Features

- Core: ARM® 32-bit Cortex®-M4 CPU with FPU, Adaptive real-time accelerator (ART Accelerator™) allowing 0-wait state execution from Flash memory, frequency up to 180 MHz, MPU, 225 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1), and DSP instructions
- Memories
 - 512 kB of Flash memory
 - 128 kB of SRAM
 - Flexible external memory controller with up to 16-bit data bus: SRAM, PSRAM, SDRAM/LP SDRAM, Flash NOR/NAND memories
 - Dual mode Quad SPI interface
- LCD parallel interface, 8080/6800 modes
- Clock, reset and supply management
 - 1.7 V to 3.6 V application supply and I/Os
 - POR, PDR, PVD and BOR
 - 4-to-26 MHz crystal oscillator
 - Internal 16 MHz factory-trimmed RC (1% accuracy)
 - 32 kHz oscillator for RTC with calibration
 - Internal 32 kHz RC with calibration
- Low power
 - Sleep, Stop and Standby modes
 - V_{BAT} supply for RTC, 20×32 bit backup registers + optional 4 KB backup SRAM
- 3×12-bit, 2.4 MSPS ADC: up to 24 channels and 7.2 MSPS in triple interleaved mode
- 2×12-bit D/A converters
- General-purpose DMA: 16-stream DMA controller with FIFOs and burst support
- Up to 17 timers: 2x watchdog, 1x SysTick timer and up to twelve 16-bit and two 32-bit timers up to 180 MHz, each with up to 4 IC/OC/PWM or pulse counter
- Debug mode
 - SWD & JTAG interfaces
 - Cortex®-M4 Trace Macrocell™

Up to 114 I/O ports with interrupt capability
- Up to 111 fast I/Os up to 90 MHz
- Up to 112 5 V-tolerant I/Os

Up to 20 communication interfaces
- SPDIF-Rx
 - Up to 4 × I^2C interfaces (SMBus/PMBus)
 - Up to 4 USARTs/2 UARTs (11.25 Mbit/s, ISO7816 interface, LIN, IrDA, modem control)
 - Up to 4 SPIs (45 Mbits/s), 3 with mixed I^2S for audio class accuracy via internal audio PLL or external clock
 - 2 × SAI (serial audio interface)
 - 2 × CAN (2.0B Active)
 - SDIO interface
 - Consumer electronics control (CEC) I/F

Advanced connectivity
- USB 2.0 full-speed device/host/OTG controller with on-chip PHY
- USB 2.0 high-speed/full-speed device/host/OTG controller with dedicated DMA, on-chip full-speed PHY and ULPI
- Dedicated USB power rail enabling on-chip PHY's operation throughout the entire MCU power supply range
- 8- to 14-bit parallel camera interface up to 54 Mbytes/s
- CRC calculation unit
- RTC: subsecond accuracy, hardware calendar
- 96-bit unique ID

Table 1. Device summary

<table>
<thead>
<tr>
<th>Reference</th>
<th>Part number</th>
</tr>
</thead>
<tbody>
<tr>
<td>STM32F446xC/E</td>
<td>STM32F446MC, STM32F446ME, STM32F446RC, STM32F446RE, STM32F446VC, STM32F446VE, STM32F446ZC, STM32F446ZE.</td>
</tr>
</tbody>
</table>
Contents

1 Introduction ... 11

2 Description ... 12
 2.1 Compatibility with STM32F4 family 14

3 Functional overview ... 17
 3.1 ARM® Cortex®-M4 with FPU and embedded Flash and SRAM 17
 3.2 Adaptive real-time memory accelerator (ART Accelerator™) 17
 3.3 Memory protection unit .. 17
 3.4 Embedded Flash memory ... 18
 3.5 CRC (cyclic redundancy check) calculation unit 18
 3.6 Embedded SRAM .. 18
 3.7 Multi-AHB bus matrix ... 18
 3.8 DMA controller (DMA) ... 19
 3.9 Flexible memory controller (FMC) 20
 3.10 Quad SPI memory interface (QUADSPI) 20
 3.11 Nested vectored interrupt controller (NVIC) 21
 3.12 External interrupt/event controller (EXTI) 21
 3.13 Clocks and startup .. 21
 3.14 Boot modes ... 22
 3.15 Power supply schemes ... 22
 3.16 Power supply supervisor ... 23
 3.16.1 Internal reset ON ... 23
 3.16.2 Internal reset OFF ... 23
 3.17 Voltage regulator .. 24
 3.17.1 Regulator ON .. 24
 3.17.2 Regulator OFF .. 25
 3.17.3 Regulator ON/OFF and internal reset ON/OFF availability 27
 3.18 Real-time clock (RTC), backup SRAM and backup registers 28
 3.19 Low-power modes .. 29
 3.20 \(V_{BAT} \) operation .. 29
 3.21 Timers and watchdogs .. 31
STM32F446xC/E Contents

