Introduction

A new control IC, the L6585D, has been designed to manage electronic ballasts for fluorescent lamps. It includes both Power Factor Correction and half-bridge sections and embeds a wide range of features to provide an energy saving and cost effective solution.

The high-voltage single chip approach optimizes the management of lamp critical conditions such as the pre-heating and ignition of start up and fault and lamp replacement. The internal logic, guided by precise internal references and timings, is able to carry out all of these phases. The PFC section has superior performance in terms of harmonic content mitigation. High Power Factor (PF) and Total Harmonic Distortion (THD) reduction are obtained as required by international norms, especially concerning Universal input voltage operations.

Particular care has been given to pre-heating and ignition phases prior to lamp start up in order to ensure the proper filament warming up and extend lamp life.

Innovative circuitry allows an improved control of the lamp voltage during ignition as well as protection against failures due to lamp aging.

The use of this new control IC simplifies the industrialization of electronic ballasts which increases application reliability and reduces its dimensions and cost.
Contents

1 L6585 Integrated circuit .................................................. 4

2 Device blocks description .................................................. 5
  2.1 Start-up and shutdown ................................................. 5
  2.2 PFC section ............................................................... 6
    2.2.1 Error amplifier ..................................................... 6
    2.2.2 Over-voltage and feedback disconnection detection .......... 6
    2.2.3 Zero Current Detection and triggering block .................. 7
    2.2.4 Multiplier block ................................................... 7
    2.2.5 Current comparator and choke saturation detection .......... 8
    2.2.6 Driver .............................................................. 8
  2.3 Oscillator and pre-heating / ignition / run mode sequencing .... 8
  2.4 Half-bridge current sensing: lamp voltage / power control .... 9
    2.4.1 Controlled lamp voltage/current during ignition ............ 9
    2.4.2 Over-current protection during run mode ..................... 11
  2.5 End of life ............................................................ 12
    2.5.1 End-of-life detection ............................................ 12
  2.6 Re-lamp comparator ................................................... 13

3 L6585 Biasing circuitry (pin by pin) .................................. 14
  3.1 Pin1 OSC ............................................................... 14
  3.2 Pin2 RF ................................................................. 14
  3.3 Pin3 EOI ................................................................. 14
  3.4 Pin4 TCH ............................................................... 15
  3.5 Pin5 EOLP ............................................................. 15
  3.6 Pin6 EOLR ............................................................. 15
  3.7 Pin7 CTR ............................................................... 16
  3.8 Pin8 MULT ............................................................. 16
  3.9 Pin9 COMP ............................................................. 16
  3.10 Pin10 INV ............................................................. 17
  3.11 Pin11 ZCD ............................................................ 17
  3.12 Pin12 PFCS ........................................................... 17
3.13 Pin13 PFG ................................................................. 18
3.14 Pin14 HBCS ............................................................. 18
3.15 Pin15 GND ............................................................... 18
3.16 Pin16 LSD .............................................................. 18
3.17 Pin17 V\textsubscript{CC} ..................................................... 18
3.18 Pin18 OUT ............................................................... 19
3.19 Pin19 HSD ............................................................... 19
3.20 Pin20 BOOT ............................................................ 19

4 Revision history .......................................................... 21
1 L6585 Integrated circuit

Designed in High-voltage BCD Off-line technology, the L6585D embeds a PFC controller, a half-bridge controller, the relevant drivers, and the logic necessary to build an electronic ballast.

The advanced and precise logic circuitry, combined with the programmability of the End-of-Life windows comparator, makes the L6585D compliant with either "lamp-to-ground" or "block capacitor-to-ground" configurations.

Another outstanding feature is the possibility of controlling the ignition lamp voltage.

The pre-heating and ignition durations are independently adjustable as well as the half-bridge switching frequencies for each operating phase (pre-heating, ignition and normal mode).

Other features (half-bridge over-current with frequency increase, PFC over-voltage) allow building a reliable and flexible solution with a reduced part count.

The PFC section achieves current mode control operating in Transition Mode. The highly linear multiplier includes a special circuit, able to reduce AC input current distortion, that allows wide-range mains operation with an extremely low THD, even over a large load range.

The PFC output voltage is controlled by a voltage-mode error amplifier and a precise internal voltage reference.

The driver of the PFC is able to provide 300 mA source and 600 mA sink and the drivers of the half-bridge provide 290 mA source and 480 mA sink.

