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Introduction

Up to now, refrigerator compressors have been controlled by electromechanical switches 
(thermostat or even electronically controlled relays). This choice was driven by the high 
inrush current that can appear when the rotor is stalled. Furthermore, electromechanical 
relays were advantageous because they were less sensitive to line voltage disturbances. 
Today, new semiconductor devices feature overvoltage protection and high inrush current 
capability, allowing their use in cold appliances.

Electronic thermostats can now be implemented, allowing the appliance efficiency to be 
improved by more than 20 W, for 150 W compressors. This is possible because of the better 
temperature control and the PTC removal.

Hence, at a similar cost to electromechanical thermostats, this technical breakthrough can 
allow refrigerators or freezers to fulfill Class A, A+, or A++ consumption requirements, 
bringing the following advantages:

 Better reliability

– Higher switching robustness in time of solid-state semiconductor switches compared 
with electromechanical solutions

– Higher ACS and ACST overvoltage robustness compared with Triacs, which makes 
the metal-oxide varistor redundant

 Temperature regulation curve flexibility (automatic defrost, hysteresis threshold 
adaptation)

 Reduction of the temperature ripple (better food preservation, cooling elements 
downsizing)

 Possibility to add indication features for the end-user (inside temperature, open door 
warning)

 Spark-free operation and EMI reduction (switches can be turned on at zero voltage and 
are turned off at zero current)

 Over current protection of the motor winding

This application note presents the different topologies that can be used for induction motor 
control, and lists the electrical constraints that result from these different circuits. A 
comparison is also made between the different performances of electromechanical or 
electronic thermostats.

All numerical examples are based on the specifications for a 150 W compressor, which can 
be used in 350 L freezers.
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1 Single-phase induction motor drive topologies

1.1 One or two Triac approach

Single-phase induction motors, used for compressor controls, have an auxiliary winding. 
This winding permits a higher torque to be applied at start-up. Two different ways can be 
implemented to control this auxiliary winding. The different topologies are given in Figure 1 
and Figure 2.

The most popular method is to add a positive temperature coefficient (PTC) resistor in 
series with this coil and the thermostat (see Figure 1). Then, each time the thermostat is 
closed, the current flows through the start winding and begins to heat the PTC. After a few 
hundreds of milliseconds, the PTC value rapidly increases from a few ohms to several tens 
of thousands of ohms. This results in reducing the start winding current to a few tens of mA. 
This winding can then be considered as open.

A second solution is to use a second Triac to control the auxiliary winding and replace the 
PTC function (see Figure 2). Then, at off state no power is consumed to keep the PTC hot, 
this results in improving the appliance efficiency (see Section 3.2.1: PTC losses).

A start capacitor is sometimes connected in series with this winding in location ➀ (see 
Figure 1 and Figure 2). It is important to note, even for the same motor, that this capacitor 
can be placed or removed, without disturbing the motor operation.

When the capacitor is placed in location ➁ (split-phase capacitor), it always sinks a current, 
even when the PTC is hot or when the start Triac is off. This allows power factor 
improvement and power consumption reduction. The capacitor C will be added if the 
refrigerator or freezer does not reach the required efficiency level without it.

In the following study, we assume that C is always placed at location ➁, if present.

Figure 1. One Triac topology
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Figure 2. Two Triac topology

1.2 Semiconductor rating

1.2.1 Start capacitor voltage

The start capacitor and the auxiliary winding form a resonant R-L-C circuit. The capacitor 
voltage can thus be higher that the mains voltage. In practice the ratio between VC and VAC 
equals 1.1 to 1.5. The worst case appears at the run Triac turn-off, for both topologies. VC is 
added to the mains voltage up to the capacitor complete discharge. This results in high 
voltages across the Triac (see Figure 3). Even for a 220-240 V application, 700 V 
semiconductors must then be chosen.

Figure 3. Voltage across Triac after turn off (612 V maximum)
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1.2.2 Current rating

Refrigerator or freezer compressors mostly feature input power in the range of 100-300 W. 
The steady state current is then in the range of 0.5 to 3 A rms for a 220-240 V mains 
voltage.

The highest current appears at start-up and can reach up to 4 times the steady state 
current. Thermal calculations can demonstrate that, as these events last a short time, 6 A 
devices can be used without any heat sink. For example, Figure 4 gives the junction 
temperature increase of an ACST610-8T without any heat sink, due to the inrush current 
which is measured through the start winding of a 150 W compressor. It shows that Tj only 
reaches 77 °C, when coming from a 60 °C ambient temperature, and remains below the 
maximum allowed temperature (125 °C).

Figure 4. Inrush current in start winding (150 W compressor)
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When dealing with the current rating for AC semiconductor switches, the rate of decrease of 
the current must also be checked. This constraint will depend on the chosen circuit topology.