3.21.1 Advanced-control timers (TIM1, TIM8) ... 32
3.21.2 General-purpose timers (TIMx) ... 32
3.21.3 Basic timers TIM6 and TIM7 .. 32
3.21.4 Independent watchdog ... 33
3.21.5 Window watchdog ... 33
3.21.6 SysTick timer .. 33
3.22 Inter-integrated circuit interface (I²C) .. 33
3.23 Universal synchronous/asynchronous receiver transmitters (USART) 34
3.24 Serial peripheral interface (SPI) ... 34
3.25 HDMI (high-definition multimedia interface) consumer electronics control (CEC) ... 35
3.26 Inter-integrated sound (I²S) ... 35
3.27 SPDIF-RX Receiver Interface (SPDIFRX) ... 35
3.28 Serial Audio interface (SAI) ... 36
3.29 Audio PLL (PLL2S) ... 36
3.30 Serial Audio Interface PLL.PLLSAI) ... 36
3.31 Secure digital input/output interface (SDIO) ... 36
3.32 Controller area network (bxCAN) ... 37
3.33 Universal serial bus on-the-go full-speed (OTG_FS) 37
3.34 Universal serial bus on-the-go high-speed (OTG_HS) 37
3.35 Digital camera interface (DCMI) ... 38
3.36 General-purpose input/outputs (GPIOs) ... 38
3.37 Analog-to-digital converters (ADCs) ... 38
3.38 Temperature sensor .. 39
3.39 Digital-to-analog converter (DAC) ... 39
3.40 Serial wire JTAG debug port (SWJ-DP) ... 39
3.41 Embedded Trace Macrocell™ ... 40

