Introduction

STM32MP151, STM32MP153, and STM32MP157 product lines (referred to as STM32MP15x in this document), are built on an Arm® Cortex®-A7 with single or dual-core combined with an Arm® Cortex®-M4. They are usually powered by the STPMIC1 power management IC companion chip, which is fully featured to supply complete applications.

This application note describes an alternative solution to supply power to STM32MP15x MPUs with discrete regulators. Only applications supporting the core chipset are covered (STM32MP15x + DDR + Flash memory).

This application note is intended for hardware product designers and architects who require details about:

• Detailed schematic block diagrams
• Low power mode and reset management (crash recovery)
• Voltage regulator module (VRM) electrical specification for supplying the STM32MP15x power rail.
Contents

1 Overview ... 6
 1.1 Reference documents ... 7

2 Glossary ... 8

3 Discrete power supply topologies 9
 3.1 STM32MP15x with DDR3L and 3.3 V I/O voltage interface 9
 3.1.1 Input voltage .. 11
 3.1.2 Regulator topology recommendations for LDO or SMPS (3.3 V IO interface) .. 11
 3.2 STM32MP15x with DDR3L and 1.8 V I/O voltage interface 15
 3.2.1 Input voltage .. 16
 3.2.2 Regulator topology recommendations for LDO or SMPS (1.8 V IO interface) .. 16
 3.3 Low power modes and crash recovery management 18
 3.3.1 Crash recovery management circuitry (optional) 19

4 Power sequence management .. 20
 4.1 Power-up/power-down sequence and reset management 20
 4.2 Low-power mode management 23
 4.2.1 LP-Stop mode ... 23
 4.2.2 Standby mode ... 25
 4.3 Crash recovery management 28

5 Voltage regulator module (VRM) specification 30
 5.1 VRM specification for VDD (VDD_ANA, VDD_PLL, VDD_DSI) power domain .. 30
 5.2 VRM specification for VDDCORE power domain 31
 5.3 VDDQ_DDR power domain VRM specification 32
<table>
<thead>
<tr>
<th>6</th>
<th>Voltage regulator module examples</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>VRM example for 5 V DC to 3.3 V DC / 300 mA</td>
<td>33</td>
</tr>
<tr>
<td>6.2</td>
<td>VRM example for 5 V DC to 1.215 V DC / 1500 mA</td>
<td>33</td>
</tr>
<tr>
<td>6.3</td>
<td>VRM example for 5 V DC to 1.35 V DC / 1500 mA</td>
<td>34</td>
</tr>
<tr>
<td>6.4</td>
<td>VRM example for 5 V DC to 3.3 V DC / 2000 mA</td>
<td>35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Revision history</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Revision history</td>
<td>36</td>
</tr>
</tbody>
</table>
List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Reference documents</td>
<td>7</td>
</tr>
<tr>
<td>Table 2</td>
<td>Glossary</td>
<td>8</td>
</tr>
<tr>
<td>Table 3</td>
<td>System operating modes</td>
<td>18</td>
</tr>
<tr>
<td>Table 4</td>
<td>VRM specification for VDD power domain</td>
<td>30</td>
</tr>
<tr>
<td>Table 5</td>
<td>VRM specification for VDDCORE power domain</td>
<td>31</td>
</tr>
<tr>
<td>Table 6</td>
<td>VRM specification for VDDQ_DDR and DDR3L IC power domain</td>
<td>32</td>
</tr>
<tr>
<td>Table 7</td>
<td>VRM example for 5 V to 3.3 V / 300 mA</td>
<td>33</td>
</tr>
<tr>
<td>Table 8</td>
<td>VRM example for 5 V to 1.215 V / 1500 mA</td>
<td>33</td>
</tr>
<tr>
<td>Table 9</td>
<td>VRM example for 5 V to 1.215 V / 1500 mA</td>
<td>34</td>
</tr>
<tr>
<td>Table 10</td>
<td>VRM example for 5 V to 1.215 V / 1500 mA</td>
<td>35</td>
</tr>
<tr>
<td>Table 11</td>
<td>Document revision history</td>
<td>36</td>
</tr>
</tbody>
</table>
List of figures

Figure 1. Discrete power supply topology example with IOs at 3.3 V and DDR3L 10
Figure 2. Supply VDD3V3_USBHS/FS with integrated power switch .. 13
Figure 3. VDD3V3_USBHS/FS supply with discrete power switch ... 14
Figure 4. Discrete power supply topology example with IOs at 1.8 V and DDR3L 15
Figure 5. Supply VDD3V3_USBHS/FS from VDD_PERIPH .. 17
Figure 6. PWR_ONRST crash recovery management signal .. 19
Figure 7. Power-up / power-down sequence and reset management diagram 20
Figure 8. LP-Stop mode sequence ... 23
Figure 9. Standby mode sequence ... 25
Figure 10. Crash recovery sequence ... 28
Figure 11. Voltage regulator module perimeter example .. 30
Figure 12. VRM 5 V to 3.3 V / 300 mA details ... 33
Figure 13. VRM 5 V to 1.215 V / 1500 mA details .. 33
Figure 14. VRM 5 V to 1.35 V / 1000 mA details .. 34
Figure 15. VRM 5 V to 3.3 V / 2000 mA details .. 35
1 Overview

This application note applies to all STM32MP15x devices, which have a large feature set and stringent power-supply requirements.

It focuses on the core chipset supplies (STM32MP15x + DDR + Flash memory) with the following assumptions:

- 5 V DC input power source application
- DDR3L x32-bit bus width with bus termination resistors
- Generic Flash memory powered from a 3.3 V power source.

The regulator electrical specifications provided in this document are only applicable when the STM32MP15x decoupling scheme (see AN5031 [1]) and layout recommendations are carefully followed.

Power consumption figures provided in this application note are illustrative examples only, and should not be used as a reference. For information regarding power consumption, refer to AN5284 [7] and the related product datasheet(s).

The STM32MP15x electrical and timing data provided in this application note is for illustration only, and should not be used as reference. Please refer to the relevant STM32MP15x product datasheet.

lpDDR2 and lpDDR3 memories are not within the scope of this application note. It is assumed that they are not powered by power discrete regulators for the following reasons:

- lpDDR2/3 memories have strict power-up and power-down sequence constraints (referring to JEDEC specification), which is complex to implement with discrete regulator circuitry
- Low-power management with discrete regulators is more complex than using a power management IC, such as the STPMIC1 (see DS12505 [5]).

STM32MP15x products are Arm®(a) Cortex®-based devices.