The worst case of turn-off stress appears with a compressor without any start capacitor. In 
this case, the rise in voltage will not be slowed by the motor capacitor. The higher stress 
occurs for the “START” winding (where the impedance is lower than the “RUN” winding one) 
and when the rotor is stalled. These two conditions yield a higher current and therefore, a 
higher rate of decrease for the ACST current.

Then, for a stalled 150 W compressor, supplied with a 264 V rms voltage, the dI/dtc and 
dV/dtc equal respectively 2.4 A/ms and 9.6 V/µs through the start ACST (see Figure 5, 
measured with THERM01EVAL board). This is far below the maximum ratings for ACST610 
devices, which is 3.5 A/ms with a 15 V/µs rate.

Figure 5. Turn-off constraint for the worst case scenario

1.3 Protective inductor

With the two Triac topology, a spurious discharge of the start capacitor can occur when the 
start Triac is accidentally turned on. To reduce the dI/dt stress through the silicon switch, a 
small protective inductor can be added in series with this Triac.

In order to optimize the solution cost, this inductor can be implemented on the printed circuit 
board (PCB). For example, an inductor with 12 turns of 0.51 mm width track (see Figure 6), 
made on a 35 µm FR4 PCB, produces a 5 µH inductor and a 1.6  resistor.
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Figure 6. 5 µH PCB inductor

An inductor as described in Figure 6, allows the dI/dt rate to be limited (in case of a spurious 
firing of the start ACST when the run ACST is already on) below 60 A/µs (start capacitor is 
charged up to 510 V). The semiconductor device operation is then well secured.

2.8cm
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2 Stalled rotor management

2.1 Protection by thermal cut-off

In the case of a stalled rotor operation, the over current protection is commonly ensured by 
a thermal cut-off. This component, also called “klixon”, is mandatory to prevent the 
compressor from over-heating. Klixons are well adapted for motor protection, but not for 
semiconductors. Indeed, the turn-off time is in the range of 15 s. The silicon switch will 
withstand a high current that will only decrease thanks to the motor winding heating. In 
practice, the rms current can fall from 9 A rms to around 4.5 A rms, for a 150 W compressor.

The maximum junction temperature reached by the ACST610-8T can then equal 162 °C as 
shown by the simulation results in Figure 7.

As this temperature exceeds the maximum allowed steady state temperature (125 °C), 
reliability tests have been performed to check the robustness of the silicon switches after 
such stress. ACST610 devices can withstand such currents up to more than 10 thousand 
times. This easily covers the number of stalled rotor operations that can happen during the 
life cycle of a refrigerator or freezer.

Figure 7. ACST610 junction temperature during stalled rotor operation
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2.2 Protection by microcontroller

In order to secure the life expectancy of a refrigerator, the stalled rotor protection can also 
be provided by the electronic board. In this case, the over current is applied to the motor and 
the switches for less than 1 s, as opposed to 15 s with a thermal cut-off. The maximum 
junction temperature will then reach 102 °C, for a 60 °C ambient temperature, instead of 
162 °C, eliminating any stress on the ACST.

This 1 s duration is chosen in order to differentiate an abnormal over-current from the start-
up current, as explained below.

To sense an over current, it is possible to measure the voltage across a shunt resistor 
placed in series with the run ACST. Then, as the current is alternating, it must be clearly 
defined at which moment it must be measured. Furthermore, this moment must be chosen 
in order to differentiate the over-current from the normal current. Figure 8 gives the 
maximum and minimum currents for both operating conditions. These curves come from 
experimental results where the mains voltage has been varied from 198 to 264 V rms, with 
and without a start capacitor.

Figure 8 shows that, in a stalled rotor condition, the current is still above 5.6 A between 6 
and 8 ms after zero voltage crossing. For information, in normal condition, the load current is 
always lower than 3 A at this moment.

The 5.6 A value is chosen as the condition for a stalled rotor status. The MCU must then be 
able to perform A/D conversions between 6 and 8 ms. Several measurements can be 
performed to filter measurement noise.

Figure 8. Motor current maximum ranges
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3 Electronic thermostat versus mechanical thermostat

3.1 Temperature regulation

One main advantage of electronic thermostats versus electromechanical ones, is their 
adaptability. For mechanical thermostats, it is a gas compression and decompression that 
switches the compressor on or off. This does not allow a hysteresis threshold adaptation 
during the refrigerator operating cycle. Moreover, this gas effect yields to the fact that the 
refrigerator may not work properly depending on the ambient atmospheric pressure.

For electronic thermostats, the temperature information is measured accurately and at all 
times, contrary to electromechanical thermostats where the only available information is that 
the temperature is over a fixed level or not. This enables the temperature fluctuation inside 
the cabinet to be reduced with electronics.