4 Pinout and pin description ... 41

5 Memory mapping ... 67

6 Electrical characteristics ... 72
6.1 Parameter conditions ... 72
6.1.1 Minimum and maximum values ... 72
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.2</td>
<td>Typical values</td>
<td>72</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Typical curves</td>
<td>72</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Loading capacitor</td>
<td>72</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Pin input voltage</td>
<td>72</td>
</tr>
<tr>
<td>6.1.6</td>
<td>Power supply scheme</td>
<td>73</td>
</tr>
<tr>
<td>6.1.7</td>
<td>Current consumption measurement</td>
<td>74</td>
</tr>
<tr>
<td>6.2</td>
<td>Absolute maximum ratings</td>
<td>74</td>
</tr>
<tr>
<td>6.3</td>
<td>Operating conditions</td>
<td>76</td>
</tr>
<tr>
<td>6.3.1</td>
<td>General operating conditions</td>
<td>76</td>
</tr>
<tr>
<td>6.3.2</td>
<td>VCAP_1/VCAP_2 external capacitor</td>
<td>78</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Operating conditions at power-up / power-down (regulator ON)</td>
<td>79</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Operating conditions at power-up / power-down (regulator OFF)</td>
<td>79</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Reset and power control block characteristics</td>
<td>80</td>
</tr>
<tr>
<td>6.3.6</td>
<td>Over-drive switching characteristics</td>
<td>81</td>
</tr>
<tr>
<td>6.3.7</td>
<td>Supply current characteristics</td>
<td>81</td>
</tr>
<tr>
<td>6.3.8</td>
<td>Wakeup time from low-power modes</td>
<td>101</td>
</tr>
<tr>
<td>6.3.9</td>
<td>External clock source characteristics</td>
<td>102</td>
</tr>
<tr>
<td>6.3.10</td>
<td>Internal clock source characteristics</td>
<td>107</td>
</tr>
<tr>
<td>6.3.11</td>
<td>PLL characteristics</td>
<td>108</td>
</tr>
<tr>
<td>6.3.12</td>
<td>PLL spread spectrum clock generation (SSCG) characteristics</td>
<td>110</td>
</tr>
<tr>
<td>6.3.13</td>
<td>Memory characteristics</td>
<td>112</td>
</tr>
<tr>
<td>6.3.14</td>
<td>EMC characteristics</td>
<td>114</td>
</tr>
<tr>
<td>6.3.15</td>
<td>Absolute maximum ratings (electrical sensitivity)</td>
<td>116</td>
</tr>
<tr>
<td>6.3.16</td>
<td>I/O current injection characteristics</td>
<td>117</td>
</tr>
<tr>
<td>6.3.17</td>
<td>I/O port characteristics</td>
<td>118</td>
</tr>
<tr>
<td>6.3.18</td>
<td>NRST pin characteristics</td>
<td>123</td>
</tr>
<tr>
<td>6.3.19</td>
<td>TIM timer characteristics</td>
<td>124</td>
</tr>
<tr>
<td>6.3.20</td>
<td>Communications interfaces</td>
<td>124</td>
</tr>
<tr>
<td>6.3.21</td>
<td>12-bit ADC characteristics</td>
<td>141</td>
</tr>
<tr>
<td>6.3.22</td>
<td>Temperature sensor characteristics</td>
<td>147</td>
</tr>
<tr>
<td>6.3.23</td>
<td>(V_{\text{BAT}}) monitoring characteristics</td>
<td>148</td>
</tr>
<tr>
<td>6.3.24</td>
<td>Reference voltage</td>
<td>148</td>
</tr>
<tr>
<td>6.3.25</td>
<td>DAC electrical characteristics</td>
<td>148</td>
</tr>
<tr>
<td>6.3.26</td>
<td>FMC characteristics</td>
<td>152</td>
</tr>
<tr>
<td>6.3.27</td>
<td>Camera interface (DCMI) timing specifications</td>
<td>172</td>
</tr>
<tr>
<td>6.3.28</td>
<td>SD/SDIO MMC card host interface (SDIO) characteristics</td>
<td>173</td>
</tr>
<tr>
<td>6.3.29</td>
<td>RTC characteristics</td>
<td>175</td>
</tr>
</tbody>
</table>
STM32F446xC/E

Contents

7 Package information ... 176
 7.1 LQFP64 package information ... 176
 7.2 LQFP100 package information ... 179
 7.3 LQFP144 package information .. 182
 7.4 UFBGA144 7 x 7 mm package information 186
 7.5 UFBGA144 10 x 10 mm package information 189
 7.6 WLCSP81 package information 192
 7.7 Thermal characteristics ... 195

8 Part numbering .. 196

Appendix A Application block diagrams 197
 A.1 USB OTG full speed (FS) interface solutions 197
 A.2 USB OTG high speed (HS) interface solutions 199