Figure 1. Block diagram
2 Device blocks description

2.1 Start-up and shutdown

During start-up, the chip is supplied through a resistive path from the rectified AC Mains voltage whereas during normal operation, a charge pump or a self-supply winding (as well as an auxiliary converter) can provide the required current.

As the voltage at Vcc pin reaches the turn-on threshold (Vcc(ON)), the chip is enabled and (unless a lamp absence is detected) the oscillator starts switching at a frequency set by values of \( C_{OSC} \) and \( R_{RUN} \) and \( R_{PRE} \).

The Half-Bridge and the PFC sections start at almost the same time. As the synchronization signal at pin ZCD is not yet generated by the external ZCD circuit, an internal structure forces the PFC gate driver to switch for the first switching cycles. The pulses are generated at a typical frequency of 15 kHz.

At shutdown, when the \( V_{CC} \) decreases below the UVLO threshold (either in case of Mains removal or in case of fault), the following conditions are met:

- all drivers are off;
- EOI pin is discharged (the internal switch is on);
- RF reference is disabled;
- \( Tch \) is discharged.

**Figure 2. Start-up and shutdown sequences**
2.2 PFC section

2.2.1 Error amplifier

The Error Amplifier (E/A) is used for frequency compensation. The inverting input (INV) is connected by an external divider to the output bus and compares a partition of the boosted output DC voltage, Vo, with the internal reference in order to maintain the pre-regulator output DC voltage constant.

The compensation network, placed between pins INV and COMP (E/A output), is usually done with a feedback capacitor. The E/A bandwidth will be extremely low because the output of the E/A must be constant over a line half-cycle to achieve high PF.

The dynamics of the E/A output is internally clamped so that it can swing between 2.25 V and 4.2 V in order to speed up the recovery after the E/A saturates low due to an over-voltage or saturates high because of an over-current.

Figure 3. Error amplifier, feedback divider and CTR

2.2.2 Over-voltage and feedback disconnection detection

The device is provided with a double over-voltage protection (OVP).

In case of over-voltage, the output of the E/A will tend to saturate low, but the E/A response is very slow, so it will take a long time to go into saturation. On the other hand, an over-voltage must be corrected immediately.

A fast OVP detector, based on a different concept, is necessary.

The maximum voltage allowed for the PF output bus (VOVP) is defined by the resistive divider connected to the pin CTR (Figure 3):
Equation 1

\[ V_{OVP} = V_{TH} \cdot \left(1 + \frac{R_{HOVP}}{R_{LOVP}}\right) \]

where \( V_{TH} \) is the CTR internal comparator input reference (3.4 V typ.)

Moreover if the over-voltage lasts so long that the output of E/A goes below 2.25 V, the PF gate driver is stopped until the E/A output goes back into its linear region.

If instead, the over-voltage is due to feedback disconnection (for example R1, Figure 3 fails open), these two structures work together. In fact if the \( V_{OVP} \) threshold is crossed and simultaneously the INV voltage falls below 1.2 V, typ. (due to the fact that the E/A source capability is limited) the IC stops in a latched condition.

2.2.3 Zero Current Detection and triggering block

The Zero Current Detection (ZCD) block switches on the external PFC MOSFET as the voltage across the boost inductor reverses, just after the current through the boost inductor has gone to zero. This feature allows TM operation.

As the circuit is running, the signal for ZCD is obtained with an auxiliary winding on the boost inductor. As at start-up no signal is coming from the ZCD, a circuit is needed that turns on the external MOSFET. This is done with an internal starter, which forces the driver to deliver a pulse to the gate of the MOSFET, producing also the signal for arming the ZCD circuit.

The repetition rate of the starter is greater than \( \approx 15 \text{ kHz} \) and this maximum frequency must be taken into account at design time.

2.2.4 Multiplier block

The multiplier (see Figure 4) has two inputs. The first one takes a partition of the instantaneous rectified line voltage and the second one takes the output of the E/A. If this voltage is constant (over a given line half-cycle), the output of the multiplier will be shaped as a rectified sinusoid too. This is the reference signal for the current comparator, which sets the MOSFET peak current cycle by cycle.

Figure 4. Multiplier, current sense and choke saturation
2.2.5 Current comparator and choke saturation detection

The current comparator (see Figure 4) senses the voltage across the current sense resistor (Rs) and, by comparing it with the programming signal delivered by the multiplier, determines the exact time that the external MOSFET is to be switched off.

