Introduction

The STEVAL-ISV020V1 is an evaluation board based on the ultralow power energy harvester and battery charger SPV1050. For any detail related to the SPV1050 features and performances please refer to the SPV1050 datasheet.

The evaluation board implements the buck-boost configuration of the DC-DC converter and has the purpose of enhancing the SPV1050 based applications development by testing the silicon performance thanks to many jumpers and test points, and by helping to find out the best system configuration to make the SPV1050 device working at the most of efficiency.

The STEVAL-ISV020V1 board is optimized to:

- Harvest energy from PV panels supplying $2.6 \, \text{V} \leq V_{\text{MP}} \leq 9 \, \text{V}$ and $10 \, \mu\text{A} \leq I_{\text{MP}} \leq 20 \, \mu\text{A}$.
- Charge a battery with the $3.7 \, \text{V}$ undervoltage protection threshold (V_{UVP}) and $4.2 \, \text{V}$ end of charge voltage threshold (V_{EOC}).

Nevertheless, few easy changes on the application components (input and output resistor partitioning, C_{IN} capacitor) allow to use a different PV panel and source (like TEG), and a battery, by setting the $V_{\text{MPP_SET}}$, the V_{UVP} and the V_{EOC} thresholds according to the source and load. More in detail, operating ranges can be extended as follows:

- V_{MP} from $150 \, \text{mV}$ up to $18 \, \text{V}$, I_{MP} up to $100 \, \text{mA}$, V_{UVP} down to $2.2 \, \text{V}$ and V_{EOC} up to $5.3 \, \text{V}$.

The STEVAL-ISV020V1 is shown in Figure 1.

Figure 1. STEVAL-ISV020V1 evaluation board
Contents

1 Schematic and bill of material ... 3
2 System setup .. 9
3 Layout .. 10
4 Component selection ... 12
 4.1 MPPT setting ... 12
 4.2 Input capacitance ... 13
 4.3 Capacitance on MPP-REF pin .. 14
 4.3.1 Inductor selection ... 14
 4.3.2 Output voltage ripple ... 14
 4.3.3 UVP and EOC setting .. 15
5 Board description .. 16
6 Revision history .. 18
1 Schematic and bill of material

The schematic, bill of material and gerber files can be downloaded from the Design resources tab of the STEVAL-ISV020V1 product folder on www.st.com.
Figure 2. STEVAL-ISV020V1 schematic
Figure 3. STEVAL-ISV020V1 application diagram
<table>
<thead>
<tr>
<th>Sect. Item</th>
<th>Qty.</th>
<th>Reference</th>
<th>Part / value</th>
<th>Tolerance</th>
<th>Voltage current</th>
<th>Watt</th>
<th>Technol. info.</th>
<th>Package</th>
<th>Manufacturer</th>
<th>Manufacturer code</th>
<th>More information</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC-DC input section</td>
<td>1 1</td>
<td>U1</td>
<td>SPV1050</td>
<td></td>
<td></td>
<td>3 x 3 x 1 20L (code A0BR)</td>
<td>ST</td>
<td>SPV1050</td>
<td>Plastic socket</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 1</td>
<td>CN1</td>
<td>2-way screw connector</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TE Connectivity</td>
<td>282834-2</td>
<td>Input connector for PV panel or TEG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 1</td>
<td>C1</td>
<td>4.7 µF</td>
<td>15%</td>
<td>25 V</td>
<td></td>
<td>0805</td>
<td>Murata</td>
<td>GCM21BR71C 475KA73L</td>
<td>Input capacitance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 0</td>
<td>C2 (DNM)</td>
<td>4.7 µF</td>
<td>15%</td>
<td>25 V</td>
<td></td>
<td>0805</td>
<td>Murata</td>
<td>GCM21BR71C 475KA73L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 3</td>
<td>J1, J2, J3</td>
<td>Jumper</td>
<td></td>
<td></td>
<td></td>
<td>Pitch 2.54 mm</td>
<td>TH</td>
<td></td>
<td>Enable/disable MPPT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 1</td>
<td>R1</td>
<td>10 MΩ</td>
<td>1%</td>
<td></td>
<td></td>
<td>0805</td>
<td>YAGEO</td>
<td>RC0805FR-0710ML</td>
<td>Resistor partitioning for MPP track/setting</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 1</td>
<td>R2</td>
<td>1 MΩ</td>
<td>1%</td>
<td></td>
<td></td>
<td>0805</td>
<td>TE Connectivity</td>
<td>CRG0805F1M0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 1</td>
<td>R3</td>
<td>5.6 MΩ</td>
<td>1%</td>
<td></td>
<td></td>
<td>0805</td>
<td>VISHAY</td>
<td>CRCW08055M 60FKEA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 1</td>
<td>L1</td>
<td>22 µH</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td>Coilcraft</td>
<td>LPS4018-223ML</td>
<td>DC-DC inductor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 1</td>
<td>C8</td>
<td>10 nF</td>
<td>15%</td>
<td>16 V</td>
<td></td>
<td></td>
<td>X7R</td>
<td>0603</td>
<td>Murata</td>
<td>GRM188R71C1 03KA01D</td>
</tr>
</tbody>
</table>
Table 1. Bill of material (continued)