Revision history .. 200
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Compatible board design for LQFP100 package</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>Compatible board for LQFP64 package</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>STM32F446xC/E block diagram</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>STM32F446xC/E and Multi-AHB matrix</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>VDDUSB connected to an external independent power supply</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>Power supply supervisor interconnection with internal reset OFF</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>Regulator OFF</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>Startup in regulator OFF: slow VDD slope power-down reset risen after V<sub>CAP 1</sub>/V<sub>CAP 2</sub> stabilization</td>
<td>27</td>
</tr>
<tr>
<td>9</td>
<td>Startup in regulator OFF mode: fast VDD slope power-down reset risen before V<sub>CAP 1</sub>/V<sub>CAP 2</sub> stabilization</td>
<td>27</td>
</tr>
<tr>
<td>10</td>
<td>STM32F446xC/E LQFP64 pinout</td>
<td>41</td>
</tr>
<tr>
<td>11</td>
<td>STM32F446xC/E LQFP100 pinout</td>
<td>42</td>
</tr>
<tr>
<td>12</td>
<td>STM32F446xC LQFP144 pinout</td>
<td>43</td>
</tr>
<tr>
<td>13</td>
<td>STM32F446xC/E WLCSP81 ballout</td>
<td>44</td>
</tr>
<tr>
<td>14</td>
<td>STM32F446xC/E UFBGA144 ballout</td>
<td>45</td>
</tr>
<tr>
<td>15</td>
<td>Memory map</td>
<td>67</td>
</tr>
<tr>
<td>16</td>
<td>Pin loading conditions</td>
<td>72</td>
</tr>
<tr>
<td>17</td>
<td>Pin input voltage</td>
<td>72</td>
</tr>
<tr>
<td>18</td>
<td>Power supply scheme</td>
<td>73</td>
</tr>
<tr>
<td>19</td>
<td>Current consumption measurement scheme</td>
<td>74</td>
</tr>
<tr>
<td>20</td>
<td>External capacitor C<sub>EXT</sub></td>
<td>79</td>
</tr>
<tr>
<td>21</td>
<td>Typical V<sub>BAT</sub> current consumption (RTC ON/backup RAM OFF and LSE in low power mode)</td>
<td>91</td>
</tr>
<tr>
<td>22</td>
<td>Typical V<sub>BAT</sub> current consumption (RTC ON/backup RAM OFF and LSE in high drive mode)</td>
<td>92</td>
</tr>
<tr>
<td>23</td>
<td>High-speed external clock source AC timing diagram</td>
<td>104</td>
</tr>
<tr>
<td>24</td>
<td>Low-speed external clock source AC timing diagram</td>
<td>104</td>
</tr>
<tr>
<td>25</td>
<td>Typical application with an 8 MHz crystal</td>
<td>105</td>
</tr>
<tr>
<td>26</td>
<td>Typical application with a 32.768 kHz crystal</td>
<td>106</td>
</tr>
<tr>
<td>27</td>
<td>LAC<sub>HS</sub> versus temperature</td>
<td>107</td>
</tr>
<tr>
<td>28</td>
<td>ACC<sub>LSI</sub> versus temperature</td>
<td>108</td>
</tr>
<tr>
<td>29</td>
<td>PLL output clock waveforms in center spread mode</td>
<td>112</td>
</tr>
<tr>
<td>30</td>
<td>PLL output clock waveforms in down spread mode</td>
<td>112</td>
</tr>
<tr>
<td>31</td>
<td>FT I/O input characteristics</td>
<td>120</td>
</tr>
<tr>
<td>32</td>
<td>I/O AC characteristics definition</td>
<td>123</td>
</tr>
<tr>
<td>33</td>
<td>Recommended NRST pin protection</td>
<td>124</td>
</tr>
<tr>
<td>34</td>
<td>I<sup>2</sup>C bus AC waveforms and measurement circuit</td>
<td>126</td>
</tr>
<tr>
<td>35</td>
<td>FMPI<sup>2</sup>C timing diagram and measurement circuit</td>
<td>128</td>
</tr>
<tr>
<td>36</td>
<td>SPI timing diagram - slave mode and CPHA = 0</td>
<td>130</td>
</tr>
<tr>
<td>37</td>
<td>SPI timing diagram - slave mode and CPHA = 1</td>
<td>131</td>
</tr>
<tr>
<td>38</td>
<td>SPI timing diagram - master mode</td>
<td>131</td>
</tr>
<tr>
<td>39</td>
<td>I<sup>2</sup>S slave timing diagram (Philips protocol)<sup>(1)</sup></td>
<td>135</td>
</tr>
<tr>
<td>40</td>
<td>I<sup>2</sup>S master timing diagram (Philips protocol)<sup>(1)</sup></td>
<td>135</td>
</tr>
<tr>
<td>41</td>
<td>SAI master timing waveforms</td>
<td>137</td>
</tr>
<tr>
<td>42</td>
<td>SAI slave timing waveforms</td>
<td>137</td>
</tr>
<tr>
<td>43</td>
<td>USB OTG full speed timings: definition of data signal rise and fall time</td>
<td>138</td>
</tr>
<tr>
<td>44</td>
<td>ULPI timing diagram</td>
<td>140</td>
</tr>
</tbody>
</table>
Figure 45. ADC accuracy characteristics ... 144
Figure 46. Typical connection diagram using the ADC ... 145
Figure 47. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA}) 146
Figure 48. Power supply and reference decoupling (V_{REF+} connected to V_{DDA}) 147
Figure 49. 12-bit buffered/non-buffered DAC ... 151
Figure 50. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms 153
Figure 51. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms 155
Figure 52. Asynchronous multiplexed PSRAM/NOR read waveforms 156
Figure 53. Asynchronous multiplexed PSRAM/NOR write waveforms 158
Figure 54. Synchronous multiplexed NOR/PSRAM read timings 160
Figure 55. Synchronous multiplexed PSRAM write timings 162
Figure 56. Synchronous non-multiplexed NOR/PSRAM read timings 164
Figure 57. Synchronous non-multiplexed PSRAM write timings 165
Figure 58. NAND controller waveforms for read access ... 167
Figure 59. NAND controller waveforms for write access 167
Figure 60. NAND controller waveforms for common memory read access 168
Figure 61. NAND controller waveforms for common memory write access 168
Figure 62. SDRAM read access waveforms (CL = 1) ... 169
Figure 63. SDRAM write access waveforms ... 171
Figure 64. DCMI timing diagram ... 173
Figure 65. SDIO high-speed mode ... 173
Figure 66. SD default mode .. 174
Figure 67. LQFP64-10x10 mm 64 pin low-profile quad flat package outline 176
Figure 68. LQFP64 Recommended footprint .. 177
Figure 69. LQFP64 marking example (package top view) .. 178
Figure 70. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline 179
Figure 71. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint .. 180
Figure 72. LQFP100 marking example (package top view) .. 181
Figure 73. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline 182
Figure 74. LQFP144 recommended footprint .. 184
Figure 75. LQFP144 marking example (package top view) 185
Figure 76. UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline ... 186
Figure 77. UFBGA144 - 144-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint .. 187
Figure 78. UQFP144 7 x 7 mm marking example (package top view) 188
Figure 79. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package outline ... 189
Figure 80. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package recommended footprint .. 190
Figure 81. UOFP144 10 x 10 mm marking example (package top view) 191
Figure 82. WLCSP81- 81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale package outline ... 192
Figure 83. WLCSP81- 81-pin, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip scale package recommended footprint .. 193
Figure 84. WLCSP81 10 x 10 mm marking example (package top view) 194
Figure 85. USB controller configured as peripheral-only and used in Full speed mode 197
Figure 86. USB controller configured as host-only and used in full speed mode 197
Figure 87. USB controller configured in dual mode and used in full speed mode 198
Figure 88. USB controller configured as peripheral, host, or dual-mode and used in high speed mode ... 199
List of tables