The output of the multiplier is internally clamped to 1 V, (typ.). Current limiting occurs if the voltage across Rs reaches this value.

A second comparator is integrated also in this block in order to prevent choke saturation (see Figure 4 and Figure 5).

Boost inductor's hard saturation may be a fatal event for a PFC pre-regulator. The current upslope becomes so large (50-100 times steeper, see Figure 5) that, during the current sense propagation delay, the current may reach abnormally high values.

The device is provided with a second comparator on the PFC current sense pin that stops and latches off the IC if the voltage on the pin, normally limited within 1.1 V, exceeds 1.7 V. In this way there can be abnormal current only for one cycle. After that the system is stopped and enabled to restart only after recycling the input power, that is when the Vcc voltage of the L6585D goes below the UVLO threshold. System safety will be considerably increased.

Figure 5. PFC choke saturation

2.2.6 Driver

A totem pole buffer, with 300mA source and 600 mA sink capability, allows driving an external MOSFET. A pull-down circuit holds the output low when the device is in UVLO conditions, to ensure that the external MOSFET cannot be turned on accidentally.

2.3 Oscillator and pre-heating / ignition / run mode sequencing

As the IC supply voltage (Vcc) reaches Vcc(on), the half-bridge starts oscillating and the capacitor (CD) connected to TCH is charged with a constant current through the internal current generator. When the voltage at TCH pin reaches VCHP (4.63 V), the above current generator switches off, and CD discharges following an exponential decrease steered by the time constant RD*CD, that defines the pre-heating time.

During this time, the pin EOI is forced to ground and the switching frequency is set by the oscillator capacitor together with the parallel of R_RUN and R_PRE (for the relationship, see pin description in the following chapter.)
When the voltage at pin TCH drops down to 1.53 V (typ.), the pin EOI is driven in high impedance state and CIGN is exponentially charged according to the time constant $\tau$ given by $C_{IGN} \cdot R_{PRE}$ that defines the ignition time. At the same time the pin TCH is connected to ground through an internal low resistance that rapidly discharges $C_D$.

The exponential trend of the current sunk by the pin RF generates a similar variation (reduction) of the switching frequency. The voltage across the lamp increases linearly as well as the current flowing through it.

As the voltage at EOI exceeds 1.9 V, the chip enters Run mode and remains in this condition unless one of the protections (all enabled in this mode) is triggered.

**Figure 6. Oscillator and starting sequence**

2.4 Half-bridge current sensing: lamp voltage / power control

The information about the lamp current can be obtained by reading the voltage across the sense resistor. This circuitry is enabled at the end of the pre-heating phase and it enriches the L6585D with two features:

2.4.1 Controlled lamp voltage/current during ignition

If the $V_{HBCS}$ high threshold is crossed, then the chip reacts with a small frequency increase. This allows both limiting the ignition lamp voltage to a selectable (and safe) value and preventing the risk of working below the resonance frequency of the $L_{BALLAST} \cdot C_{RES}$ circuit (no saturation and no capacitive mode). The sense resistor value defines the maximum current that can flow during ignition. With some calculations it is possible to find the relevant lamp voltage (which must be higher than the nominal lamp voltage) and the corresponding frequency, that is, the operating point on the resonance curve.
Whenever the HBCS voltage reaches the internal threshold HBCSH, a two-step sequence starts:

1. The internal current generator at the pin TCH is turned on which charges CD (up to 4.6 V) and starts a Tch charge/discharge cycle;
2. As long as the HBCS voltage exceeds the threshold, a controlled current pulse is sunk by the EOI pin stopping the CIGN capacitor charge. This has the effect of stopping the half-bridge switching frequency shift which limits the lamp voltage.

Tch acts as a counter. If the lamp ignites before TCH reaches 1.53 V (Figure 8 left), that is, EOI has exceeded 1.9 V, then:
- EOI internal switch opens and its voltage moves asymptotically to 2 V
- The switching frequency reaches the operating frequency
- When TCH reaches 1.53, it will be discharged

If instead at the first low-side conduction cycle after the TCH reaches 1.53 (EOI pin is still below 1.9 V), the HBCS threshold is still crossed, it means that the lamp hasn't ignited after a time length equal to the pre-heat time (Figure 8 right). Such situations typically happen with old lamps. In this case the oscillator stops, the chip enters low consumption mode, and this condition is latched until the mains supply voltage is removed or a re-lamp is detected.
2.4.2 **Over-current protection during run mode**