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
1.1 Reference documents

<table>
<thead>
<tr>
<th>Reference</th>
<th>Document ID</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>AN5031</td>
<td>Getting started with STM32MP1 Series hardware development</td>
</tr>
<tr>
<td>[2]</td>
<td>AN5109</td>
<td>STM32MP1 Series using low-power modes</td>
</tr>
<tr>
<td>[3]</td>
<td>AN5089</td>
<td>STM32MP1 Series and STPMIC1 hardware and software integration</td>
</tr>
<tr>
<td>[6]</td>
<td>AN5122</td>
<td>STM32MP1 Series DDR memory routing guidelines</td>
</tr>
<tr>
<td>[7]</td>
<td>AN5284</td>
<td>STM32MP1 Series system power consumption</td>
</tr>
</tbody>
</table>

1. These documents are available on www.st.com.
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSBL</td>
<td>First stage boot loader</td>
</tr>
<tr>
<td>HSI</td>
<td>High speed internal oscillator</td>
</tr>
<tr>
<td>LDO</td>
<td>Low drop out. a linear regulator in this document.</td>
</tr>
<tr>
<td>MPU</td>
<td>Micro-processor unit. Refers to STM32MP15x devices in this document</td>
</tr>
<tr>
<td>POR</td>
<td>Power-on reset</td>
</tr>
<tr>
<td>RC</td>
<td>Discrete resistor-capacitor network</td>
</tr>
<tr>
<td>RCC</td>
<td>STM32MP15x reset and clock control</td>
</tr>
<tr>
<td>RMS</td>
<td>Root mean square</td>
</tr>
<tr>
<td>SMPS</td>
<td>Switched-mode power supply</td>
</tr>
<tr>
<td>VRM</td>
<td>Voltage regulator module. in this document, a VRM is either a step-down SMPS or a LDO.</td>
</tr>
</tbody>
</table>
3 Discrete power supply topologies

3.1 STM32MP15x with DDR3L and 3.3 V I/O voltage interface

Figure 1 shows a basic application composed of an STM32MP15x, a DDR3L volatile memory and a generic Flash memory (boot peripheral). In this application, sub-system peripherals (Ethernet Phy, RGB LCD, audio, and so on) are not shown, but it is assumed that their I/O interface works at 3.3V (VDD). This application is powered by linear and switched-mode power supply step-down converters.
Figure 1. Discrete power supply topology example with IOs at 3.3 V and DDR3L

Note: The MPU decoupling scheme is not shown (see AN5031 [1])

SMPS and LDO regulator product part numbers and discrete components are not shown, but their electrical specifications are detailed Section 3.1.2: Regulator topology recommendations for LDO or SMPS (3.3 V IO interface). Additional protection on VIN, such as ESD, EMI filtering, and over-voltage, is not shown.
3.1.1 Input voltage

This application example is powered from a 5 V (typical) DC voltage source (VIN) with a range of 4.0 to 5.5 V. It uses only the following DC to DC step-down converters:

- linear regulators (LDOs)
- non-isolated Buck SMPS

Alternatively, this application can be powered from a higher input voltage, such as 12 V. In this case, suitably rated discrete regulators of the correct input voltage are used. For input voltages higher than 12 V - typically industrial applications - use of pre-regulation topology is recommended. For example, use of a 24 V-to-5 V DC-DC Buck SMPS for pre-regulation to generate VIN, followed by the topology defined in this example. Pre-regulation is recommended to avoid working the Buck SMPS with very low duty cycle (with associated concerns).

The minimum VIN voltage should be higher than the highest voltage used in the application. In this application, 3.3 V is the highest voltage required by the application (to supply V_{DD} and V_{DD_PERIPH}). Considering an ideal regulator (no dropout) and an ideal power source, the minimum VIN could be 3.3 V. In real conditions, a reasonable 400 mV dropout for a 3.3 V regulator (working at full load) and a 300 mV drop on the VIN path (including DC and AC drop + margin), requires a minimum VIN voltage of about 4 V.

The maximum VIN voltage is limited by the regulator powered from VIN having the lowest maximum-rated input voltage. In this application, this is assumed to be 5.5 V.

3.1.2 Regulator topology recommendations for LDO or SMPS (3.3 V IO interface)

The LDO or SMPS regulator topology selection is a trade-off between simplicity of integration versus power-efficiency performance:

- LDO: simplicity of integration, low noise, but poor power efficiency (thermal heating)
- SMPS: good power efficiency (lower thermal heating than LDO); complex to integrate, higher noise than LDO (switching activity).

For application powered from DC source - typically powered from AC to DC wall adapter - power efficiency is less critical than in battery applications. Nevertheless, thermal heating remains an important criteria and should be minimized as much as possible. This is especially so when the application runs the most power-consuming use case, or when it is powered from a VIN power source at 12 V instead of 5 V.

Reciprocally, applications in standby mode should have low quiescent currents for regulators kept ‘on’, and low leakage currents for regulators turned ‘off’.

Regulator topologies should be selected accordingly.
VDD power domain

For the VDD power domain, LDO topology is a good compromise between power losses, voltage noise, and cost:

- The VDD / VIN voltage ratio is 0.66 (3.3 V / 5 V). The LDO power efficiency is approximately 66%, quasi constant.
- Average current consumption is low, even for complex use cases. It is typically below an average worst-case current of 100 mA (50 mA assumed) and never exceeds 200 mA (assuming 300 mA peak very worst case to allow some margin).
- Current consumption in STOP and STANDBY modes is very low; ~1 mA and ~10 µA respectively (see the STM32MP157C datasheet [5] for details and conditions).

With LDO topology the power efficiency is ~66% (~VDD / VIN ratio), and ~90% with an SMPS Buck converter. Power loses are 85 mW with an LDO and 18 mW with SMPS converter respectively (assuming 50 mA power consumption). For both, this is negligible in terms of thermal heating compared to other application power domains.

In STOP mode, power losses are equivalent between an LDO and a buck SMPS, because buck converter power efficiency usually decreases under light load.

In STANDBY mode, power loses are higher with switching converters compared to an LDO. A switching converter usually has a higher quiescent current than an LDO, and an LDO has no switching loses.

VDDA and VREF power domains

The VDDA pin supplies the ADC / DAC and the voltage reference buffer (VREFBUF) to generate the VREF+ reference voltage of the ADC / DAC.

The ADC and DAC performance is directly impacted by the noise level from the VREF+ source, but also by the VDDA source noise level (due to the VDDA power supply rejection ratio).

If VDDA is powered from VDD power source, a low pass filter with low DC impedance may be inserted in between VDD power source and VDDA depending on the required ADC / DAC performance.

VREF+ should only be connected to the VDD power source if limited ADC / DAC performance is expected.

VDDCORE power domain

For the VDDCORE power domain, buck SMPS topology is recommended for power efficiency as this is one of the highest power-consumption domains in the application.

