Introduction

Integrated circuits mounted in plastic power packages can be damaged, or reliability compromised, by inappropriate handling and mounting techniques. Avoiding these problems is simple if you follow the suggestions in this section.

Advances in power package design have made it possible to replace metal packages with more economical plastic packages in many high power applications. Most of STMicroelectronics power integrated circuits, for example, are mounted in some innovative packages, like MULTIWATT and FLEXIWATT (25/27-pin standard and exposed pad), developed originally for high power audio amplifiers.

Though the intrinsic reliability of these packages is now excellent, the use of inappropriate techniques or unsuitable tools during mechanical handling can affect the long term reliability of the device, or even damage it. With a few simple precautions, careful designers and production engineers can eliminate these risks, saving both time and money.
Contents

1 Handling and mounting ... 5
 1.1 Bending and cutting leads 5
 1.2 Insertion .. 6
 1.3 Soldering .. 6
 1.4 Flexiwatt (std/exposed-pad) - Heatsink mounting 10

2 Revision history ... 13
List of tables

Table 1. Resistance junction to heatsink depends on tightening torque in Multiwatt package 7
Table 2. Document revision history. 13
List of figures

Figure 1. Clamp the leads between the package and bend/cut point ... 5
Figure 2. Bend the leads at least 3mm, never bend leads more than 90° and never splay the leads out 5
Figure 3. The excess junction temperature of a Pentawatt package in the suggested soldering
conditions (350°C for three seconds) .. 6
Figure 4. The junction temperature of a Pentawatt package in the suggested soldering conditions
(260°C for ten seconds) .. 6
Figure 5. The thermal resistance of a Multiwatt package is improved by silicon grease.
Here the contact thermal resistance is plotted against insulation layer thickness 7
Figure 6. Multiwatt, Heptawatt, Pentawatt, TO220 and Flexiwatt packages are attached
to the heatsink with one or two screws .. 8
Figure 7. Multiwatt, Heptawatt, Pentawatt, TO220 and Flexiwatt packages are attached
to the heatsink with a spring clip .. 8
Figure 8. The heatsink tab may be deformed if a washer or a wide-headed screw is not used 9
Figure 9. The recommended screw type looks like this ... 9
Figure 10. Top clip mounting .. 10
Figure 11. Across clip mounting .. 10
Figure 12. Double screw bar mounting ... 11
Figure 13. Single screw mounting .. 11
Figure 14. Double screw mounting ... 12
1 Handling and mounting

1.1 Bending and cutting leads

The first danger area is bending and cutting the leads. In these processes it is important to avoid straining the package and particularly the area where the leads enter the encapsulating resin. If the package/lead interface is strained the resistance to humidity and thermal stress are compromised, affecting reliability.

There are five basic rules to bear in mind:

- Clamp the leads firmly between the package and the bend/cut point (Figure 1).
- Bend the leads at least 3mm from the package (Figure 2 a).
- Never bend the leads more than 90° and never bend more than once (Figure 2 b).
- Never bend the leads laterally (Figure 2 c).
- Make sure that the bending/cutting tool does not damage the leads.

![Figure 1. Clamp the leads between the package and bend/cut point](image)

![Figure 2. Bend the leads at least 3mm, never bend leads more than 90° and never splay the leads out](image)
1.2 Insertion

When mounting the IC on a printed circuit board the golden rule is, again, to avoid stress. In particular:

- Adhere to the specified pin spacing of the device; don’t try to bend the leads to fit non-standard hole spacing.
- Leave a suitable space between the IC and the board. If necessary use a spacer.
- Take care to avoid straining the device after soldering. If a heatsink is used and it is mounted on the PC board it should be attached to the IC before soldering.

1.3 Soldering

The greater danger during soldering is overheating. If an IC is exposed to high temperature for an excessive period it may be damaged or reliability reduced.

Recommended soldering conditions are 260°C for ten seconds or 350°C for three seconds. Figures 3 and 4 shows the excess junction temperature of a PENTAWATT package for both methods.

It is also important to use suitable fluxes for the soldering baths to avoid deterioration of the leads or package resin. Residual flux between the leads or in contact with the resin must be removed to guarantee long term reliability. The solvent used to remove excess flux should be chosen with care. In particular, trichloroethylene (CHCl₃ : CCl₂) - base solvents should be avoided because the residue could corrode the encapsulant resin.

Figure 3. The excess junction temperature of a Pentawatt package in the suggested soldering conditions (350°C for three seconds)

![Figure 3: Excess junction temperature of a Pentawatt package](image1)

Figure 4. The junction temperature of a Pentawatt package in the suggested soldering conditions (260°C for ten seconds)

![Figure 4: Junction temperature of a Pentawatt package](image2)
The thermal resistance of a Multiwatt package is improved by silicon grease. Here the contact thermal resistance is plotted against insulation layer thickness.