<table>
<thead>
<tr>
<th>Sect.</th>
<th>Item</th>
<th>Qty.</th>
<th>Reference</th>
<th>Part / value</th>
<th>Tolerance %</th>
<th>Voltage current</th>
<th>Watt</th>
<th>Technol. info.</th>
<th>Package</th>
<th>Manufacturer</th>
<th>Manufacturer code</th>
<th>More information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery section</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>CN4</td>
<td>2-way screw connector</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Connector for external supply of pin STORE</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>C9</td>
<td>47 µF</td>
<td>20%</td>
<td>10 V</td>
<td></td>
<td></td>
<td>0805</td>
<td>TDK</td>
<td>C2012X5R1A4 76M125AC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>R4</td>
<td>6.2 MΩ</td>
<td>5%</td>
<td></td>
<td></td>
<td></td>
<td>0805</td>
<td>RS</td>
<td>RS-0805-6m2-5%-0.125W</td>
<td>Resistor Partitioning for UVP, EOC, protection setting</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>R5</td>
<td>499 kΩ</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
<td>0805</td>
<td>VISHAY</td>
<td>CRCW0805499 KFKEA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>R6</td>
<td>2.7 MΩ</td>
<td>1%</td>
<td></td>
<td></td>
<td></td>
<td>0805</td>
<td>VISHAY</td>
<td>CRCW08052M 70FKEA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>CN2</td>
<td>8-way screw connector</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Connector for battery and battery status signals</td>
</tr>
<tr>
<td>LDOs section</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2</td>
<td>C6, C7</td>
<td>100 nF</td>
<td>10%</td>
<td>X7R</td>
<td></td>
<td></td>
<td>0603</td>
<td>KEMET</td>
<td>C0603C104K4 RAC</td>
<td>Tank capacitor for LDOs</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>SW1, SW2</td>
<td>5-pin male Stripline</td>
<td>Pitch 2.54 mm</td>
<td>TH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Close 2 - 3: LDO disabled Close 1 - 2: LDO enabled Floating: external control through CN3</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>CN3</td>
<td>4-way screw connector</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Connector for LDOs load connection</td>
</tr>
<tr>
<td>Sect.</td>
<td>Item</td>
<td>Qty.</td>
<td>Reference</td>
<td>Part / value</td>
<td>Tolerance</td>
<td>Voltage current</td>
<td>Watt</td>
<td>Technol. info.</td>
<td>Package</td>
<td>Manufacturer</td>
<td>Manufacturer code</td>
<td>More information</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>------</td>
<td>----------------</td>
<td>---------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>TP1</td>
<td>True hole</td>
<td>PV+ pin sensing and soldering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>TP2</td>
<td>True hole</td>
<td>MPP pin sensing and soldering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>TP3</td>
<td>True hole</td>
<td>MPP-SET pin sensing and soldering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>TP4</td>
<td>True hole</td>
<td>STORE pin sensing and soldering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>TP5</td>
<td>True hole</td>
<td>ULP pin sensing and soldering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>TP6</td>
<td>True hole</td>
<td>EOC pin sensing and soldering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>TP7</td>
<td>True hole</td>
<td>GND pin sensing and soldering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>TP8</td>
<td>True hole</td>
<td>GND pin sensing and soldering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>TP9</td>
<td>True hole</td>
<td>IN_LV pin sense (for probe scope)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>TP10</td>
<td>True hole</td>
<td>GND pin sensing (for probe scope)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>TP11</td>
<td>True hole</td>
<td>L_HV pin sensing (for probe scope)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 System setup

