

November 2017 DocID030069 Rev 2 1/15

 www.st.com

AN4965
Application note

WebServer on SPWF04S module

Introduction
The HTTP protocol is an excellent solution for communication between humans and embedded devices
because of the ubiquitous presence of browsers.

This SPWF04S HTTP server application note is for developers seeking to implement Webservices and
Webpages with static or dynamic content in their embedded products.

It includes:

 an introduction to SPWF04S HTTP server, including server capabilities

 server side information

 built-in functionality information

Contents AN4965

2/15 DocID030069 Rev 2

Contents

1 Features overview ... 4

2 Introduction into SPWF04S HTTP server 5

2.1 Using multiple connections.. 5

2.2 Supported HTTP methods .. 5

2.3 Generating HTTP responses... 5

2.4 HTTP protocol 1.1 ... 5

2.5 Get HTTP header content ... 5

2.6 Receiving POST data .. 6

2.7 Selecting the homepage ... 6

2.8 Favicon-support .. 6

2.9 Using MIME types ... 6

2.10 Compressing resources (GZIP) ... 7

2.11 Controlling the browser cache (date/time) ... 7

3 Server-side-includes (SSI / Dyn-HTML) .. 8

4 Built-in functionalities ... 12

5 Revision history .. 14

AN4965 List of tables

 DocID030069 Rev 2 3/15

List of tables

Table 1: Example of marker replacement ... 8
Table 2: List of the possible dynamic marker types and their parameters in templates 9
Table 3: List of built-in functions ... 12
Table 4: Document revision history .. 14

Features overview AN4965

4/15 DocID030069 Rev 2

1 Features overview

The SPWF04S HTTP server features:

 HTTP 1.1 support

 HTTPS support (on top of TLS 1.2)

 HTTP 1.0 methods GET, POST (RFC 1945)

 HTTP 1.1 method OPTIONS (RFC 2616)

 Delivering static responses based on filesystem access

 Ability to deliver dynamic, application-generated responses based on server-side-
includes and fully application-generated content

AN4965 Introduction into SPWF04S HTTP server

 DocID030069 Rev 2 5/15

2 Introduction into SPWF04S HTTP server

This chapter describes some of the product packages and protocols supported by the
SPWF04S HTTP Server. It includes a basic setup of protocols, which should be sufficient
for an embedded device to provide Webservices capability via HTTP.

2.1 Using multiple connections

The HTTP server is able to manage up to four multiple HTTP connections in parallel.

2.2 Supported HTTP methods

The HTTP supports the following HTTP methods:

 GET: to request a resource from the HTTP server

 POST: to deliver data to the HTTP server

 OPTIONS: to request the HTTP header only from the HTTP server.

2.3 Generating HTTP responses

When delivering web pages over HTTP, there are two main ways to generate responses
for a request:

 With a static resource (a file).

 With a program the HTTP server calls after receiving the request. On larger web
servers, this is usually done by spawning an additional process that handles the
request by executing a program written in a scripting language like PHP, Perl or ruby.

Both methods are supported by the SPWF04S HTTP server, but the generation of dynamic
responses requires server side include (SSI) tags (see).

2.4 HTTP protocol 1.1

With HTTP 1.1, the SPWF04S HTTP server:

 Can parse out the content of the request when it is transferred in chunks (chunked
encoding)

 Can send the content of the response in chunks (chunked encoding)

 Doesn't close the TCP connection immediately after a sent response, but after a
timeout when no further request is received over the TCP connection

2.5 Get HTTP header content

The following HTTP header fields are evaluated internally:

 Content-Length: length of received HTTP content (to determine the end of the
request for HTTP content).

 Content-Type: type of HTTP content (e.g., multipart/form-data or application/xwww-
form-urlencoded).

 If-Modified-Since: whether the browser should only receive modified files, in order to
determine whether to transfer the file or the status code 304 (Not Modified) in the
response.

 User-Agent: name of user agent which sent the HTTP request; the name is saved
and used internally.

