 ITR1 输入。该连接可通过 TIM2 选项寄存器 (TIM2_OR) 中的位 11 和 10 使能。

关于 ETH 和 TIM2 互连的描述，详见 RM0385 参考手册的精确时间协议 (IEEE 1588 PTP) 章节。

2.5.4 从通信接口到 DMA

请参见 第 2.6 节: DMA 模块。

2.6 DMA 模块

每个数据流都与一个 DMA 请求相关联，此 DMA 请求可以从 8 个可能的通道请求中选出。

此选择由 DMA_SxCR 寄存器中的 CHSEL[2:0] 位控制。来自外设的 8 个请求 （TIM、ADC、SPI、I2C 等）独立连接到每个通道，具体的连接取决于产品实现情况。

该互连特性描述见 RM0385 参考手册的下列表格:
- DMA1 请求映射
- DMA2 请求映射

关于 DMA 的详细信息，请参见 RM0385 参考手册的 DMA 通用描述。
3 应用程序示例

本应用示例演示了如何在 STM32F7 系列微控制器上使用外设互连矩阵，如何在 TIM2 时间溢出时设置 ADC3 以启动一次信号转换。每次转换结束时，DMA 将转换的数据从 ADC 传到存储器中。

本应用程序使用了 STM32F7xx HAL API。

3.1 硬件说明

- TIM2 外设：用于生成 ADC 触发事件
- ADC3 外设：工作在从模式
- DMA2 外设：用于从 ADC3 向存储器发送数据

图 8. 应用概述

![应用概述图](image)
3.2 软件说明

ADC3 配置为在接收到来自 TIM2 的外部触发时就启动信号转换。自 TIM2 的输出在 TIM2_TRGO 信号上。每次转换结束时，正常模式下 DMA 将转换的数据从 ADC3 DR 寄存器传到目的变量中 (uhADCxConvertedValue)。

```c
/* 最后一次传输后使能 ADC DMA ( 单 ADC 模式 ), 使能 ADC 外设 */
HAL_ADC_Start_DMA(&AdcHandle, (uint32_t*)&uhADCxConvertedValue, BUFFER_SIZE);
```

本例中，系统时钟频率 = 216 MHz, APB2 = 108 MHz，ADC 时钟频率 = APB2/4。

ADC3 频率为 25MHz，采样时间设置为 3 个周期，12 位数据的转换时间为 12 个周期，所以总转换时间为 (12+3)/25 = 0.6 µs。

表 2 给出了外设互连配置。

<table>
<thead>
<tr>
<th>互连</th>
<th>代码示例</th>
<th>注释</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIM2_TRGO 选择</td>
<td>sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; HAL_TIMEx_MasterConfigSynchronization(&htim, &sMasterConfig);</td>
<td>配置主 TIM，生成触发事件 (TIM_TRGO_UPDATE)。</td>
</tr>
<tr>
<td>ADC3 外部触发源</td>
<td>AdcHandle.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T2_TRGO AdcHandle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING; AdcHandle.Init.DMAContinuousRequests = ENABLE; HAL_ADC_Init(&AdcHandle);</td>
<td>TIM2_TRGO 事件在上升沿触发规则组的转换。由于触发的规则通道值存储在特定的数据寄存器中，DMA 模式被使能。</td>
</tr>
<tr>
<td>DMA 句柄</td>
<td>HAL_LINKDMA(hadc, DMA_Handle, hdma_adc);</td>
<td>关联初始化的 DMA 句柄和 ADC 句柄。</td>
</tr>
</tbody>
</table>
4 结论

本应用笔记描述了集成到 STM32F7 系列中的外设互连特性，能够获得能效和性能之间的最佳平衡。

它同时描述了 TIM2、ADC3 和 DMA2 之间自主通信的基本示例。
5 修订历史

表 3. 文档修订历史

<table>
<thead>
<tr>
<th>日期</th>
<th>版本</th>
<th>变更</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015 年 4 月 30 日</td>
<td>1</td>
<td>初始版本。</td>
</tr>
<tr>
<td>2015 年 5 月 18 日</td>
<td>2</td>
<td>文档发布范围由限于 ST 公司变为公开发布。</td>
</tr>
<tr>
<td>2015 年 6 月 2 日</td>
<td>3</td>
<td>第 3.2 节：软件说明，修改系统时钟频率为 216 MHz，APB2 时钟频率为 108 MHz。</td>
</tr>
</tbody>
</table>

表 4. 中文文档修订历史

<table>
<thead>
<tr>
<th>日期</th>
<th>版本</th>
<th>变更</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015 年 9 月 9 日</td>
<td>1</td>
<td>中文初始版本。</td>
</tr>
</tbody>
</table>
重要通知 - 请仔细阅读

意法半导体公司及其子公司（“ST”）保留随时对 ST 产品和/或本文档进行变更、更正、增强、修改和改进的权利，恕不另行通知。买方在订货之前应获取关于 ST 产品的最新信息。ST 产品的销售依照订单确认时的相关 ST 销售条款。

买方自行负责对 ST 产品的选择和使用，ST 概不承担与应用协助或买方产品设计相关的任何责任。

ST 不对任何知识产权进行任何明示或默示的授权或许可。

转售的 ST 产品如有不同于此处提供的信息的规定，将导致 ST 针对该产品授予的任何保证失效。

ST 和 ST 徽标是 ST 的商标。所有其他产品或服务名称均为其各自所有者的财产。

本文档中的信息取代本文档所有早期版本中提供的信息。

© 2015 STMicroelectronics - 保留所有权利