The system setup that can be used for the evaluation of the SPV1050 device is shown in Figure 4:

Figure 4. Supply and load connections

The supply system emulates the I-V characteristic of a PV panel and it is composed by a power supply \(V_{GEN} \) to determine \(V_{OC} \) and a resistor \(R_{IN} \) to determine \(I_{MP} \) and \(V_{MP} \). Considering the typical electrical parameters of a PV panel \((V_{OC}, V_{MP}, I_{MP}, I_{SC}) \), the supply system has to be set as following:

- \(V_{GEN} = V_{OC} \)
- \(R_{IN} = (V_{OC} - V_{MP}) / I_{MP} \)

At the output stage a real battery can be connected to the BATT pin. The battery can be emulated by a power supply with a resistor in series.
3 Layout

From Figure 5 to Figure 7 show the components placement and the layout (top and bottom views) of the STEVAL-ISV020V1.

Figure 5. Layout - silkscreen view

Figure 6. Layout - top view

Figure 7. Layout - bottom view
The following indications must be followed in the PCB routing:

- The same ground plane has to connect the exposed pad and the pins PGND and GND.
- The capacitor on the STORE pin must be placed as close as possible to the pin.
- The capacitors on LDO1 and LDO2 pins must be placed as close as possible to the respective pins.

Details on the recommended layout solution are shown in Figure 8 and Figure 9.

Figure 8. Ground plane detail

Figure 9. Components placement detail
4 Component selection

This section describes the application rules to be followed for properly selecting the components around the SPV1050 device.

4.1 MPPT setting

The “Maximum Power Point” (MPP) is set through the input resistor partitioning R1, R2 and R3.

As a preliminary rule, the voltage on the MPP pin (V_{MPP}), which depends on the voltage supplied by the selected source (V_{IN}), must be $\leq V_{UVP}$ (which is set by the output resistor partitioning R3, R4, R5).

So, the following equation:

\[
V_{MPP} = V_{IN} \frac{R2 + R3}{R1 + R2 + R3} \leq V_{UVP}
\]

can be rewritten as follows:

\[
V_{UVP} \geq \frac{V_{OC(MAX)}}{R1 + R2 + R3}
\]

$V_{OC(MAX)}$ stands for the maximum voltage that the source can supply (open circuit voltage).

Further, the $MPP_{RATIO} = \frac{V_{MPP_SET}}{V_{OC}}$ is set by the following equation:

\[
V_{MPP_SET} = V_{IN} \frac{R3}{R1 + R2 + R3}
\]

\[
MPP_{RATIO} \cdot V_{OC} = V_{IN} \frac{R3}{R1 + R2 + R3}
\]

For the PV panels the V_{MP} is typically in the range between 70% and 80% of V_{OC}.

Finally, the leakage on the input resistor partitioning must be negligible, hence typically it must be:

\[
10 \text{ M}\Omega \leq R1 + R2 + R3 \leq 20 \text{ M}\Omega
\]
4.2 Input capacitance

Every 16 seconds (typical) the SPV1050 device stops switching for 400 ms. During this time frame the input capacitor C1 is charged up to V_{OC} by the source: the voltage will rise according to the time constant (T_1), which depends both on its capacitance and on the equivalent resistance R_{EQ} of the source.

In case of PV panel source, assuming I_{MP} as the minimum current at which the MPP must be guaranteed, the R_{EQ} can be calculated as follows:

\[R_{EQ} = \frac{V_{OC} - V_{MPP}}{I_{MP}} = \frac{V_{OC} \cdot (1 - MPP\text{RATIO})}{I_{MP}} \]

Consequently:

\[C1 \leq \frac{T1}{R_{EQ}} \]

Figure 10 and *Figure 11* show the effect of different value of the C1 on the time constant: too high capacitance might be not charged within the 400 ms time window affecting the MPPT precision.