 Content-Transfer-Encoding: encoding of received HTTP content to determine
whether the content is encoded in chunks ("chunked encoding").

Introduction into SPWF04S HTTP server AN4965

6/15 DocID030069 Rev 2

2.6 Receiving POST data

Data that are received with a POST request are normally delivered to the filesystem, with
two exceptions:

 When the content type is "application/x-www-form-urlencoded", the content contains
name/value pairs and every pair is notified.

 When the content type is "multipart/form-data", an uploaded file is embedded in one of
the multiple parts and the content of the received file is notified.

See Section 4: "Built-in functionalities" for a detailed description of available built-in actions.

2.7 Selecting the homepage

If the user of a HTTP client (browser) only requests the host name (or IP address) of the
device with the HTTP server without specifying a page name, the HTTP server returns a
default page, usually index.html.

For example, if the user requests http://device77, the server returns
http://device77/index.html.

2.8 Favicon-support

Most browsers request a file named "favicon.ico" which represents a Favicon, a small logo
displayed left in the address row of the browser.

If such a file is found in the local file system, the content of the file is returned in the HTTP
response, with Content-Type "image/x-icon".

Normally, if a requested file is not found, the SPWF04S HTTP server returns a page with
status code 404 (File Not Found) unless it is a Favicon file, in which case an empty file is
returned with status code 200 (OK) and Content-Type "image/x-icon".

2.9 Using MIME types

For every HTTP response, the type of the returned file has to be declared so the browser
knows how to handle/display the file.

These are declared as Multipurpose Internet Mail Extensions (MIME) types: a set of
strings, primarily declared for email exchange, in the Content-Type HTTP header field.

Since the content of the file to be returned in the HTTP response is read via filesystem, the
associated MIME type is also returned from filesystem (as index) when opening the file.

The following MIME types are supported by the SPWF04S HTTP server:

 application/font-woff

 application/json

 application/vnd.ms-fontobject

 application/x-java-applet

 application/x-javascript

 application/x-raw-stuff

 application/x-shockwave-flash

 application/x-www-form-urlencoded

 audio/midi

 audio/mpeg

 audio/mpeg3

 audio/wav

 audio/x-ms-wma

AN4965 Introduction into SPWF04S HTTP server

 DocID030069 Rev 2 7/15

 image/bmp

 image/gif

 image/jpg

 image/png

 image/tiff

 image/x-icon

 image/x-pcx

 multipart/form-data

 multipart/x-mixed-replace

 text/css"video/mpeg

 text/html

 text/plain

 text/xsl

 text/xml

 video/x-ms-asf

 video/x-ms-wmv

 video/x-msvideo

2.10 Compressing resources (GZIP)

If a requested file from a HTTP client cannot be found via filesystem, the server also
checks for a corresponding gzip compressed file by inserting ".gz" before the last dot in the
name of the requested file.

Resources containing SSI (refer to Section 4: "Built-in functionalities") cannot be
compressed.

Example:

When a user requests "http://device77/large.txt" with a browser and the SPWF04S HTTP
server cannot large.txt via filesystem, it checks for large.gz.txt and, if found, transfers it in
its response. In this case, the Content-Transfer-Encoding header field is also delivered with
the value "gzip" to alert the browser that it is receiving a gzip compressed file.

2.11 Controlling the browser cache (date/time)

The SPWF04S HTTP server can control the browser cache by sending the Expires field
with an appropriate date/time stamp:

 in the future (year 2100) if a file must be cached

 in the past (year 2000) if a file must not be cached

The caching property is defined per MIME type. The default values are chosen so that files
of all types can be cached except for:

 text/html (when the content is dynamic HTML)

 text/plain

 text/xml

 application/json

 application/x-raw-stuff

Server-side-includes (SSI / Dyn-HTML) AN4965

8/15 DocID030069 Rev 2

3 Server-side-includes (SSI / Dyn-HTML)

Server-side-Includes files are dynamically generated from a template file.

