Introduction

The purpose of this application note is to explain the differences between the M24LR64-R dual interface EEPROM when controlled from the I²C bus, and the standard M24C64-F, M24C64-R, M24C64-W EEPROMs.

For simplification purposes, the M24C64-F, M24C64-R, M24C64-W will be referred to as M24C64 in the rest of the document.

For additional information, please refer to the M24LR64-R and M24C64 datasheets.
Contents

1 Hardware considerations ... 5
 1.1 Pinout comparison ... 5
 1.2 Two ways of accessing the M24LR64-R: RF and I²C 6

2 Software considerations .. 7

3 M24LR64-R memory organization 8
 3.1 User memory seen from the I²C bus (E2=0) 8
 3.1.1 Sectors ... 8
 3.1.2 Page Write .. 8
 3.1.3 Read ... 9
 3.1.4 I²C Present Password 9
 3.1.5 I²C Write Password 9
 3.2 System memory seen from the I²C bus (E2=1) 10
 3.2.1 M24LR64-R's RF block security status 10
 3.2.2 I²C_Write_Lock bits 11
 3.2.3 System parameters 11

4 Revision history ... 13
List of tables

Table 1. M24LR64-R device select code ... 7
Table 2. M24C64 device select code ... 7
Table 3. RF block security status ... 10
Table 4. I2C_Write_Lock bits ... 11
Table 5. System parameter sector ... 12
Table 6. Document revision history ... 13
List of figures

Figure 1. M24LR64-R and M24C64 logic diagrams ... 5
Figure 2. M24LR64-R and M24C64 pinouts ... 5
Figure 3. M24LR64-R block diagram ... 6
Figure 4. M24LR64-R’s user and system memories ... 8
Figure 5. I2C Present Password command ... 9
Figure 6. I2C Write Password command .. 10
1 Hardware considerations

1.1 Pinout comparison

Figure 1 and *Figure 2* show the logic diagrams and the pinouts of the M24LR64-R and M24C64 devices, respectively.

Figure 1. M24LR64-R and M24C64 logic diagrams

M24LR64-R AC0/AC1 pins: due to its RF capability, the M24LR64-R dual interface EEPROM features two inputs (AC0 and AC1) to connect the RF antenna.

Consequently, two inputs present in the M24C64 are not offered in the M24LR64-R: these are E2 and Write Control (WC).

Practically, this means that you will be able to use up to four M24LR64-R devices (defined by E0, E1) on the same I²C bus, compared to eight devices (defined by E0, E1, E2) for the M24C64.

The Write Control input (WC) is used to write-protect the M24C64. The M24LR64-R can also be protected but in a different way, using the I2C_Write_Lock bits.

Figure 2. M24LR64-R and M24C64 pinouts

Figure 2 shows that the four mandatory pins for the I²C bus (VSS, VCC, SCL, SDA) are positioned likewise in the two devices.

AC0 and AC1 are connected to pin 2 and pin 3, respectively. They have to be next to each other for RF capability requirements. As a result, E1 was moved to pin 7 in the M24LR64-R, whereas it is connected to pin 2 in the M24C64.
1.2 Two ways of accessing the M24LR64-R: RF and I²C

Compared to the M24C64, the M24LR64-R has an additional capability: RF access, made possible by connecting the AC0 & AC1 pins to a tuned antenna. This modifies the block diagram of the M24LR64-R. Figure 3 shows the new block diagram.

Figure 3. M24LR64-R block diagram

One difference between the M24LR64-R and the M24C64 is that the M24C64 can be accessed only through the I²C bus, whereas the M24LR64-R can be accessed through either the I²C bus or the RF interface.

Due to the M24LR64-R’s dual access capability, a number of things have to be taken into account when accessing the device. If an RF request is made while an I²C communication is ongoing, it will not be served. Likewise, if an I²C request is made during an RF communication, it will not be served. This has to be taken into account in the system. A dedicated application note, AN3057, explains “how to manage simultaneously I²C and RF data transfers with the M24LR64-R”.

![M24LR64-R block diagram](image-url)
2 Software considerations

Table 1 and Table 2 show the device select codes of the M24LR64-R and M24C64, respectively. As explained earlier, the M24LR64-R does not offer the E2 pin. In the M24LR64-R's device select code, bit 3 is used to define access to EEPROM user data or system data:
- E2=0: User memory
- E2=1: System memory

Except for bit 3, the device select code is used in the same way for the two devices.

Table 1. M24LR64-R device select code

<table>
<thead>
<tr>
<th>Device select code</th>
<th>Device type identifier</th>
<th>Chip Enable address</th>
<th>RW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 0 E2</td>
<td>1 0 1 0 E2(3)</td>
<td>E1 E0</td>
<td>RW</td>
</tr>
</tbody>
</table>

1. The most significant bit, b7, is sent first.
2. E0 and E1 are compared to the respective external pins on the memory device.
3. E2 is not connected to any external pin. It is however used to address the M24LR64-R.