For VDDCORE, LDO topology is not recommended due to the ratio between VDDCORE and VIN of about 0.24 (1.215 V / 5 V). With an LDO, power efficiency could be as low as 24%, meaning significantly more energy being consumed by the LDO converter than the energy consumed by the MPU itself.
VDD_DDR and VTT power domains

For VDD_DDR power domain, buck SMPS topology is recommended for the same reason as for VDDCORE.

If the application requires termination resistors on the DDR3 / DDR3L address/command bus, a dedicated sink/source LDO should be used to supply VTT at VDD_DDR / 2. Such a regulator usually integrates a VREF_DDR converter allowing the resistor divider (1 kΩ / 1 kΩ) to be removed from the design.

VDD_USB power domains

VDD3V3_USBHS and VDD3V3_USBFS are the USB PHY power supply pins of the MPU. They should be powered from 3.07 V to 3.6 V. Both VDD3V3_USBHS and VDD3V3_USBFS power consumption are less than 30 mA (50 mA is assumed in order to allow some margin).

VDD3V3_USBHS must not be present when VDDA1V8_REG is absent, otherwise permanent MPU damage could occur (see DS12505 [5] for details). VDD3V3_USBHS cannot be connected directly to VDD as VDD is always present before VDDA1V8_REG.

To accommodate this constraint, VDD3V3_USBHS should be enabled by VDDA1V8_REG. VDD_USB is enabled when VDD1V8_REG is enabled, hence by default at power-on, and whenever DSI or USB are used. Different power supply options are possible:

- dedicated LDO (recommended), see Figure 1
- integrated power switch / load switch, see Figure 2
- discrete power switch, see Figure 3.

Figure 2. Supply VDD3V3_USBHS/FS with integrated power switch

The power switch (load switch) main electrical criteria are:

- The ON-resistance should be low enough to guarantee that VDD_USB never drops below 3.07 V. Typically below 700 mΩ if VDD has +/-5% tolerance:
 \[R_{on} < \left(\frac{3.3 \text{ V} - 5\% - 3.07 \text{ V}}{50 \text{ mA}} \right) / 0.7 \Omega = 0.7 \Omega. \]

- The EN_VIH min threshold (active high) should be below 1.7 V (VDDA1V8_REG min) to ensure that the power switch turns on in all conditions.

- An integrated output discharge resistor is recommended to discharge the VDD_USB decoupling capacitor when the power switch is disabled.
This discrete power switch is composed of one P-channel power MOSFET and one N-channel MOSFET. The P-channel MOSFET acts as a power switch to drain current from VDD to VDD_USB to supply VDD3V3_USBHS/FS. The P-channel gate is driven by the N-channel MOSFET, which acts as an open drain to reverse the P-channel polarity. The N-channel gate is driven by the VDDA1V8_REG voltage. The 1 kΩ passive load is added to discharge the decoupling capacitors on VDD3V3_USBHS/FS, continuously consuming 3.3 mA when VDD_USB is enabled.

Discrete power switch main electrical characteristics:

- **P-channel MOSFET:**
 - V_{DSS} and $V_{GSS} > -3.3$ V
 - I_D min: -50 mA
 - I_D peak >> -50 mA (peak current when charging VDD3V3_USBHS/FS decoupling capacitor)
 - $R_{DS(ON)} < 0.7 \, \Omega$ at $V_{GS} = -3.3$ V

- **N-channel MOSFET:**
 - $V_{DSS} > 3.3$ V
 - $V_{GSS} > 1.8$ V
 - I_D min: 10 mA
 - $R_{DS(ON)} < 100 \, \Omega$ at $V_{GS} = 1.8$ V

VDD_PERIPH power domain

For VDD_PERIPH power domain, voltage and regulator topology depend on final application. In the application illustrated in *Figure 1*, it is assumed that all peripherals can be supplied from a 3.3 V voltage source.
3.2 STM32MP15x with DDR3L and 1.8 V I/O voltage interface

Figure 4 shows same application as *Figure 1*, except that the I/O interface is changed from 3.3 V to 1.8 V. Sub-system peripherals (Ethernet, LCD, Audio, and so on) are not shown but it is assumed their I/O interface works at 1.8 V (VDD), or they use level translators. It is powered by linear and switched-mode power supply step-down converters.

Figure 4. Discrete power supply topology example with IOs at 1.8 V and DDR3L

Note: The MPU decoupling scheme is not shown (see AN5031 [1])

SMPS and LDO regulator part numbers and discrete components are not shown, but their electrical specifications are detailed in Section 3.2.2: Regulator topology recommendations for LDO or SMPS (1.8 V IO interface).

Additional protection on VIN, such as ESD, EMI filtering, and overvoltage, are not shown.
3.2.1 Input voltage
See Section 3.1.1: Input voltage.

3.2.2 Regulator topology recommendations for LDO or SMPS (1.8 V IO interface)
Similar to Section 3.1.2: Regulator topology recommendations for LDO or SMPS (3.3 V IO interface) with the following differences:

VDD power domain
For the VDD power domain, buck SMPS topology is recommended for power-efficiency reasons. Nevertheless, LDO topology may be acceptable due to the low power consumption on this supply domain.

The VDD / VIN voltage ratio is 0.36 (1.8 V/5 V). LDO power efficiency is approximately 36%, quasi constant.

The average current consumption average is low, even for complex use cases. The worst-case average is typically below 100 mA on (50 mA assumed), and never exceeds 200 mA (300 mA peak very worst case to allow some margin).

Current consumption in STOP and STANDBY modes is very low; ~1 mA and ~10 µA respectively (see the STM32MP157C datasheet [5] for details and conditions.)

With LDO topology power efficiency is approximately 36% (~VDD / VIN ratio) and with an SMPS buck converter is about 90%. Power loses are 160 mW with LDO and 18 mW with an SMPS converter respectively, (assuming 50 mA power consumption). Depending on the application’s heat-dissipation capacity, if 60 mW in losses is acceptable, then an LDO can be used.

VDD_USB power domains
VDD3V3_USBHS and VDD3V3_USBFS are the USB PHY power supply pins of the MPU. They should be powered from 3.07 V to 3.6 V. Neither the VDD3V3_USBHS nor the VDD3V3_USBFS power consumption is more than 30 mA (50 mA is assumed to allow some margin).

VDD3V3_USBHS must not be present when VDDA1V8_REG is absent, otherwise permanent MPU damage could occur (see DS12505 [5]).