The default $C1 = 4.7 \, \mu F$ capacitance covers the most typical application range. The energy extracted from the harvested source, and stored in the input capacitance, is transferred to the load by the DC-DC converter though the inductor. The energy extracted by inductor depends by the sink current: the higher input currents causes higher voltage drop on the input capacitance and this may result a problem for low voltage ($< 1 \, V$) and high energy ($> 20 \, mA$) sources. In such application cases the input capacitance has to be increased or, alternatively the inductance has to be reduced.

The SPV1050 performances might be further improved by reducing the time constant (e.g. reducing input capacitance) at very low input power.
4.3 Capacitance on MPP-REF pin

It's recommended to use \(C_8 = 10 \text{ nF} \) in most of the application cases.

4.3.1 Inductor selection

The SPV1050 device controls the switching of the integrated DC-DC by limiting the peak current flowing through the inductor \(L_1 \).

\(L_1 = 22 \mu\text{H} \) covers the most typical application range: the lower is the series resistance of the selected inductor, the lower is its DC loss. The current capability of the selected inductor must be \(\geq 200 \text{ mA} \).

4.3.2 Output voltage ripple

In case of battery with high series resistance and fast load transient, the capacitor on the STORE pin may momentarily discharge and cause the undesired triggering of the \(V_{UVP} \) threshold, implying the battery disconnection.

Although the fast transient might be masked by a proper capacitance between UVP and GND pins, if the battery has low peak current capability, the voltage on the STORE pin may further drop down lower than \(V_{UVP} \).

The drawback of a \(C_{UVP} \) between UVP and GND pins is the related delay in the intervention of the end of charge protection. The consequent voltage overshoot on \(V_{STORE} \) must be always lower than the AMR of the STORE pin (5.5 V); the worst case to be considered is at maximum input power and the STORE pin in the open load.

Increasing the capacitance on the STORE pin has the drawback of affecting the output time constant and consequently delays the startup time. The same capacitor might be placed in parallel to the battery.

The selection of the battery and of the output capacitance on the STORE pin (\(C_9 \)) is strictly related to the following application parameters:

- The series resistance of the battery (\(R_{BATT} \))
- The EOC threshold (\(V_{EOC} \)) and the UVP threshold (\(V_{UVP} \))
- The maximum load current (\(I_{LOAD(MAX)} \))
- The \(T_{LOAD(ON)} \), how long the load sink (\(I_{LOAD(MAX)} \))
- The maximum allowed voltage drop on LDOs outputs (\(V_{DROP(MAX)} \))

The maximum current that can be supplied to the load is the sum of the currents that can be supplied by the battery (\(I_{BATT(MAX)} \)) and by the \(C_9 \) (\(I_{STORE} \)):

\[I_{LOAD(MAX)} = I_{BATT(MAX)} + I_{STORE} \]

The maximum current that the battery can supply without triggering the UVP threshold is:

\[I_{BATT(MAX)} = \frac{V_{BATT} - V_{UVP}}{R_{BATT}} \]
The amount of charge that the C9 can supply is:

Equation 9

\[Q_9 = C_9 \cdot V_{DROP(MAX)} \]

Considering that \(I = C \cdot \frac{dV}{dt} \), it follows:

Equation 10

\[I_{BATT(MAX)} = I_{LOAD(MAX)} - \frac{C_{STORE} \cdot V_{DROP(MAX)}}{T_{LOAD(ON)}} \]

Thus:

Equation 11

\[C_{STORE} \geq T_{LOAD} \cdot \frac{I_{LOAD(MAX)} - I_{BATT(MAX)}}{V_{DROP(MAX)}} \]

4.3.3 UVP and EOC setting

The pins UVP and EOC have to be connected to the STORE pin by the resistor partitioning R4, R5 and R6 to setup the related thresholds by scaling down those voltage values and by comparing them with the internal bandgap voltage reference set at 1.23 V.