Table 2. M24C64 device select code

<table>
<thead>
<tr>
<th>Device select code</th>
<th>Device type identifier</th>
<th>Chip Enable address</th>
<th>RW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 0 E2 E1 E0</td>
<td>1 0 1 0 E2</td>
<td>E1 E0</td>
<td>RW</td>
</tr>
</tbody>
</table>

1. The most significant bit, b7, is sent first.
2. E0, E1 and E2 are compared to the respective external pins on the memory device.
3 M24LR64-R memory organization

Figure 4 shows the memory organization of the M24LR64-R.

Figure 4. M24LR64-R’s user and system memories

<table>
<thead>
<tr>
<th>Sector</th>
<th>Area</th>
<th>I²C_Write_Lock</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 Kbit EEPROM sector</td>
<td>1 bit</td>
</tr>
<tr>
<td>1</td>
<td>1 Kbit EEPROM sector</td>
<td>1 bit</td>
</tr>
<tr>
<td>2</td>
<td>1 Kbit EEPROM sector</td>
<td>1 bit</td>
</tr>
<tr>
<td>3</td>
<td>1 Kbit EEPROM sector</td>
<td>1 bit</td>
</tr>
<tr>
<td>60</td>
<td>1 Kbit EEPROM sector</td>
<td>1 bit</td>
</tr>
<tr>
<td>61</td>
<td>1 Kbit EEPROM sector</td>
<td>1 bit</td>
</tr>
<tr>
<td>62</td>
<td>1 Kbit EEPROM sector</td>
<td>1 bit</td>
</tr>
<tr>
<td>63</td>
<td>1 Kbit EEPROM sector</td>
<td>1 bit</td>
</tr>
</tbody>
</table>

RF block security
I²C_Write Lock bit
I²C Password
RF Password 1
RF Password 2
RF Password 3
8 bit DSFID
8 bit AFI
64 bit UID

3.1 User memory seen from the I²C bus (E2=0)

The M24LR64-R’s user memory is a 64 Kbit EEPROM similar to the M24C64. To access the M24LR64-R’s user memory area, E2 has to be reset to 0 in the device select byte.

3.1.1 Sectors

The M24LR64-R’s user memory is organized as 32 sectors of 128 bytes each. The device has a feature specially added to write-protect sectors: each sector can be write-locked separately by setting the corresponding I²C_Write_Lock bit. When a sector is write-locked, the I²C password (see Section 3.1.4: I²C Present Password) has to be presented before the sector can be written.

3.1.2 Page Write

The page size of the M24LR64-R is 4 bytes, making it possible to write up to 4 bytes in a single write cycle.

With Page Write you can write up to 32 bytes to an M24C64 device in a single write cycle.
3.1.3 Read

The M24C64 and M24LR64-R are read identically (from the I²C bus).

3.1.4 I²C Present Password

It is a command specific to the M24LR64-R. Figure 5 shows the command sequence.

To write data to a locked sector or the system memory, the system has to present the correct password. This is done using the I²C Present Password command. With this command, you can:

- In User memory (see Figure 4: M24LR64-R's user and system memories):
 - write data to the write-protected sector(s)
- In System memory (see Figure 4: M24LR64-R's user and system memories):
 - modify each I²C_Write_Lock bit
 - modify each RF block Security bit
 - read the I²C password

The password is 32 bits long.

Figure 5. I²C Present Password command

3.1.5 I²C Write Password

This command also is specific to the M24LR64-R. Figure 6 shows the command sequence.

The I²C Write Password command is used to change the I²C password. It has to be preceded by a correct I²C Present Password sequence, otherwise it is not executed.
3.2 System memory seen from the I²C bus (E2=1)

The M24LR64-R device offers an additional EEPROM memory area named the system memory (see Figure 4: M24LR64-R’s user and system memories). The system memory can only be accessed in read or/and write mode through the I²C bus by setting the E2 bit to 1 in the device select byte.

3.2.1 M24LR64-R’s RF block security status

The 64 bytes in the system memory store the RF block security status value of each RF sector (1 byte for 1 sector).

This RF block security status can be read from the I²C bus in order to verify the protection of the user memory, when accessed from the RF channel.

The data in the RF block security status can be erased or modified from the I²C bus only if the I²C password has been presented successfully.