To accommodate these constraints, VDD3V3_USBHS should be synchronized with the PWR_ON or PWR_ONRST signal, as VDD is connected to VDDA1V8_REG and VDD rises first in the application (see Figure 4). Two power supply options are possible:
- Dedicated LDO (recommended), see Figure 4
- Reuse of the regulator supplying the peripheral (VDD_PERIPH), see Figure 5.
VDD_PERIPH power source can be used to supply VDD3_V3_USBHS and VDD3_V3_USBLS if following conditions are respected:

- the VDD_PERIPH voltage should be in VDD3_V3_USBHS/LS voltage tolerance (3.07 V to 3.6 V)
- the VDD_PERIPH (VDD3_V3_USBHS) must not be present unless VDD (VDDA_1V8_REG) is present.

If the VDD_PERIPH regulator has the same voltage and is controlled through PWR_ONRST, as in Figure 5, the two upon constraints are fulfilled.

VDDA and VREF power domains

The VDDA pin supplies the ADC / DAC and also the voltage reference buffer (VREFBUF) to generate the ADC/DAC VREF_plus reference voltage.

ADC/DAC performance is directly impacted by the level of noise from the VREF_plus source, and also by the noise level from the VDDA source (due to the VDDA power supply rejection ratio).

If the ADC/DAC are used in the application with a reference voltage, VREF_plus, higher than 2 V, then the VDD_PERIPH power source can be used to supply VDDA. A low-pass filter with low DC impedance can be inserted in between the VDD power source and VDDA depending on the required ADC/DAC performance.

VREF_plus may be connected to the VDD_PERIPH power source only if limited ADC / DAC performance is acceptable.
3.3 Low power modes and crash recovery management

STM32MP15x devices support several operating modes to reduce power consumption (see AN5109 [2]).

The two MPU output pins, PWR_ON and PWR_LP, are automatically controlled depending on the operating mode. They are used to control the application regulators:

- **PWR_ON**: supply request signal (active high). Enables VDDCORE and the application peripheral power supplies. It is active in Run, Stop and Low-Power-Stop modes. It is inactive in Standby mode (and implicitly in VBAT and power Off modes when VDD is not present).

- **PWR_LP**: low-power mode request signal (active low). It is used to request a regulator or a peripheral to enter low-power state. It is active in LP_STOP and Standby modes. It is inactive in Run and Stop modes.

Note: With discrete-regulator applications, LPCFG (PWR_ON pin configuration in PWR_CR1 register) should always be set to 0.

Table 3 summarizes the power supply states for the application operating modes illustrated in Figure 1.

<table>
<thead>
<tr>
<th>Power mode</th>
<th>NRST / NRST_CORE</th>
<th>VDD</th>
<th>PWR_ON / VDDCORE</th>
<th>PWR_ONRST / VDD_DDR/ VDD_PERIPH</th>
<th>PWR_LP / VTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run</td>
<td>1</td>
<td>On</td>
<td>1 / On</td>
<td>1 / On</td>
<td>1 / On</td>
</tr>
<tr>
<td>Stop</td>
<td>1</td>
<td>On</td>
<td>1 / On</td>
<td>1 / On</td>
<td>1 / On</td>
</tr>
<tr>
<td>LP-Stop</td>
<td>1</td>
<td>On</td>
<td>1 / On</td>
<td>1 / On</td>
<td>0 / Off</td>
</tr>
<tr>
<td>Standby</td>
<td>1</td>
<td>On</td>
<td>0 / Off</td>
<td>0 / Off</td>
<td>0 / Off</td>
</tr>
<tr>
<td>VBAT or Power off</td>
<td>-</td>
<td>Off (No VIN)</td>
<td>Off (No VIN)</td>
<td>Off (No VIN)</td>
<td>Off (No VIN)</td>
</tr>
<tr>
<td>Crash (watchdog elapsed)</td>
<td>0 (pulse)</td>
<td>On</td>
<td>1 / On</td>
<td>0 / Off</td>
<td>1 / VTT Off</td>
</tr>
</tbody>
</table>
3.3.1 Crash recovery management circuitry (optional)

PWR_ONRST is an additional signal dedicated to the management of crash recovery at the application level. As shown in Figure 6, the PWR_ONRST signal is generated from PWR_ON and NRST by a discrete logical AND circuit.

Figure 6. PWR_ONRST crash recovery management signal

The AND logic circuit is composed of a 10 kΩ resistor and a diode. Use of a Schottky diode such as BAT54 or BAT60 is recommended. The 10 kΩ value may be adapted according to the combined impedances of the regulator EN pin; especially if some or all of the regulator EN pins have built-in pull down resistors.

The PWR_ONRST signal is equivalent to the PWR_ON signal. However, if a reset occurs (NRST signal low pulse), the PWR_ONRST signal goes low meaning that regulators controlled by this signal turn OFF for the NRST low pulse duration, then turn back ON after the reset is released to a high state.

This allows power-supply cycling to be performed on peripherals. It is recommended that correct restart and reset of peripherals be assured after an application reset occurs (NRST), especially for peripherals that do not have a reset input signal. Power cycling is especially recommended for peripheral boot devices / Flash memory such as eMMC, NAND, NOR, and SD-Card.

STM32MP15x devices have a bidirectional pad reset (NRST) allowing the reset of external devices. If a crash occurs (iwdg1_out_rst or iwdg2_out_rst watchdog elapsed), a reset pulse is generated on the NRST signal. An identical pulse is generated on the PWR_ONRST signal to control power cycling of the peripheral power supplies. An example timing diagram is provided in Section 4: Power sequence management.

Note: The MPU's RPCTL (reset pulse control) allows control of the minimum pulse duration of the NRST pin. It should be enabled by software at boot-up, and set to an appropriate duration; for example 31 ms, by setting bitfield MRD[4:0] = 0x1F in the RCC_RDLSICR register.

This ensures that discrete regulator output voltages have enough time to drop before the pulse ends (transits to ‘1’) and re-enables the regulators.
4 Power sequence management

In Figure 7 through Figure 10, the VDDA1V8_REG level and the signal waveforms associated with its management are shown in light blue for clarity.

4.1 Power-up/power-down sequence and reset management

The application power-up and power-down sequence is shown in Figure 7 according to the implementation shown in Figure 1: Discrete power supply topology example with IOs at 3.3 V and DDR3L.