If the HBCSL threshold is crossed, the $T_{CH}$ internal generator is turned on as well as the one at pin EOI causing a frequency increase. This implements a CURRENT-CONTROL structure (Figure 9 left). Simultaneously the internal $T_{CH}$ generator is activated to charge the $C_D$ up to 4.63 V and then released. If, despite the frequency increase, the over-current condition lasts for a whole Tch charge/discharge cycle, the IC is stopped and enters shutdown mode by latching this condition until either a re-lamp or an UVLO (mains removal). During run mode another protection is active: a second comparator (HBCSH) on the pin HBCS detects anomalous current flow through the sense resistor such as the spikes generated by the capacitive mode. The crossing of this second threshold latches the IC (Figure 9 right).

**Figure 8. Ignition as the lamp gets older**

**Figure 9. Current control in run mode**
2.5 End of life

2.5.1 End-of-life detection

This function has been designed to detect the aging of the lamp with particular attention to the effect appearing as asymmetric rectification. The idea is to measure the variation of the DC component of the lamp voltage that can be either positive or negative. A window comparator has been introduced (centered around $V_{\text{REF}}$ with amplitude "$V_{\text{W}}"$) that triggers when the EOL-R voltage is higher than $V_{\text{SET}} + V_{\text{W}}/2$ or lower than $V_{\text{REF}} - V_{\text{W}}/2$. Although the two standard ballast configurations (lamp-to-ground and block capacitor-to-ground) require different features to the EOL detecting circuit, the implemented structure is compliant to both thanks to the programmability of the window comparator. In particular through the resistor connected to the EOLP pin, it is possible to select the sensing mode (with fixed reference or reference to tracking with the PFC output bus) and the window amplitude (see the "pin biasing" paragraph for further details).

- Lamp-to-ground (Figure 10, right): a resistive divider ($R_{E1}$ and $R_{E2}$) senses the voltage across the lamp that, under normal conditions, is an AC signal with zero average value whereas in case of asymmetric rectification, the DC value can shift either in a positive or negative direction. As the L6585D doesn't have a negative rail, we must shift the external signal. This can be done using two Zener diodes connected back-to-back between the EOL pin and the center of the resistive divider. The Zener voltages should differ by an amount as close as possible to the double of the internal reference to have a symmetrical detection. It can easily obtained from the following equations:
  
  $$V_{\text{UP}} = V_{\text{REF}} + W/2 + V_{Z1} + V_{R2}$$
  $$V_{\text{DOWN}} = V_{\text{REF}} - W/2 - V_{Z2} - V_{R1}$$

where $V_{\text{UP}}$ and $V_{\text{DOWN}}$ are the $V_{K}$ values (equal in absolute value) that trigger the window comparator. Figure 10 shows an example of asymmetric rectification with positive shifting.

**Figure 10. Window comparator for rectifying effect detection**
Block capacitor-to-ground (Figure 10 left): in this case the resistive divider is placed across the block capacitor to sense its DC voltage. The asymmetric effect appears as a shifting of this DC value that under normal conditions equals one half of the PFC output voltage. A problem is that the ripple at twice the Mains frequency superimposed on the PFC nominal voltage (the amplitude of this depends on the bulk capacitor value) as well as any drop on the same voltage (Mains dips, missing cycle etc.) are present also on the block capacitor voltage and they must be rejected by the end-of-life detection circuit. For this reason a differential sense is necessary where the reference for EOLR is not fixed but brings this information. In particular the reference for EOLR is obtained by the CTR voltage value. The dividers $R_{E1}$ and $R_{E2}$ and $R_{P1}$ and $R_{P2}$ must be designed to make EOL-R voltage equal to CTR under nominal conditions. The rejection of the PFC output voltage low frequency ripple allows using a smaller bulk capacitance. The pin EOLP allows choosing:
- the EOL reading method: tracking reference or fixed reference;
- the EOL window amplitude (2 options).

To avoid an immediate intervention of the EOL protection, a filtering is introduced. As long as the fault condition persists, the Tch internal generator charges the $C_D$ up to 4.63 V and then it opens. If this fault condition is still present when the Tch voltage decreases down to 1.53, then the half bridge is stopped.

This fault condition drives the chip in an idle state characterized by low consumption. Exiting from this condition is enough to cycle the re-lamp comparator. The discharge of the Vcc voltage below the UVLO threshold leads to a reset of this condition.