Table 3. RF block security status

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E2 = 1</td>
<td>0</td>
<td>SSS 3</td>
<td>SSS 2</td>
<td>SSS 1</td>
</tr>
<tr>
<td>E2 = 1</td>
<td>4</td>
<td>SSS 7</td>
<td>SSS 6</td>
<td>SSS 5</td>
</tr>
<tr>
<td>E2 = 1</td>
<td>8</td>
<td>SSS 11</td>
<td>SSS 10</td>
<td>SSS 9</td>
</tr>
<tr>
<td>E2 = 1</td>
<td>12</td>
<td>SSS 15</td>
<td>SSS 14</td>
<td>SSS 13</td>
</tr>
<tr>
<td>E2 = 1</td>
<td>16</td>
<td>SSS 19</td>
<td>SSS 18</td>
<td>SSS 17</td>
</tr>
<tr>
<td>E2 = 1</td>
<td>20</td>
<td>SSS 23</td>
<td>SSS 22</td>
<td>SSS 21</td>
</tr>
<tr>
<td>E2 = 1</td>
<td>24</td>
<td>SSS 27</td>
<td>SSS 26</td>
<td>SSS 25</td>
</tr>
<tr>
<td>E2 = 1</td>
<td>28</td>
<td>SSS 31</td>
<td>SSS 30</td>
<td>SSS 29</td>
</tr>
<tr>
<td>E2 = 1</td>
<td>32</td>
<td>SSS 35</td>
<td>SSS 34</td>
<td>SSS 33</td>
</tr>
<tr>
<td>E2 = 1</td>
<td>36</td>
<td>SSS 39</td>
<td>SSS 38</td>
<td>SSS 37</td>
</tr>
<tr>
<td>E2 = 1</td>
<td>40</td>
<td>SSS 43</td>
<td>SSS 42</td>
<td>SSS 41</td>
</tr>
</tbody>
</table>
3.2.2 I²C_Write_Lock bits

Eight bytes in the system memory area define the I²C_Write_Lock bit value of each sector in user memory (1 bit for 1 sector).

The I²C_Write_Lock bits can be read through the I²C bus to verify the protection of the user memory in RF mode.

The C_Write_Lock bits can be modified through the I²C bus only if the I²C password has been successfully presented.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>E2 = 1</td>
<td>44</td>
<td>SSS 47</td>
<td>SSS 46</td>
<td>SSS 45</td>
</tr>
<tr>
<td>E2 = 1</td>
<td>48</td>
<td>SSS 51</td>
<td>SSS 50</td>
<td>SSS 49</td>
</tr>
<tr>
<td>E2 = 1</td>
<td>52</td>
<td>SSS 55</td>
<td>SSS 54</td>
<td>SSS 53</td>
</tr>
<tr>
<td>E2 = 1</td>
<td>56</td>
<td>SSS 59</td>
<td>SSS 58</td>
<td>SSS 51</td>
</tr>
<tr>
<td>E2 = 1</td>
<td>60</td>
<td>SSS 63</td>
<td>SSS 62</td>
<td>SSS 61</td>
</tr>
</tbody>
</table>

3.2.3 System parameters

The system parameters (in the system memory) are:
- I²C password
- three RF passwords
- DSFID
- AFI
- two RFU bytes
- eight UID bytes
- three Mem_Size bytes
- IC Ref

These parameters are read-only. Table 5 shows their location in the system memory.
The RF passwords cannot be read (an I²C read operation to an RF password area sends back FFh data) or written through the I²C bus.

The I²C password can be read only if an I²C Present Password sequence was previously performed and the password matched. It is not possible to directly write the I²C password: to be able to modify the I²C password, the I²C Write Password command has to be used.

DSFID, AFI, RFU, UID, MemSize and I²C Ref are read-only data and cannot be modified from the I²C bus.

Table 5. System parameter sector

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>E2 = 1</td>
<td>2304</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E2 = 1</td>
<td>2308</td>
<td>RF password 1 (default 0000 0000h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>E2 = 1</td>
<td>2312</td>
<td>RF password 2 (default 0000 0000h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E2 = 1</td>
<td>2316</td>
<td>RF password 3 (default 0000 0000h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>E2 = 1</td>
<td>2320</td>
<td>DSFID (FFh)</td>
<td>AFI (00h)</td>
<td>RFU (FFh)</td>
</tr>
<tr>
<td>-</td>
<td>E2 = 1</td>
<td>2324</td>
<td>UID</td>
<td>UID</td>
<td>UID</td>
</tr>
<tr>
<td>-</td>
<td>E2 = 1</td>
<td>2328</td>
<td>UID (E0h)</td>
<td>UID (02h)</td>
<td>UID</td>
</tr>
<tr>
<td>-</td>
<td>E2 = 1</td>
<td>2332</td>
<td>Mem_Size (03 07FFh)</td>
<td>IC Ref (2Ch)</td>
<td></td>
</tr>
</tbody>
</table>
4 Revision history

Table 6. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>08-Mar-2010</td>
<td>1</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS “AUTOMOTIVE GRADE” MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

14/14 Doc ID 17229 Rev 1