Figure 7. Power-up / power-down sequence and reset management diagram
1. The application is not powered, or the MPU is in VBAT mode (powered from VBAT to supply the VSW power domain).
2. A valid power supply source is connected to the application. The VIN voltage rises. After a delay (defined by a passive R-C network), to allow the VIN voltage to stabilize, the VDD regulator is enabled.
3. The VDD voltage starts to rise:
 a) The NRST, PWR_ON, PWR_LP signals are set low by the MPU, forcing the PWR_ONRST signal low.
 b) Once the VDD supply voltage is above the POR rising threshold level(b), a tRSTTEMPO(c) delay is started.
4. Once tRSTTEMPO elapses, the PWR_ON and PWR_LP signals are set high by the MPU:
 a) After tRSTTEMPO elapses, the MPU waits for 20 µs(d) before releasing the NRST signal, making PWR_ONRST transit to a high level. VDD_PERIPH, VDD_DDR and VTT voltages start to rise.
 b) The VDDCORE regulator is enabled by the PWR_ON signal, and the VDDCORE voltage starts to rise.
 c) Once the VDDCORE voltage is above the VPVDCORE_0(e) rising threshold level, a tVDDCORETEMPO(f) delay is started. As long as the tVDDCORETEMPO has not elapsed, the MPU is kept in internal reset.
5. Once the tVDDCORETEMPO delay elapses, the MPU is taken out of internal reset (VDDCORE_OK):
 a) The VDDCORE voltage should be higher than the VDDCORE(g) minimum operating voltage. This should be guaranteed by the VDDCORE regulator slew rate.
 b) The VDDA1V8_REG internal regulator is enabled. When the VDDA1V8_REG voltage reaches VDD_USB regulator enable threshold, the VDD_USB regulator is enabled.
 c) The MPU performs an internal hardware initialization (enabling the HSI and option byte loading with a ~130 µs duration). It then enters in Run mode. The EADLY(h) delay timer (10 ms) is started.

b. POR rise threshold = VBOR0 rising edge = 1.67 V typ.
c. tRSTTEMPO = 377 µs typ.
d. Internal RCC delay of the MPU.
e. VPVDCORE_0 rising edge = 0.95 V min.
f. tVDDCORETEMPO = 200 µs min.
g. VDDCORE operating voltage = 1.18 V min.
h. The EADLY timer prevents the Boot ROM from performing any access to the boot peripheral before it is ready when recovering from Standby mode. Typically it waits for a stable voltage on the Flash memory that is read by the Boot ROM to get the boot software. In this application, the default value (10 ms) is kept to wait for the VDD_PERIP and VDD_USB voltage to stabilize (RM0436[4] for more details).
d) When EADLY has elapsed, the Boot ROM starts accessing the external peripherals to load and execute the boot software. Implicitly, when EADLY has elapsed, all regulator voltages should be stable; especially VDD_PERIPH and VDD_USB, which are power domains supplying the Flash memory and USB interfaces respectively.

e) After an application initialization, the software can disable VDDA1V8_REG (VDD_USB) if no USB peripheral is attached.

6. Power supply source is removed from the application:

 a) The VIN voltage drops

 b) When the VIN voltage is close to VDD, VDD_USB and VDD_PERIPH (3.3 V), they start to drop in parallel with VIN.

 c) Once the VDD supply voltage is below the POR fall threshold\(^{(i)}\), the MPU resets internally and disables VDDA1V8_REG. The NRST, PWR_ON and PWR_LP signals are set low by the MPU. The PWR_ONRST signal is forced low by the NRST and PWR_ON signals. The VDDCORE, VDD_DDR, VTT, VDD_PERIPH regulators are disabled. The current consumption on VIN drops, making VIN fall slowly. When the VDDA1V8_REG voltage reaches the regulator disable threshold for VDD_USB, the VDD_USB regulator is disabled.

7. The application has no power, or the MPU is in VBAT mode (powered from VBAT to supply the VSW power domain.

\(^{(i)}\) POR fall threshold = VBOR0 falling edge = 1.63 V typ (or = VBOR3 falling edge = 2.6 V max if option byte SELINBORH[0:1] = 11 (BOR = 2.7 V)).
4.2 Low-power mode management

4.2.1 LP-Stop mode

The application LP-Stop mode sequence is shown in Figure 8: LP-Stop mode sequence according to the implementation shown in Figure 1: Discrete power supply topology example with IOs at 3.3 V and DDR3L. In this application, V_{TT} is the only voltage regulator that supports low-power mode.

![Figure 8. LP-Stop mode sequence](image)
1. The application is powered and running. When LP_STOP mode is requested, the software prepares an LP_STOP entry (stops some clocks, sets the DDR to self-refresh, sets PWRLP_TEMPO, and so on). It then sets the LPDS register to enter LP-STOP mode; the PWR_LP signal is asserted.

2. V_TT enters low power mode (high impedance).

3. On a wakeup event, the MPU leaves LP-STOP mode and de-asserts the PWR_LP signal:
 a) VTT exits low power mode
 b) a clock restore process is performed
 c) Once the HSI clock oscillator is stable (after ~5 µs), the PWRLP_TEMPO^j^ timer is timed out to wait for the VTT regulator voltage to stabilize. In this application, the V_TT regulator recovery time is less than 100 µs. Hence, the PWRLP_TEMPO duration should be 100 µs minimum.

4. When PWRLP_TEMPO elapses, the application enters Run mode. The software resumes from LP-STOP mode (restores clocks, resumes DDR from self-refresh, and so on). Depending on the USB activity, the software may turn V_DDA1V8_REG (the MPU’s internal regulator) on or off, which automatically turns the V_DD_USB regulator on or off.

^j^ PWRLP_TEMPO is a dedicated timer designed to wait for regulators to recover when the application goes from LP-STOP mode to Run mode. The PWRLP_TEMPO delay value should be set in bitfield PWRLP_DLY[21:16] of the RCC_PWRLPDLYCR register.
4.2.2 Standby mode

The application Standby mode sequence is shown in **Figure 9** according to the implementation shown in **Figure 1**: Discrete power supply topology example with IOs at 3.3 V and DDR3L.

In this application, the Flash memory used by the boot ROM to read the boot software (for example FSBL) is powered from the V\textsubscript{DD_PERIPH} domain, and the DDR memory is powered OFF in Standby mode.

Figure 9. Standby mode sequence

- **V\textsubscript{DD_USB} Off thr.**
- **V\textsubscript{DD_USB} On thr.**
- **EADLY duration should be > VDD_PERIPH rise duration (propose EADLY = 10ms)**
- **EADLY duration should be > VDD_PERIPH rise duration (propose EADLY = 10ms)**
- **VPVDCORE_0 thr.**
- **Voltage should be higher than VDDCORE_min operating voltage**
- **VDD_PERIPH rise duration = 0.5 ms to 5 ms**

AN5256 Rev 1 25/37
1. The application is powered and running. When Standby mode is requested, the software prepares for Standby entry (stops some clocks, sets the POPL\(^{k}\) and EADLY\(^{l}\) timers, and so on).

2. The software may switch off the USB power domains by turning off \(V_{DDA1V8\,\text{REG}}\), making the \(V_{DD\,\text{USB}}\) regulator switch off\(^{m}\). When the software is ready, the MPU enters Standby mode and the POPL timer starts automatically.