A reduction of the temperature ripple presents three main advantages:

 Better food preservation

 Thermodynamic efficiency improvement (lower evaporator temperature ripple; higher 
evaporator minimum temperature; better compressor use (see Section 3.2.2: Motor 
duty cycle)

 Compressor and evaporator downsizing

A particularly interesting feature can also be implemented thanks to electronics - the 
hysteresis levels can be changed during the freezing process. This allows automatic 
defrosting operations to be implemented. For example, Figure 9 shows that the upper 
hysteresis level is increased every 8 cycles in order to let the evaporator temperature 
become higher than 0°C. This allows the ice deposit on the evaporator to be removed. This 
may be very helpful to increase the refrigerator efficiency as this ice layer plays a real 
insulation role.

Figure 9. Temperature fluctuation and defrost cycle with electronic thermostat
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3.2 Power consumption

3.2.1 PTC losses

A PTC thermistor presents a very low resistance when it is cold (example: 10  at 25 °C). 
This enables a high inrush current at motor start-up to be applied.

Then, the PTC begins to heat and its impedance rapidly increases. This allows the current 
to decrease to just a few milliamperes, compared to several amperes at the beginning. 
Figure 10 shows this current at steady state. This figure also gives the dissipated power 
through the PTC at this moment. It can be said that the PTC continuously dissipates 2.1 W, 
when the motor is on. This power consumption can be reduced simply by removing this 
component and using two Triacs instead of one, to drive the motor.

Figure 10. PTC power consumption at steady state

3.2.2 Motor duty cycle

A very efficient way to reduce the power consumption is to control the temperature more 
accurately.

Some tests have been performed on a half-loaded 350 L freezer, controlled by our 
electronic thermostat. During the tests, the door is kept closed and the load remains the 
same.

Figure 11 and Figure 12 give the power consumption and the evaporator and cabinet 
temperatures for respectively a 5.3 °C and 4.2 °C hysteresis threshold control.

The measurements, shown in Table 1, have been made for the following cases:

 Case 1: hysteresis threshold = 5.3 °C (similar to mechanical thermostat feature)

 Case 2: hysteresis threshold = 4.2 °C

PTC current (20 mA/div )

Dissipated power (2.5 W/ div )

PTC current (20 mA/div )

Dissipated power (2.5 W/ div )



Doc ID 15772 Rev 2 11/14

AN2991 Electronic thermostat versus mechanical thermostat

14

         .

It is shown that reducing the temperature ripple improves the appliance efficiency. This can 
be explained by the fact that the useful energy is not wasted.

The Case 2 allows a saving of 8 W by reducing the threshold level by little more than 1 °C. 
Electromechanically controlled refrigerators exhibit a temperature ripple in the range of 10 to 
20 °C. A decrease to a few degrees Celsius, will allow a saving of up to 20% of energy 
consumption. This means a 20 W saving for a 150 W compressor (100 W average power 
with a 2/3 duty cycle).

Of course, reducing the temperature ripple brings one drawback. This is that the motor 
running cycle frequency increases. In our example, this frequency increases by around 20% 
(2.06 cycles per hour with Case 1, and 2.46 cycles per hour with Case 2). This is not a 
problem for electronic switches where the cycling capability is 10 times or more that of 
electromechanical switches. From the motor point of view, the higher number of cycles 
should not reduce its reliability as:

 Motor temperature ripple is decreased thanks to a higher cycle frequency.

 The start winding conduction length is reduced thanks to an electronic control instead 
of a thermal-active solution (PTC).

 An over current protection, which reduces motor stress, is provided by the MCU.

Table 1. Power consumption versus hysteresis threshold

Case 1

(hyst. thresh. = 5.3 °C)

Case 2

(hyst. thresh. = 4.2 °C)

Measure

Compressor on time 12' 50" 9' 10"

Compressor off time 16' 20" 15' 10"

Average power during on time 136 W 138 W

Calculation

Cycle period 29' 10" 24' 20"

Duty cycle 0.44 0.38

Average power consumption 60 W 52 W
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Figure 11. Temperature control (case 1)

Figure 12. Temperature control (case 2)
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4 Conclusion

Reliable electronic thermostats can now be used instead of older bimetallic solutions. This 
allows large efficiency gains to be achieved, thanks to the PTC removal and to a tighter 
temperature management.

These improvements can also allow downsizing of the compressor and the evaporator.

Switching to MCU based controls will allow higher flexibility and adaptability, and will help 
enhance the differentiation of appliances. Automatic routines (like defrost cycle) can be 
implemented and the end-user interface can be improved (temperature information, open 
door warning, temperature alarm, smooth light-up of the internal bulb by electronic dimming, 
etc.).

In terms of cost, electronics can now be competitive with electromechanical devices. A 
complete thermostat board, plus the sensor, can reach a cost similar to electromechanical 
thermostats. Furthermore, some features, such as extended life time or spark-free 
operation, come for free with electronics.

5 Revision history

         

Table 2. Document revision history

Date Revision Changes

29-May-2008 1 First issue under new code. Previously published as AN1354.

05-Sep-2013 2 Updated Figure 4 and Figure 7. Replaced ACST6 with ACST610.
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