### 2.6 Re-lamp comparator

A second comparator has been introduced on the pin EOL-R. A voltage higher than the internal threshold is read as lamp absence so the chip suddenly stops switching, enters idle mode (low consumption), and is ready for a new pre-heating/ignition sequence as soon as a new lamp is inserted.

In this idle mode the consumption of the chip is reduced so that the current flowing through the resistors (connected to the high voltage bus for the start-up) is enough to keep the Vcc voltage above the UVLO threshold. After a re-lamp (that is, the EOL-R voltage is below the re-lamp threshold), a new pre-heating/ignition sequence restarts.

*Figure 11. Re-lamp comparator*
3 L6585 Biasing circuitry (pin by pin)

3.1 Pin1 OSC

Pin 1 is one of the two oscillator inputs. The value of the capacitor connected to ground defines the half-bridge switching frequency in each operating state. Typically 330 pF/470 pF capacitance values are used. The negative lead of the capacitor must be connected to a signal ground, not affected by noise or spikes (for example, like those of the return path of the half-bridge low side MOSFET) in order to maintain the oscillator accuracy.

3.2 Pin2 RF

Pin 2 is a 2 V reference able to source up to 240 µA (min.). The current sunk by this pin, combined with the oscillator capacitance defines the half-bridge switching frequency in each operating state.

A resistor connected to ground sets the run frequency while during pre-heating the switching frequency is set by the parallel of the above resistance with the one connected between pins RF and EOI (that is, a short circuit during pre-heating) according to the following formula:

\[
f_{\text{PRE}} = \frac{K}{(R_{\text{PRE}} \parallel R_{\text{RUN}}) \cdot C_{\text{OSC}}}
\]

\[
f_{\text{RUN}} = \frac{K}{(R_{\text{RUN}} \cdot C_{\text{OSC}})}
\]

Where K is 1.328

The design flux is:
1. Choose Cosc
2. Set \( R_{\text{RUN}} \) in order to obtain the desired run frequency;
3. Set \( R_{\text{PRE}} \) in order to obtain the desired pre-heating frequency
4. Set \( C_{\text{IGN}} \) in order to obtain the desired ignition time (see pin 3 description).

3.3 Pin3 EOI

Pin 3 is a multi-function pin. During pre-heating the pin is internally shorted to ground by the logic so the resistor connected between and ground (\( R_{\text{PRE}} \)) sets the pre-heating switching frequency. During ignition it becomes high impedance. The ignition time is the time necessary to the pin voltage to exponentially rise from zero to 1.9V. The growth is steered by the \( R_{\text{PRE}} \cdot C_{\text{IGN}} \) time constant. As the \( R_{\text{PRE}} \) value has already been chosen to set the pre-heating frequency, \( C_{\text{IGN}} \) fixes the ignition time.
3.4 Pin4 TCH

Pin 4 is the time counter and it is activated at pre-heating as well as after a protection triggering (HBCS crossing during ignition / run mode, window comparator at EOL). To achieve this, a RC parallel network is connected between this pin and ground. Firstly an internal current generator (\(i_{\text{ICH}}\)) charges the above network up to 4.63 V after which the pin becomes high impedance and the \(R_D C_D\) discharge take place. The \(T_{\text{CH}}\) cycle representing both the pre-heating \((T_{\text{PRE}})\) and fault persistence \((T_{\text{COUNT}})\) time durations equals the sum of:

- \(T_{\text{CH}},\) charge time: pin voltage from 0 to 4.63 V → \(T_{\text{CH}} = \frac{C_D}{i_{\text{ICH}}} \cdot 4.63\)

- \(T_{\text{DIS}},\) discharge time: pin voltage from 4.63 V to 1.5 V → \(T_{\text{DIS}} = R_D \cdot C_D \cdot \ln\left(\frac{4.63}{1.5}\right)\)

So:

**Equation 4**

\[
T_{\text{PRE}} = T_{\text{COUNT}} = \frac{C_D}{i_{\text{ICH}}} \cdot 4.63 + R_D \cdot C_D \cdot \ln\left(\frac{4.63}{1.5}\right)
\]

Sensible values for \(C_D\) are from 220 nF to 1 \(\mu\)F; for example, choosing \(C_D=680\) nF, to obtain a pre-heating of 1 s, we need:

**Equation 5**

\[
R_D = \frac{T_{\text{PRE}} - \frac{C_D \cdot 4.63}{C_D \cdot \ln\left(\frac{4.63}{1.5}\right)}}{1.2M}
\]