A template file is a file that is post-processed by the SPWF04S HTTP server. To indicate
that a HTML source file contains dynamic HTML data, the HTML file must have a .FHTML
extension instead of HTML.

It contains special markers that are replaced dynamically with data coming from the
application.

These markers are HTML comments with the following format:

<!--|code|parameter1|parameter2|parameter3|parameter4|-->

The code determines the resulting string type and parameters 1 to 4 may be used to define
certain substrings of that tag; mostly attributes. Not all possible types use all the
parameters; only the necessary parameters need to be provided. See Table 2: "List of the
possible dynamic marker types and their parameters in templates" for a complete code list
and corresponding parameters.

Using the following tokens buffer, filled by AT+S.INPUTSSI command (Ref. to UM2114):

|aName|y| |aValue|someText|y|aName|aValue|someText| |

some short examples of marker replacement are following:

Table 1: Example of marker replacement

Template text Generated HTML code

<!--|00|SelStart|0|--> <select name=”aName” MULTIPLE>

<!--|01|Select|3|--> <option SELECTED value=”aValue”>someText

<!--|02|SelEnd|--> </select>

<!--|03|CheckBox|2|-->
<input type=”checkbox” name=”” value=”aValue”
CHECKED>someText

<!--|03|CheckBox|6|-->
<input type=”checkbox” name=”aName”
value=”aValue”>someText

<!--|06|Input|4|--> SomeText

<!--|06|Peers|rx_rssi|0|--> -57

No close tag </option> is generated for <option> filed, as these are not mandatory
for HTML syntax.

The other marker types follow along these lines.

AN4965 Server-side-includes (SSI / Dyn-HTML)

 DocID030069 Rev 2 9/15

Table 2: List of the possible dynamic marker types and their parameters in templates

Code Description Parameters

00
Start tag of a select
box

Parameter 1: Must be SelStart

Parameter 2:

Starting token index inside buffer filled from application via
AT+S.INPUTSSI command. Ref. to UM2114.

Tokens must be set in the following order:

Name of the select box

If given (any value), multiple selections are allowed.

01 Option tag

Parameter 1: Must be Select

Parameter 2:

Starting token index inside buffer filled from application via
AT+S.INPUTSSI command. Ref. to UM2114.

Tokens must be set in the following order:

Value of the option

Label of the option

If given (any value), this options is marked as Selected.

02
End tag of a select
box

Parameter 1: Must be SelEnd

03 A check box

Parameter 1: Must be CheckBox

Parameter 2: Starting token index inside buffer filled from
application via AT+S.INPUTSSI command. Ref. to UM2114.

Tokens must be set in the following order:

Name of the check box

Value of the check box

Label of the check box

If given (any value), the check box is initially checked.

04 A radio button

Parameter 1: Must be RadioButton

Parameter 2: Starting token index inside buffer filled from
application via AT+S.INPUTSSI command. Ref. to UM2114.

Tokens must be set in the following order:

Name of the radio button (radio buttons with the same name
cannot be checked at the same time).

Value of the radio button

Label of the radio button

If given (any value), the radio button is initially checked.

05 A text area start tag

Parameter 1: Must be TextArea

Parameter 2: Starting token index inside buffer filled from
application via AT+S.INPUTSSI command. Ref. to UM2114.

Tokens must be set in the following order:

Name of the text area

Number of columns of the text area

Number of rows of the text area

Server-side-includes (SSI / Dyn-HTML) AN4965

10/15 DocID030069 Rev 2

Code Description Parameters

06 Raw text

Parameter 1: Must be one of the following, to recall proper
SPWF04S Web Server actions:

Input – replace with raw text (use Parameter 2)

DevConf – replace with configuration variable (use Parameter
2)

DevSts – replace with status variable (use Parameter 2)

Peers – replace with peer status variable (use Param. 2 and 3)

ADC – replace with ADC value (use Parameter 2)

GpioR – replace with GPIO status (use Parameter 2)

Parameter 2:

Token index inside buffer filled from application via
AT+S.INPUTSSI command. Ref. to UM2114.

