Introduction

The STEVAL-ISB045V1 evaluation kit includes the STEVAL-ISB045V1T wireless battery charger transmitter evaluation board based on the STWBC-WA digital controller, firmware and the STEVAL-WBCDNGV1 USB-to-UART dongle needed to use the STSW-STWBCGUI.

The STSW-ISB045FW firmware lets you modify LED and GPIO behavior, and customize I²C and UART signals. The layout is based on a cost-effective two-layer PCB.

The ST website has tools for the STEVAL-ISB045V1 evaluation kit that allow you to access run time information such as regulation error, frequency and protocol status.

Figure 1. STEVAL-ISB045V1 evaluation board
1 Hardware architecture

1.1 STWBC-WA wearable application architecture

1.2 Optimized architecture for 1-watt applications

The following diagram shows a typical schematic for wearable applications.
We can modify the system to around 1 watt for low power applications by using only a half bridge and no current sense circuitry.
Figure 4. Optimized 1-watt bridge schematics
Follow the steps below to transform the STEVAL-ISB045V1T transmitter board into 1 watt:

Step 1. Remove the Power MOSFETS Q2 and Q4 on the right side of the bridge.

Step 2. Swap C16 with a 47 nF COG 1206.

Step 3. Solder a 0-ohm resistor on the footprint of Q4.

This provides a good GND connection on the right side of the capacitors.
Step 4. Change the transmitter coil to match the Rx coil size.

We recommend the WT151512-22F from TDK or MQTC151520S6R3 from Sunlord.

Note: Capacitor tuning can be adjusted according to the coil choice. Bridge frequency parameters can also be adjusted.
Figure 7. Schematic with changes for a 1-watt system

1. Wireless charging Coil to change
2. C16 capacitor to change from 100nF to 47nF COG 1206
3. Good GND connection to connect to tank capacitors
4. MOS to remove for half bridge configuration
3 How to update the STWBC-WA firmware

You must modify the STEVAL-ISB045V1T transmitter board hardware to use the updated STSW-ISB045FW firmware for 1 watt applications.

You can download the STSW-ISB045FW firmware with the STSW-STWBCGUI software package.

3.1 Download procedure

To download the firmware to the board, install the GUI software which allows complete board monitoring via UART signals. To use the STSW-STWBCGUI, UART signals must therefore be accessible.

3.2 How to download the STWBC-WA firmware with the STWBC GUI

This section assumes that you have updated the firmware for your new application and are ready to download the new firmware onto the STWBC-WA controller.

you can use the STSW-STWBCGUI GUI to download the firmware onto the STWBC-WA controller via UART. The firmware is a cab file which contains 3 files.

Step 1. The UART RX/TX signals of the STWBC-WA are accessible on the micro-USB connector of the transmitter board (muxed respectively on USB_DP and USB_DM)

Step 2. Connect the USB to UART dongle to the transmitter board.
The transmitter board is powered through the USB dongle.

Figure 8. Dongle and transmitter board connections

Step 3. In the GUI, select [Setup]>[Load FW to board],

Step 4. Select the CAB file containing the firmware to download.
Step 5. Make sure the board remains powered.

Step 6. Select [OK].
Step 7. Follow the download progress in the DOS window and power the board off when prompted.
3.3 How to recalibrate the board after a firmware update

It is very important to recalibrate the transmitter board after each firmware download to ensure reliable detection of the receiver when it is placed on the transmitter. Perform the calibration once after each new firmware download without a receiver placed on the transmitter.

Step 1. In the GUI, go to [Test]>[Manage test].

Figure 12. Test menu

![Test menu](image)

Step 2. In the Test window, put “1” in the [Test number] field and click [Start].

Figure 13. Presence detection test

![Presence detection test](image)
Once calibration is finished, “Test done” appears next to the [Status] field.

3.4 How to check and adjust bridge configuration

The first parameter to check after the firmware download is the bridge topology. This can be done in the STWBC GUI with the [param window] button.

Step 1. Ensure the [brg_bridge_topology] check box for Half bridge mode is selected. This setting is necessary for the 1 watt configuration.

Step 2. If the check box is not selected, tick the box and save it into STWBC memory by pressing the [Push to target] button.

Figure 14. STWBC GUI bridge configuration check

![STWBC GUI bridge configuration check](image)

Step 3. Perform your initial testing with a receiver, and check the [Regulation error] and [Duty cycle] parameters in the Monitor window. If the regulation error diverges too far from zero and the duty cycle rises up to 30%, the bridge frequency settings are not correct. In this case, the max bridge frequency setting should be increased in the STWBC GUI.
Step 4. In the Parameters window, increase the maximum bridge frequency in the \texttt{brg_freq_max} window. In the figure below, the max bridge frequency is increased to 160 Khz (for illustrative purposes).

Figure 16. Maximum bridge frequency parameter

Step 5. To save the value in STWBC memory, click on the \texttt{Push to target} button.

Step 6. Review the Monitor window to check that the error converges to 0%, which is the target for appropriate power control.
Figure 17. Monitor window with ideal Regulation error
A References

Freely available at www.st.com:

2. Databrief (DB3531): STEVAL-ISB045V1 - 2.5 W wireless charger transmitter evaluation kit
3. User manual (UM2368): STWBC 2.5 W turnkey firmware description
Revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>06-Sep-2018</td>
<td>1</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>

Table 1. Document revision history
Contents

1 Hardware architecture ...2
 1.1 STWBC-WA wearable application architecture2
 1.2 Optimized architecture for 1-watt applications2

2 How to modify the STEVAL-ISB045V1T transmitter board hardware for 1 watt5

3 How to update the STWBC-WA firmware ...8
 3.1 How to install and launch the STWBC GUI software8
 3.2 How to download the STWBC-WA firmware with the STWBC GUI8
 3.3 How to recalibrate the board after a firmware update9
 3.4 How to check and adjust bridge configuration11

A References ... 14

Revision history ...15
List of figures

Figure 1. STEVAL-ISB045V1 evaluation board.. 1
Figure 2. Transmitter board components with STWBC-WA controller. 2
Figure 3. Wearable application block diagram .. 3
Figure 4. Optimized 1-watt bridge schematics ... 4
Figure 5. Board top with the MOSFETS Q2 and Q4 to remove 5
Figure 6. Zoom with 0-ohm resistor added on Q4 ... 6
Figure 7. Schematic with changes for a 1-watt system 7
Figure 8. Dongle and transmitter board connections 8
Figure 9. Firmware file selection ... 9
Figure 10. Power ON prompt .. 9
Figure 11. Download success message .. 9
Figure 12. Test menu .. 10
Figure 13. Presence detection test ... 10
Figure 14. STWBC GUI bridge configuration check 11
Figure 15. Regulation error and Duty Cycle parameters 12
Figure 16. Maximum bridge frequency parameter ... 12
Figure 17. Monitor window with ideal Regulation error 13
List of tables

Table 1. Document revision history ... 15