3. The PWR_ON signal is de-asserted and the PWR_LP signal asserted:
 a) The PWR_ONRST signal is forced low when PWR_ON is asserted
 b) The \(V_{DD\,\text{CORE}}\) regulator is powered off by the PWR_ON signal
 c) \(V_{DD\,\text{DDR}}, V_{\text{REF}\,\text{DDR}}, V_{TT}\) and \(V_{DD\,\text{PERIPH}}\) are powered off by the PWR_ONRST signal.

4. On a wakeup event, the MPU leaves Standby mode\(^{n}\), asserts the PWR_ON signal and de-asserts the PWR_LP signal:
 a) The PWR_ONRST signal rises as both PWR_ON and NRST are high. \(V_{DD\,\text{DDR}}, V_{\text{REF}\,\text{DDR}}, V_{TT}\) and \(V_{DD\,\text{PERIPH}}\) are enabled by the PWR_ONRST signal, and \(V_{DD\,\text{DDR}}, V_{\text{REF}\,\text{DDR}}, V_{TT}\) and \(V_{DD\,\text{PERIPH}}\) voltages start to rise
 b) The \(V_{DD\,\text{CORE}}\) regulator is enabled by the PWR_ON signal, and the \(V_{DD\,\text{CORE}}\) voltage starts to rise.
 c) Once the \(V_{DD\,\text{CORE}}\) voltage is above the \(V_{PVDCORE\,0}\) rising minimum threshold, a \(t_{\text{VDDCORETEMPO}}\) delay is started. As long as the \(t_{\text{VDDCORETEMPO}}\) delay has not elapsed, the MPU is kept in internal reset.

5. Once the \(t_{\text{VDDCORETEMPO}}\) elapses, the MPU is taken out of internal reset\(^{\langle V_{DD\,\text{CORE}\,\text{OK}} \rangle}\):
 a) The \(V_{DD\,\text{CORE}}\) voltage should be higher than the \(V_{DD\,\text{CORE}}\) minimum operating voltage. This should be guaranteed by the \(V_{DD\,\text{CORE}}\) regulator slew rate.
 b) The MPU performs internal hardware initialization (enables the HSI and option-byte loading with 130 µs duration), then enters Run mode.
 c) The EADLY delay timer is started.

\(k\). The POPL timer allows minimum Standby duration (minimum PWR_ON pulse low time) to be set. The POPL timer should be set in order to guarantee a minimum turn-off duration for the peripheral regulators. This is to ensure that peripherals restart properly from a low voltage. The POPL timer should be set according to the regulator having the slowest falling voltage (10 ms is suggested for this application).

\(l\). The EADLY timer prevents the boot ROM from performing any access to the boot peripheral before it is ready when recovering from Standby mode. Typically this is to wait for stable supply voltage to the Flash-memory that is read by Boot ROM to get the boot software. In this application, the default value (10 ms) is suggested to wait for the \(V_{DD\,\text{PERIPH}}\) and \(V_{DD\,\text{USB}}\) voltages to stabilize (see RM0436\(^{[1]}\) for more details).

\(m\). Alternatively, if \(V_{DDA1V8\,\text{REG}}\) is not turned off by software before entering Standby mode, it is automatically disabled by hardware at that time, turning \(V_{DD\,\text{USB}}\) off. In this case, \(V_{DDA1V8\,\text{REG}}\) is automatically turned on by hardware when leaving Standby mode, turning \(V_{DD\,\text{USB}}\) on.

\(n\). The STM32MP15x waits for POPL timer to elapse before leaving Standby mode; even if a wakeup event occur before.
6. When EADLY elapses, the boot ROM starts accessing external peripherals (Flash memory) to load and execute the boot software. Implicitly, when EADLY elapses, all regulators voltage should be stable; especially V_{DD_PERIPH}, which is the power domain supplying Flash memory:
 a) The boot ROM is read (Periph boot), and the FSBL is verified and executed.
 b) The software detects an ‘exit from Standby mode’ and resumes the Kernel software accordingly.
7. Once the software resumes, it may switch the USB power domains on by turning V_{DDA1V8_REG} on, making the V_{DD_USB} regulator switch on, depending on the presence of USB devices.
4.3 Crash recovery management

As shown in Section 3.3.1: Crash recovery management circuitry (optional), an optional external discrete circuitry can be added to the design (see Figure 6: PWR_ONRST crash recovery management signal), to perform peripheral power cycling. This allows peripherals to restart properly after a crash. This is especially suitable for Flash memory, which does not have a reset input to restart it properly after a crash.

The sequence show in Figure 10 illustrates a crash recovery sequence according to the implementation shown in Figure 1: Discrete power supply topology example with IOs at 3.3V and DDR3L.

![Figure 10. Crash recovery sequence](image-url)

- **Operating mode**
 - Run
 - Reset
 - Run

- **Signals**
 - PWR_ONRST
 - VDD
 - VDD_CORE
 - VDD_USB
 - VDD_DDR
 - VDD_PERIPH
 - VTT
 - VIN
 - PWR_LP
 - NRST
 - PWR_ON
 - PWR_LP
 - VDDPeriph

- **Voltages**
 - 5V
 - 3.3V
 - 1.215V
 - 1.8V
 - 1.35V
 - 0.675V
 - 3.3V

- **Timings**
 - EADLY = 10ms
 - RPCTL (proposed 31ms)
 - Rise duration = 0.5ms to 5ms

Regulators voltage should be stable when EADLY elapses (proposed EADLY = 10ms)
1. The application is powered and running. The RPCTL timer (see Section 3.3.1) is set to 31 ms and EADLY to 10 ms during the application initialization. A crash occurs (iwdg1_out_rst or iwdg2_out_rst watchdog elapsed) or an NRST pulse is performed from the user reset button.

2. The MPU asserts the NRST signal and RPCTL the timer starts:
 a) The NRST_Core and the PWR_ONRST signals are forced low by the NRST signal.
 b) V_DD_DDR, V_REF_DDR, V_TT and V_DD_PERIPH regulator are powered off by the PWR_ONRST signal.
 c) The V_DD_DDR, V_REF_DDR, V_TT and V_DD_PERIPH voltages fall

3. The RPCTL timer elapses (after 31 ms):
 a) The MPU releases the NRST signal.
 b) The NRST_CORE signal rises with the NRST signal and the PWR_ONRST signal rises because both PWR_ON and NRST signals are high.
 c) The V_DD_DDR, V_REF_DDR, V_TT and V_DD_PERIPH regulators are powered on by the PWR_ONRST signal, and the V_DD_DDR, V_REF_DDR, V_TT and V_DD_PERIPH voltages start to rise.
 d) The MPU performs an internal hardware initialization (enable HSI and option-byte loading with 130 μs duration), and then enters Run mode.
 e) The EADLY delay timer is started.