3.5 Pin5 EOLP

Pin 5 is a 2 V reference and allows programming the window comparator of the pin 6 (EOLR) according to Table 1:

<table>
<thead>
<tr>
<th>EOLP</th>
<th>Reference</th>
<th>Window amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{\text{EOLP}} &gt; 620) K</td>
<td>Fixed 2.5 V</td>
<td>± 720 mV</td>
</tr>
<tr>
<td>220 K = (R_{\text{EOLP}} = 270) K</td>
<td>Tracking with CTR</td>
<td>± 220 mV</td>
</tr>
<tr>
<td>75 K = (R_{\text{EOLP}} = 91) K</td>
<td>Fixed 2.5 V</td>
<td>± 220 mV</td>
</tr>
<tr>
<td>22 K = (R_{\text{EOLP}} = 27) K</td>
<td>Tracking with CTR</td>
<td>± 720 mV</td>
</tr>
</tbody>
</table>

3.6 Pin6 EOLR

Pin 6 is the input of both the window comparator and a re-lamp comparator. Concerning the window comparator, in case of tracking with CTR (suitable when the block capacitor is referred to ground) the center is the same voltage as the pin CTR \((V_{\text{CTR}})\). The resistive divider connected across the block capacitor must be set such that, under normal conditions:
Equation 6

\[ V_{EOLR} = V_{\text{BLOCKDC}} \times \frac{R_{EL}}{R_{EL} + R_{HL}} \]

where \( V_{\text{BLOCKDC}} \) is the DC value of the block capacitor voltage that is, one half of the PFC output voltage. The 100/120 Hz ripple can be neglected because it is rejected by the sensing structure.

3.7 Pin7 CTR

Pin 7 is a multifunction pin, connected to a resistive divider to the PFC output bus:
- **PFC over-voltage**
  - In case of PFC output overshoot (for example at start-up) that causes a threshold crossing, the PFC section stops switching until the voltage at the pin falls below 3.26 V. This is helpful because the bandwidth of the PFC error amplifier is narrow so the control loop is not fast enough to properly react.
- **Feedback disconnection**
  - The OVP function described above (together with the static one embedded in the PFC error amplifier) is able to handle "normal" over-voltage conditions (those resulting from an abrupt load/line change or occurring at start-up). In case of over-voltage generated when the upper resistor of the feedback output divider fails open, the control loop can no longer read the information on the output voltage and will force the PFC pre-regulator to work at maximum ON time. If this occurs (that is, the pin INV falls below 1.2 V) and the CTR detects an OVP, the gate drive activity is immediately stopped, the device is shut down, its quiescent consumption is reduced below 250 µA, and the condition is latched as long as the supply voltage of the IC is above the UVLO threshold;
- **Reference for EOL in case of tracking reading.**

Disable: by forcing the pin below 0.75 V an immediate unlatched shut-down is activated.

3.8 Pin8 MULT

Pin 8 is the second multiplier input. It will be connected, through a resistive divider, to the rectified mains to get a sinusoidal voltage reference. The multiplier can be described by the relationship: \( V_{CS} = k \times (V_{\text{COMP}} - 2.5V) \times V_{\text{MULT}} \) where \( V_{CS} \) (Multiplier output) is the reference for the current sense, \( k \) is the multiplier gain, \( V_{\text{COMP}} \) is the voltage on pin 9 (E/A output) and \( V_{\text{MULT}} \) is the voltage on pin 8.

3.9 Pin9 COMP

Pin 9 is the output of the E/A and also one of the two inputs of the multiplier. A feedback compensation network, placed between this pin and INV (10), reduces the bandwidth so to avoid the attempt of the system to control the output voltage ripple (100-120 Hz). In the simplest case, this compensation is just a capacitor, which provides a low frequency pole as well as a high DC gain. A simple criterion to define the capacitance value is to provide ~60 dB attenuation at 100 Hz:
3.10 Pin10 INV

Pin 10 leads to both the inverting input of the E/A and to the open loop (feedback disconnection) circuit. A resistive divider (Figure 3) will be connected between the regulated output voltage of the boost and the pin. The internal reference on the non-inverting input of the E/A is 2.5 V so R1 and R2 (Figure 3) will be then selected as follows:

\[ V_{PFOUT} = 2.5 \left(1 + \frac{R_2}{R_1}\right) \]