Configuration variable

Status variable

Peer status variable

ADC number

GPIO number

Parameter 3:

Peer number

07 A text area end tag Parameter 1: Must be TextEnd

08 A text field

Parameter 1: Must be TextField

Parameter 2: Starting token index inside buffer filled from
application via AT+S.INPUTSSI command. Ref. to UM2114.

Tokens must be set in the following order:

Name of the text field

The initial value of text field

Size of text field

09 A submit button

Parameter 1: Must be Button

Parameter 2: Starting token index inside buffer filled from
application via AT+S.INPUTSSI command. Ref. to UM2114.

Tokens must be set in the following order:

Name of the submit button

Value (displayed text) of the submit button

10 A reset button

Parameter 1: Must be Reset

Parameter 2: Starting token index inside buffer filled from
application via AT+S.INPUTSSI command. Ref. to UM2114.

Tokens must be set in the following order:

Name of the reset button

Value (displayed text) of the reset button

11 A password field

Parameter 1: Must be Password

Parameter 2: Starting token index inside buffer filled from
application via AT+S.INPUTSSI command. Ref. to UM2114.

Tokens must be set in the following order:

Name of the password field

The initial value of password field

Size of password field

AN4965 Server-side-includes (SSI / Dyn-HTML)

 DocID030069 Rev 2 11/15

For the <select> element, currently the argument "size = x" is not supported. So
actual browsers will not display the option elements in a multiline rectangle, but in
a dropdown-box only.

Built-in functionalities AN4965

12/15 DocID030069 Rev 2

4 Built-in functionalities

The single or multipart form data in the HTTP POST stream trigger specific actions when
they are read, as described in the following table.

Table 3: List of built-in functions

POST
information

name
POST information value HTTP server action(1)

Output SomeText +WIND:57: Output from remote:%u:%s

Key
Must be user_desc
configuration variable to allow
remote configuration

+WIND:64: Remote configuration:%s:%s (only
shown if it is wrong)

Ssid SSID

+WIND:64: Remote configuration:%s:%s (only
allowed if Key was previously accepted)

Pwd WPA PSK

WpaeId WPA-E identity

WpaeAnonId WPA-E anonymous identity

WpaeType WPA-E EAP type

Ip IPv4 static address

Netmask IPv4 static netmask

Gateway IPv4 static gateway

Dns1 IPv4 static primary DNS

Dns2 IPv4 static secondary DNS

Dhcp
DHCP mode (0: static, 1:
dynamic, 2: Auto IP)

IbssAuth
Authentication type (0:
shared, 1: open)

Auth
Authentication mode (0: open,
1: WEP, 2: WPA, 3: WPA-E)

Mode
SPWF04S mode (0: idle, 1:
STA, 2: IBSS, 3: miniAP)

Scfg_* Value of the variable to be set

GpioC_*
Value of the GPIO to
configure (out, in, in_r, in_f,
in_b)

GpioW_*
Value of the GPIO to set (0:
low, 1: high)

DAC
Value of the DAC to set on
GPIO15 (0 to 3300mV)

PWM_*
Value of the PWM and duty
cycle to set (KHz_dc) on
GPIO2 or GPIO4

Sleep
Enter or Exit (1 or 0) sleep
power mode

AN4965 Built-in functionalities

 DocID030069 Rev 2 13/15

POST
information

name
POST information value HTTP server action(1)

Reboot -
Save the configuration set to the Flash, and
reboot the SPWF04S module (only allowed if
key was previously accepted)

Notes:

(1)(ref. to UM2114 on www.st.com)

Revision history AN4965

14/15 DocID030069 Rev 2

5 Revision history
Table 4: Document revision history

Date Revision Changes

17-Jan-2017 1 Initial release.

17-Nov-2017 2

Updated Section 2.9: "Using MIME types".

Updated Section 4: "Built-in functionalities".

Minor text changes.

AN4965

 DocID030069 Rev 2 15/15

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications , and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