The design rules to setup R4, R5 and R6 are the following:

Equation 12

\[V_{BG} = V_{UVP} \cdot \frac{R_5 + R_6}{R_4 + R_5 + R_6} \]

Equation 13

\[V_{BG} = V_{EOC} \cdot \frac{R_6}{R_4 + R_5 + R_6} \]

Further, in order to minimize the leakage due to the output resistor partitioning it has to be typically:

Equation 14

\[10 \, \text{M}\Omega \leq R_4 + R_5 + R_6 \leq 20 \, \text{M}\Omega \]
5 Board description

The STEVAL-ISV020V1 board has a full set of connectors, jumpers and switches as described below:

Table 2. CN1 connector

<table>
<thead>
<tr>
<th>CN1 pin number</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal</td>
<td>INPUT+</td>
<td>INPUT-</td>
</tr>
</tbody>
</table>

Table 3. CN2 connector

<table>
<thead>
<tr>
<th>CN2 pin number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPV1050 pin signal</td>
<td>V_{BATT}</td>
<td>GND</td>
<td>LDO2</td>
<td>GND</td>
<td>LDO1</td>
<td>GND</td>
<td>BATT-CON</td>
<td>BATT-CHG</td>
</tr>
</tbody>
</table>

- V_{BATT}: connect this pin to the positive of the battery.
- LDO2: connect this pin to the load to be supplied at 3.3 V.
- LDO1: connect this pin to the load to be supplied at 1.8 V.
- BATT-CON: output logic pin for battery connection monitoring.
- Please notice that this is an open drain pin, which has to be pulled up by a resistor (typically 10 MΩ) to a voltage rail lower than V_{STORE}.
- BATT-CHG: output logic pin for battery charging status monitoring.
- Please notice that this is an open drain pin, which has to be pulled up by a resistor (typically 10 MΩ) to a voltage rail lower than V_{STORE}.

Table 4. CN3 connector

<table>
<thead>
<tr>
<th>CN3 pin number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPV1050 pin signal</td>
<td>LDO1_EN</td>
<td>GND</td>
<td>GND</td>
<td>LDO2_EN</td>
</tr>
</tbody>
</table>

- LDO1_EN: input logic pin to enable/disable the LDO1. Connect this pin to the control signal from the microcontroller.
- LDO2_EN: input logic pin to enable/disable the LDO2. Connect this pin to the control signal from the microcontroller.
The MPPT function can be disabled by pulling up the pin MPP-SET and unsoldering the resistor R2. In this case the duty cycle of the switching converter will be regulated according to the fixed end of charge voltage connected to the J3.

Table 5. CN3 connector

<table>
<thead>
<tr>
<th>CN4 pin number</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPV1050 pin signal</td>
<td>STORE</td>
<td>GND</td>
</tr>
</tbody>
</table>

- STORE: connect this pin to the tank capacitor C_{STORE}.
- GND: system ground.

Table 6. J1, J2, J3: enable/disable MPPT

<table>
<thead>
<tr>
<th>Function</th>
<th>J1</th>
<th>J2</th>
<th>J3</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEAVE IT OPEN (signal monitoring)</td>
<td>OPEN: MPPT ENABLED CLOSE: MPPT DISABLED (^{(1)})</td>
<td>LEAVE OPEN IF J2 IS OPEN. CONNECT TO EXTERNAL REFERENCE VOLTAGE IF J2 is CLOSED</td>
<td></td>
</tr>
</tbody>
</table>

1. The R2 must be unsoldered.

Table 7. SW1, SW2: enable/disable LDOs

<table>
<thead>
<tr>
<th>Function</th>
<th>SW1</th>
<th>SW2</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOSE 3 - 4: LDO1 DISABLED CLOSE 2 - 3: LDO1 ENABLED FLOATING: EXTERNAL CONTROL BY CN3</td>
<td>CLOSE 3 - 4: LDO2 DISABLED CLOSE 2 - 3: LDO2 ENABLED FLOATING: EXTERNAL CONTROL BY CN3</td>
<td></td>
</tr>
</tbody>
</table>
6 Revision history

Table 8. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-May-2014</td>
<td>1</td>
<td>Initial release.</td>
</tr>
<tr>
<td>16-Jun-2016</td>
<td>2</td>
<td>Updated Section 4.3.2: Output voltage ripple on page 14 (added test).</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved