With devices like the L6201, L6202 or L6203 driving external loads you can often have short-circuits.

A short-circuit can occur for many reasons: a short on the load, a mistake during the connection of the wires between the device and the load (i.e. L6203 driving a motor), an accidental short between the wires and so on.

The outputs of these devices are not protected against the short-circuit and if a short occurs, the current flowing through the outputs can destroy the device.

To avoid this risk, additional a circuitry may be added to protect the device. To have a total protection, we must consider three types of short-circuit:

- output to output short-circuit
- output to supply voltage short-circuit
- output to ground short-circuit

The first step is to sense the short-circuit current. In output to output short-circuit (Figure 1) or output to supply (Figure 2) short-circuit, the sensing resistor (R_{SL}) already used to set the current flowing in the load during the normal operation, may also be used for short-circuit sensing.

Figure 1. Short-circuit across output

Figure 2. Short-circuit from output to supply
To sense the output to ground short-circuit, a sensing resistor (R_{SU}) must be added between the supply pin and the supply voltage as shown in Figure 3.

Figure 3. Short-circuit from output to ground

The second step is to set a threshold over which the value of the current to be considered as short-circuit. An easy threshold is to select the forward bias voltage of a diode or transistor. When the voltage across the sense resistor exceeds the V_f or V_{be}, the device turns on indicating an overcurrent from the short-circuit.

The overcurrent signal from both the upper and lower sense resistor are ORed together to trigger the shutdown to protect the device. One simple way to shutdown the device is to take the enable line low and latch it low. The circuit in Figure 4 uses an SCR that will latch on and hold the enable low if an overcurrent occurs. The figures show the L6203, but the same configuration may be used with the L6201 or L6202.

Figure 4. Short-circuit protection circuit

In normal operation the circuit can work up to 3 A/40 V. When a short-circuit occurs the SCR is triggered and the L6203 is disabled. Due to the SCR memory, the L6203 is kept disabled until the power is switched off and back on, if the cause of short was removed.

The short-circuit is detected when:

Equation 1

$$I_{SU} > \frac{V_{BE(T1)}}{R_{SU}} = \frac{0.6}{0.1} = 6\text{A}$$

$$I_{SL} > \frac{V_D + V_{THSCMT}}{R_{SC}} = \frac{0.6 + 0.7}{0.165} = 7.8\text{A}$$
The effective short-circuit peak current is greater than \(\text{I}_{\text{SU}} \) and \(\text{I}_{\text{SL}} \). This is due to the high \(\frac{dI}{dT} \) during the short and to the delay between the short-circuit detection and the ENABLE intervention. \(\text{R}_{\text{SU}} \) and \(\text{R}_{\text{SL}} \) must be non-inductive resistors.

\(\text{R}_1 \) and \(\text{R}_2 \) are used to level shift the signal when the transistor turns on and in conjunction with \(\text{C}_1 \) to filter the short-circuit signals in order to avoid false trigger of the SCR. This filtering should not be heavy to avoid introducing an excessive delay in the short-circuit loop.

\(\text{I}_{\text{SU}} \) and \(\text{I}_{\text{SL}} \) must be calculated at the effective operating temperature being the Vbe and Vd temperature dependent.

Instead of the SCR, a monostable with a long time constant (0.3, 0.5 sec) can be used, as shown in Figure 5. In this case, every time a short-circuit occurs, the L6203 is disabled for the monostable time period and then enabled, if the short is still present the L6203 is disabled again, if the short was removed the L6203 returns in normal operation.

Figure 5. Short-circuit protection with auto restart

\[\text{R}_1, \text{R}_1, \text{C}_1, \text{R}_{\text{SU}}, \text{R}_{\text{SL}} \] are chosen depending on the application.

The intervention of the protection circuit is determined by:

Equation 2

\[\text{I}_{\text{SU}} \frac{\text{V}_{\text{BE}}}{\text{R}_{\text{SU}}} \quad \text{I}_{\text{SL}} \frac{\text{V}_{\text{IH}} + \text{V}_{\text{D}}}{\text{R}_{\text{SL}}} \]

where:

\(\text{V}_{\text{D}} = \text{V}_{\text{DIODE}}; \) \(\text{V}_{\text{IH}} = \text{min} \text{VInput High T+Monostab.} \)
1 Revision history

Table 1. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>21-Apr-2008</td>
<td>1</td>
<td>Initial release.</td>
</tr>
<tr>
<td>24-Sep-2012</td>
<td>2</td>
<td>Added part numbers L6201 and L6202. Text updates throughout the document.</td>
</tr>
</tbody>
</table>