3.11 Pin11 ZCD

Pin 11 is the input to the Zero Current Detector circuit. The ZCD pin will be connected to the auxiliary winding of the boost inductor through a limiting resistor. The ZCD circuit is negative-going edge-triggered. When the voltage on the pin falls below 0.7 V the PWM latch is set and the MOSFET is turned on. To do so, however, the circuit must be armed first. Prior to falling below 0.7 V the voltage on pin 11 must experience a positive-going edge exceeding 1.4 V (due to MOSFET’s turn-off). The maximum main-to-auxiliary winding turn ratio, \( m \), has to ensure that the voltage delivered to the pin during MOSFET’s OFF-time is sufficient to arm the ZCD circuit. Then:

\[ m \leq \frac{V_O - \sqrt{2} \cdot V_{irms(max)}}{1.4} \]

3.12 Pin12 PFCS

Pin 12 is the inverting input of the current sense comparator. As the voltage across the sense resistor (proportional to the instantaneous inductor current) crosses the threshold set by the multiplier output, the power MOSFET is turned off. The MOSFET will stay in OFF-state until the PWM latch is set again by the ZCD signal. An internal circuit (LEB, leading edge blanking) blanks the comparator for 200 ns in order to avoid undesired MOSFET turn-off due to the initial spike, present when the PFC is not operating in ZVS (that is when the instantaneous voltage is higher than \( V_{out}/2 \)).

The sense resistor value is calculated as follows:

\[ R_s = \frac{V_{CSpk}}{I_{Rspk}} \]

The power dissipated in Rs, is given by:

\[ P_{RS} = R_s \cdot I_{Qrms2} \]
The internal 1.16 V (max.) zener clamp on the non-inverting input of the PWM comparator sets a current limitation threshold, so that the maximum current through Rs can be as high as:
\[
I_{R_{spk\text{max}}} = \frac{1.16}{R_s}
\]

This will be the maximum inductor current as well, therefore one must make sure that the boost inductor does not saturate at this current level, which is very likely to be reached when the boost converter is powered on (especially at low line) or powered off.

3.13 Pin13 PFG

Pin 13 is the output of the driver. The pin is able to drive an external MOSFET with 300 mA source and 600 mA sink capabilities.

3.14 Pin14 HBCS

Pin 14 is the half bridge current sense pin with 2-levels of current controls. The current flowing in the HB MOSFET is sensed by a resistor. The resulting voltage is applied to this pin. During the run mode both the low threshold (0.91 V) and the high threshold (1.6 V) are active. In case of low thresholds crossing, the IC reacts with a self-adjusting frequency increase in order to limit the half-bridge (lamp) current. In case of high threshold crossing because of current spikes (due for example to capacitive mode / cross-conduction), the L6585D latches to avoid damage to the MOSFET. During ignition only the high threshold (1.6 V) is active. In case of crossing thresholds during the frequency shift, the IC reacts with a self-adjusting frequency increase in order to limit the lamp voltage and prevent operation below resonance.

3.15 Pin15 GND

This pin acts as the current return both for the signal internal circuitry and for the gate drive current. When layouting the printed circuit board, these two paths should run separately.

3.16 Pin16 LSD

Pin 16 is the output of the half-bridge low side driver. The pin is able to drive an external MOSFET with 290 mA source and 480 mA sink capabilities.

3.17 Pin17 VCC

Pin 17 is the supply of the device. This pin will be externally connected to the start-up circuit (usually, one resistor connected to the rectified mains) and to the self-supply circuit. Whatever the configuration of the self-supply system, a capacitor will be connected between this pin and ground. To start the L6585D, the voltage must exceed the start-up threshold (15 V max.). Below this value the device does not work and consumes less than 350 µA from Vcc. This allows the use of high value start-up resistors (in the hundreds kΩ), which reduces
When operating, the current consumption (of the device only, not considering the gate drive current) rises to a value depending on the operating conditions but never exceeding 4.5 mA. The device keeps on working as long as the supply voltage is over the UVLO threshold (11 V max). If the Vcc voltage exceeds 17.7 V max, an internal zener diode, 30 mA rated, will be activated that clamps the voltage. In that case the power consumption of the device will increase considerably, but there is no harm as long as the current is below the maximum rating.

3.18 Pin18 OUT
Pin 18 is the High Side Driver Floating Reference. This pin must be connected close to the source of the high side power MOS or IGBT.