4. When EADLY elapses, the boot ROM starts accessing external peripherals (for example Flash memory), to load and execute the boot software (Periph Boot). Implicitly, when EADLY has elapsed, all regulator voltages should be stable; especially V_DD_PERIPH, which is the power domain supplying Flash memory.
5 Voltage regulator module (VRM) specification

This section provides the electrical specifications of the voltage regulator module (VRM) that supplies the MPU power domains.

The product designer must design the VRM (see Figure 11) according to these electrical specifications by selecting a regulator IC and the associated discrete components.

This section is only applicable if the MPU decoupling scheme (see AN5031 [1]) and layout recommendations are carefully followed in order to minimize the impedance of the power delivery network.

![Figure 11. Voltage regulator module perimeter example](image)

5.1 VRM specification for VDD (VDD_ANA, VDD_PLL, VDD_DSI) power domain

VDD is the main supply for IO voltage interfaces and internal parts that are kept powered during Standby mode. VDD_ANA, VDD_PLL and VDD_DSI must be connected to VDD. VDD is usually 1.8 V or 3.3 V, can be set in the 1.71 V to 2 V or 2.7 V to 3.6 V ranges.

This supply is always enabled as long as VIN voltage is present. Choosing a regulator with an EN pin is not necessary. Nevertheless, an EN pin may a discrete RC filter to be added to delay the regulator startup for the purpose of input voltage stabilization.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Operating conditions</th>
<th>Min.</th>
<th>Typ</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRM_{VDD}</td>
<td>Output voltage range</td>
<td>Including VRM_{VDD-N}</td>
<td>1.71</td>
<td>2.7</td>
<td>3.0 or 3.3</td>
<td>2.0</td>
</tr>
<tr>
<td>VRM_{VDD-ACC}</td>
<td>Output voltage accuracy</td>
<td>Including line regulation, load regulation and temperature variation</td>
<td>-5</td>
<td>-</td>
<td>+5</td>
<td>%</td>
</tr>
<tr>
<td>VRM_{VDD-N}</td>
<td>Output noise voltage (ripple voltage for SMPS)</td>
<td>I_{OUT} = 10 µA to 300 mA f = 10 Hz to 5 MHz</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>mV_{P-P}</td>
</tr>
<tr>
<td>VRM_{IDD}</td>
<td>Continuous output current</td>
<td></td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>VRM_{VDD-TRANS}</td>
<td>Load transient regulation</td>
<td>I_{OUT} = 1 mA to 100 mA or 100 mA to 1 mA in 1 µs</td>
<td>-</td>
<td>-</td>
<td>+/-30</td>
<td>mV</td>
</tr>
</tbody>
</table>
5.2 VRM specification for VDDCORE power domain

V\textsubscript{DDCORE} is the main digital voltage supplying the whole MPU core parts including the dual-core Arm® Cortex®-A7 CPU and the 3D Vivante® GPU. Significant current load transients therefore occur on the V\textsubscript{DDCORE} supply. Accordingly, special attention on MPU decoupling capacitor placement and layout should be done to minimize the power delivery network impedance.

As V\textsubscript{DDCORE} is turned OFF in Standby mode, a regulator having EN pin is needed to support Standby mode. Additionally, selection of a regulator with an output discharge resistor it is recommended to allow a fast voltage decrease when the regulator is disabled. This is in order to minimize the POPL timer MPU register settings when the application enters standby mode)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Operating conditions</th>
<th>Min.</th>
<th>Typ</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRM\textsubscript{VDDCORE}</td>
<td>Output voltage</td>
<td>-</td>
<td>1.215</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>VRM\textsubscript{VDDCORE-ACC}</td>
<td>Output voltage accuracy</td>
<td>Including line regulation, load regulation and temperature variation</td>
<td>-2.88</td>
<td>-</td>
<td>+2.88</td>
<td>%</td>
</tr>
<tr>
<td>VRM\textsubscript{VDDCORE-RIPPLE}</td>
<td>Output noise / ripple voltage</td>
<td>I\textsubscript{OUT} = 1 mA to 1500 mA</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>mV\textsubscript{p-p}</td>
</tr>
<tr>
<td>VRM\textsubscript{ICORE}</td>
<td>Continuous output current</td>
<td>1500</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>VRM\textsubscript{VDDCORE-TRANS}</td>
<td>Load transient regulation</td>
<td>I\textsubscript{OUT} = 1 mA to 450 mA or 450 mA to 1 mA in 1 µs</td>
<td>-</td>
<td>-</td>
<td>+/-30(1)</td>
<td>mV</td>
</tr>
<tr>
<td>VRM\textsubscript{VDDCORE-SR}</td>
<td>Output voltage slew rate at start-up</td>
<td>VRM\textsubscript{VDDCORE} from VPVDCORE\textsubscript{0} to V\textsubscript{DDCORE}\textsubscript{Min}</td>
<td>1.15</td>
<td>-</td>
<td>-</td>
<td>mV/µs</td>
</tr>
</tbody>
</table>

1. Voltage overshoot / undershoot caused by load transients should not go higher than VRM\textsubscript{VDDCORE} + VRM\textsubscript{VDDCORE-TRANS} for a negative transient current, and VRM\textsubscript{VDDCORE} + VRM\textsubscript{VDDCORE-TRANS} for positive current transient. Implicitly, output voltage noise / ripple (VRM\textsubscript{VDDCORE-RIPPLE}) is included in the VRM\textsubscript{VDDCORE-TRANS} budget.
5.3 VDDQ_DDR power domain VRM specification

V_{DDQ_DDR} supplies the MPU DDR IO voltage interfaces. In addition to V_{DDQ_DDR}, the VRM should also supply the DDR ICs. This section only covers the VRM specification for dual DDR3L (see Figure 1: Discrete power supply topology example with IOs at 3.3 V and DDR3L for details). Special attention should be paid to decoupling capacitor placement and layout in order to minimize the power delivery network impedance for both the MPU V_{DDQ_DDR} supply, and DDR3L ICs. Please refer to AN5122 [6] for details.

As DDR memory is turned OFF in Standby mode, a regulator having an EN pin is needed to support Standby mode. Additionally, selection of regulator with output discharge resistor is recommended in order to allow a fast voltage decrease when the regulator is disabled (when application enters Standby mode).