STMicroelectronics plastic power packages - MULTIWATT, HEPTAWATT, PENTAWATT, CLIPWATT 19 H and TO220 - are attached to the heatsink with a single screw, FLEXIWATT is attached with two screws. A spring clip may also be used as shown in Figure 7. The screw should be properly tightened to ensure that the package makes good contact with the heatsink. It should not be too tight or the tab may be deformed, breaking the die or separating the resin from the tab or in the case of FLEXIWATT packages an high tightening torque may cause cracks in the molded case. The appropriate tightening torque can be found by plotting thermal resistance against torque as shown in Table 1.

Table 1. Resistance junction to heatsink depends on tightening torque in Multiwatt package

<table>
<thead>
<tr>
<th>Torque (Nxcm)</th>
<th>Rth (j-heatsink) with grease (°C/W)</th>
<th>Rth (j-heatsink) without grease (°C/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>1.0</td>
<td>1.7</td>
</tr>
<tr>
<td>40</td>
<td>0.94</td>
<td>1.63</td>
</tr>
<tr>
<td>50</td>
<td>0.89</td>
<td>1.59</td>
</tr>
<tr>
<td>70</td>
<td>0.84</td>
<td>1.55</td>
</tr>
<tr>
<td>100</td>
<td>0.83</td>
<td>1.52</td>
</tr>
<tr>
<td>120</td>
<td>0.82</td>
<td>1.51</td>
</tr>
<tr>
<td>150</td>
<td>0.82</td>
<td>1.51</td>
</tr>
</tbody>
</table>

Note: Test device: P638 (160 x 160 sq. mils) \(R_{th} (j-O) = 0.6°C/W \).

Suggested maximum torques for M3 screws are 80Nxcm for TO220, PENTAWATT, HEPTAWATT, MULTIWATT and CLIPWATT 19 H packages. Particularly for FLEXIWATT package, clipping system is strongly recommended. While suggested maximum torque for M3 screws is 70 Nxcxm for TO220SG (single gauge).

If different screws, or spring clips, are used, the force exerted by the tab must be equivalent to the force produced with these recommended torques. If clips are used, it should be taken...
care of the contact area between the plastic case and the clip: the maximum pressure allowed on plastic is 150N/mm².

Over this value, cracks in the molded body may appear. Therefore clips have to be round or smooth in the contact area to avoid concentrate loads on plastic body of the package.

Figure 6. Multiwatt, Heptawatt, Pentawatt, TO220 and Flexiwatt packages are attached to the heatsink with one or two screws

Even if the screw is not overtightened the tab can be deformed, with disastrous results if the surface of the heatsink is not sufficiently flat. The flatness of the contact surface between device and heatsink must be better than 50 micron for TO220, PENTAWATT, HEPTAWATT and MULTIWATT packages.

Similar problems may arise if the screwhead is too narrow compared to the hole in the heatsink (**Figure 8**).
The solution here is to use a washer to distribute the force over a wider area. An alternative is to use screws of the type shown in Figure 9 which have a wide flat head. When self-tapping screws are used it is also important to provide an outlet for the material deformed as the thread is formed. Poor contact and broken die will result if this is not done. Another possible hazard arises when the hole in the heatsink is formed with a punch: a circular depression may be formed around the hole, leading to deformation of the tab. This may be cured by using a washer or by modifying the punch.

Serious reliability problems can be encountered if the heatsink and printed circuit board are not rigidly connected. Either the heatsink must be rigidly attached to the printed circuit board or both must be securely attached to the chassis. If this is not done the stresses and strains induced by vibration will be applied to the device and in particular to the lead/resin interface. This problem is more likely to arise when large boards and large heatsinks are used or whenever the equipment is subjected to heavy vibrations.

Figure 8. The heatsink tab may be deformed if a washer or a wide-headed screw is not used

![Figure 8](image)

Figure 9. The recommended screw type looks like this

![Figure 9](image)
1.4 Flexiwatt (std/exposed-pad) - Heatsink mounting

Figure 10. Top clip mounting

* MAX PRESSURE ON PLASTIC = 150 N/mm².

Figure 11. Across clip mounting

* MAX PRESSURE ON PLASTIC = 150 N/mm².
Figure 12. Double screw bar mounting

* MAX PRESSURE ON PLASTIC = 150 N/mm².

Figure 13. Single screw mounting

* MAX PRESSURE ON PLASTIC = 150 N/mm².
Figure 14. Double screw mounting

- USE Nº 2 SCREWS M3 WITH INTERPOSED WASHERS (MAX PRESSURE ON PLASTIC = 150 N/mm²).
- MAX TORQUE = 50 N·cm.
- MAX EXTERNAL HEAT SINK UNFLATNESS = 36µm.
2 Revision history

Table 2. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-May-1997</td>
<td>2</td>
<td>Minor text changes.</td>
</tr>
<tr>
<td>13-Mar-2006</td>
<td>3</td>
<td>Added the CLIPWATT 19H power package in the page 7.</td>
</tr>
<tr>
<td>4-Dec-2013</td>
<td>4</td>
<td>Update Section 1.3: Soldering on page 7.</td>
</tr>
<tr>
<td>2-Apr-2014</td>
<td>5</td>
<td>Added Flexiwatt exposed pad references in Introduction on page 1.</td>
</tr>
</tbody>
</table>
Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com