3.19 Pin19 HSD
Pin 19 is the output of the half-bridge high side driver. The pin is able to drive an external MOSFET with 290 mA source and 480 mA sink capabilities.

3.20 Pin20 BOOT
The supply of the high voltage section is obtained by means of a bootstrap circuitry. This solution normally requires a high voltage fast recovery diode for charging the bootstrap capacitor. In the L6585D a patented integrated structure replaces this external diode. It is done by means of a high voltage DMOS, driven synchronously with the low side driver (LVG), with a diode connected in series. To drive the synchronized DMOS it is necessary a voltage higher than the supply voltage VS. This voltage is obtained by means of an internal charge pump. The diode connected in series to the DMOS has been added to avoid undesirable turn on it. The introduction of the diode prevents any current from flowing from the BOOT pin to the VCC one if the supply is quickly turned off when the internal capacitor of the pump is not fully discharged. The bootstrap driver introduces a voltage drop during the recharging time of the capacitor C_Cboot (when the low side driver is on), which increases with the frequency and with the size of the external power MOS. It is the sum of the drop across the R_DDS and of the diode threshold voltage. At low frequency this drop is very small and can be neglected. Increasing the frequency must be taken into account. In fact the drop, reducing the amplitude of the driving signal, can significantly increase the R_DDS of the external power MOS (and so the dissipation). To be considered that in resonant power supplies when we increase the frequency the current in mosfet's drain decreases. The power dissipated by mosfet during the on-time is equal to Pcond=(Rds,on)*(Idrain)^2: then Pcond is reduced when frequency is higher.
### Table 2. Fault conditions

<table>
<thead>
<tr>
<th>Fault</th>
<th>Condition</th>
<th>IC behavior</th>
<th>Action required</th>
</tr>
</thead>
</table>
| Lamp absence (re-lamp comparator) | At turn-on: EOL-R voltage higher than 4.63 V | – The TCH charge does not start (no ignition)  
– All drivers stopped  
– IC low consumption (Vcc clamped) | Lamp replacement (EOL-R below 4.63 V) |
| Run mode: EOL-R voltage higher than 4.63 V | – All drivers stopped  
– IC low consumption (Vcc clamped) | |
| End of life | EOL-R voltage outside the limits of window comparator | – TCH cycle (reset if the fault disappears)  
– All drivers stopped at the end of TCH cycle  
– IC low consumption (Vcc clamped) | Re-lamp cycle (2) |
| Half-bridge current sense | Ignition: HBCS threshold | – TCH cycle(1) with lamp voltage control  
– In case of HBCS at the end of the TCH cycle, all drivers stopped  
– IC low consumption (Vcc clamped) | Re-lamp cycle (2) |
| Run mode: HBCSL threshold | – TCH cycle(1) with lamp voltage control (frequency increase)  
– In case of HBCS at the end of the TCH cycle, all drivers stopped  
– IC low consumption (Vcc clamped) | Re-lamp cycle (2) |
| Run mode: HBCSH threshold | – All drivers stopped  
– IC low consumption (Vcc clamped) | Re-lamp cycle (2) |
| Shutdown | CTR voltage lower than 0.8 V | – All drivers stopped  
– IC low consumption (Vcc clamped) | When the CTR voltage returns above 0.8 V, the IC driver restarts with a pre-heating sequence |
| Choke saturation | PFCS voltage higher than 1.6 V | – All drivers stopped  
– IC low consumption (Vcc clamped) | Re-lamp cycle (2)(3) |
| Over-voltage of PFC output | CTR voltage higher than 3.4 V (typ.) | PFC driver stopped | When the CTR voltage returns below 3.26 V (typ.), the PFC driver restarts |
| PFC open loop (feedback disconnection) | CTR voltage higher than 3.4 V (typ.) and INV voltage lower than 1.2 V (typ.) | – All drivers stopped  
– IC low consumption (Vcc clamped) | Re-lamp cycle (2)(3) |

1. TCH cycle: charge of the TCH voltage up to 4.63 V and discharge down to 1.53 V following the ROCD time constant;  
2. Re-lamp cycle: the voltage at EOL-R pin must be first pulled above 4.63 V and then released below it; this typically happens in case of lamp replacement. After a re-lamp cycle, a new pre-heating sequence will be repeated.  
3. This fault actually is a “board” fault so a lamp replacement is not effective to restart the ballast
4 Revision history

Table 3. Revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-Mar-2007</td>
<td>1</td>
<td>First issue</td>
</tr>
</tbody>
</table>