Assumptions:
- The DDR3L supply voltage is 1.283 V to 1.45 V and 1.35 V typ. (from JEDEC JESD79-3-1A)
- 1.425 V maximum DC value (from JEDEC JESD79-3-1A) = 1.35 V + 5.5%
- VDDR max AC value = 25 mV (1.45 V – 1.425 V)
- Same value to be used for VDDR min AC
- 1.308 V minimum DC value (1.283 V + 0.025) = 1.35 V – 3.1%

Table 6. VRM specification for VDDQ_DDR and DDR3L IC power domain

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Operating conditions</th>
<th>Min.</th>
<th>Typ</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRMVDDR</td>
<td>Output voltage</td>
<td>-</td>
<td>1.35</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>VRMVDDR-ACC</td>
<td>Output voltage accuracy</td>
<td>Including line regulation, load regulation and temperature variation</td>
<td>-3</td>
<td>-</td>
<td>+3 (+5.5)(1) %</td>
<td></td>
</tr>
<tr>
<td>VRMVDDR-RIPPLE</td>
<td>Output noise / ripple voltage</td>
<td>I_{OUT} = 1 mA to 1 A f = 10 Hz to 5 MHz</td>
<td>-</td>
<td>-</td>
<td>25 mV_{p-p}</td>
<td></td>
</tr>
<tr>
<td>VRMIDDR</td>
<td>Continuous output current</td>
<td></td>
<td>1000</td>
<td>-</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>VRMVDDR-TRANS</td>
<td>Load transient regulation</td>
<td>I_{OUT} = 1 mA to 450 mA or 450 mA to 1 mA in 1 μs</td>
<td>-</td>
<td>-</td>
<td>+/-25(2)</td>
<td>mV</td>
</tr>
<tr>
<td>VRMVDDR-SS</td>
<td>Soft start duration</td>
<td>Duration from EN pin rising (VRMVDDR ~ 0) to 95% of VRRMDDR</td>
<td>-</td>
<td>-</td>
<td>10(3) ms</td>
<td></td>
</tr>
</tbody>
</table>

1. Values based on assumptions. Both are reduced to +/-3%.

2. Voltage overshoot / undershoot caused by load transients should not be higher than (VRMVDDR + VRMVDDR-TRANS for a negative transient current, and VRMVDDR + VRMVDDR-TRANS for positive current transient. Implicitly, output voltage noise / ripple (VM_{VDDR-RIPPLE}) is included in the VRMVDDR-TRANS budget.

3. 10 ms is the reset value of MPU’s EADLY timer. EADLY is an MPU timer that is set by software to wait for the regulator voltage to be ready before entering RUN mode, as detailed in Section 4: Power sequence management.
6 Voltage regulator module examples

6.1 VRM example for 5 V DC to 3.3 V DC / 300 mA

![Figure 12. VRM 5 V to 3.3 V / 300 mA details](image)

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>Fixed 3.3 V LDO DFN4-1x1 mm - ON Semiconductor NCP161AMX330TBG</td>
</tr>
<tr>
<td>CIN / COUT</td>
<td>MLCC - 1 µF - 6.3 V - 0402 - Murata GRM155R60J105KE19</td>
</tr>
</tbody>
</table>

6.2 VRM example for 5 V DC to 1.215 V DC / 1500 mA

![Figure 13. VRM 5 V to 1.215 V / 1500 mA details](image)

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>Adjustable 3A step-down SMPS - VQFN-3x3 mm – Ti TLV62090RGT</td>
</tr>
<tr>
<td>L</td>
<td>Power inductor – 1 µH – 3.22 A – 14 mΩ – Wurth 74404043010A</td>
</tr>
<tr>
<td>CIN</td>
<td>MLCC - 10 µF - 10 V - 0603 - Murata GRM188R61A106KE69D</td>
</tr>
<tr>
<td>COUT</td>
<td>2 x MLCC – 22 µF – 6.3 V – 0603 – Murata GRM188R60J226MEA0J</td>
</tr>
<tr>
<td>CCP / CSS</td>
<td>MLCC – 10 nF - 16 V - 0402 – Yageo CC0402KRX7R7BB103</td>
</tr>
<tr>
<td>R1</td>
<td>160 kΩ - 1%</td>
</tr>
<tr>
<td>R2</td>
<td>82.5 kΩ - 1%</td>
</tr>
</tbody>
</table>
6.3 VRM example for 5V DC to 1.35 V DC / 1500 mA

Figure 14. VRM 5 V to 1.35 V / 1000 mA details

Table 9. VRM example for 5 V to 1.215 V / 1500 mA

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>Adjustable 3 A step-down SMPS - VQFN-3x3 mm – Ti TLV62090RGT</td>
</tr>
<tr>
<td>L</td>
<td>Power inductor – 1 µH – 3.22 A – 14 mΩ – Wurth 74404043010A</td>
</tr>
<tr>
<td>CIN</td>
<td>MLCC - 10 µF - 10 V - 0603 - Murata GRM188R61A106KE69D</td>
</tr>
<tr>
<td>COUT</td>
<td>2 x MLCC – 22 µF – 6.3 V – 0603 – Murata GRM188R60J226MEA0J</td>
</tr>
<tr>
<td>C_CP / C_SS</td>
<td>MLCC – 10 nF - 16 V - 0402 – Yageo CC0402KRX7R7BB103</td>
</tr>
<tr>
<td>R1</td>
<td>160 kΩ - 1%</td>
</tr>
<tr>
<td>R2</td>
<td>110 kΩ - 1%</td>
</tr>
</tbody>
</table>
6.4 VRM example for 5V DC to 3.3 V DC / 2000 mA

Figure 15. VRM 5 V to 3.3 V / 2000 mA details

Table 10. VRM example for 5 V to 1.215 V / 1500 mA

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC</td>
<td>Adjustable 3 A step-down SMPS - VQFN-3x3 mm – Ti TLV62090RGT</td>
</tr>
<tr>
<td>L</td>
<td>Power inductor – 1 µH – 3.22 A – 14 mΩ – Wurth 74404043010A</td>
</tr>
<tr>
<td>CIN</td>
<td>MLCC - 10 µF - 10 V - 0603 - Murata GRM188R61A106KE69D</td>
</tr>
<tr>
<td>COUT</td>
<td>2 x MLCC – 22 µF – 6.3 V – 0603 – Murata GRM188R60J226MEA0J</td>
</tr>
<tr>
<td>C CP / C SS</td>
<td>MLCC – 10 nF - 16 V - 0402 – Yageo CC0402KRX7R7BB103</td>
</tr>
<tr>
<td>R1</td>
<td>150 kΩ - 1%</td>
</tr>
<tr>
<td>R2</td>
<td>470 kΩ - 1%</td>
</tr>
</tbody>
</table>
Revision history

Table 11. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-Jul-2019</td>
<td>1</td>
<td>Initial version.</td>
</tr>
</tbody>
</table>