Table 1. Device summary ... 1
Table 2. STM32F446xC/E features and peripheral counts .. 13
Table 3. Voltage regulator configuration mode versus device operating mode 25
Table 4. Regulator ON/OFF and internal reset ON/OFF availability 27
Table 5. Voltage regulator modes in stop mode .. 29
Table 6. Timer feature comparison ... 31
Table 7. Comparison of I2C analog and digital filters ... 33
Table 8. USART feature comparison .. 34
Table 9. Legend/abbreviations used in the pinout table ... 46
Table 10. STM32F446xx pin and ball descriptions ... 46
Table 11. Alternate function ... 59
Table 12. STM32F446xC/E register boundary addresses ... 68
Table 13. Voltage characteristics ... 74
Table 14. Current characteristics ... 75
Table 15. Thermal characteristics ... 75
Table 16. General operating conditions ... 76
Table 17. Limitations depending on the operating power supply range 78
Table 18. VCAP_1/VCAP_2 operating conditions .. 79
Table 19. Operating conditions at power-up/power-down (regulator ON) 79
Table 20. Operating conditions at power-up / power-down (regulator OFF) 79
Table 21. reset and power control block characteristics .. 80
Table 22. Over-drive switching characteristics .. 81
Table 23. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled except prefetch) or RAM 83
Table 24. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled with prefetch) or RAM 84
Table 25. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled) ... 85
Table 26. Typical and maximum current consumption in Sleep mode 86
Table 27. Typical and maximum current consumptions in Stop mode 89
Table 28. Typical and maximum current consumptions in Standby mode 90
Table 29. Typical and maximum current consumptions in VBAT mode 91
Table 30. Typical current consumption in Run mode, code with data processing running from Flash memory or RAM, regulator ON (ART accelerator enabled except prefetch), VDD=1.7 V ... 93
Table 31. Typical current consumption in Run mode, code with data processing running from Flash memory, regulator OFF (ART accelerator enabled except prefetch) ... 94
Table 32. Typical current consumption in Sleep mode, regulator ON, VDD=1.7 V 95
Table 33. Typical current consumption in Sleep mode, regulator OFF 96
Table 34. Switching output I/O current consumption .. 97
Table 35. Peripheral current consumption .. 99
Table 36. Low-power mode wakeup timings ... 102
Table 37. High-speed external user clock characteristics ... 103
Table 38. Low-speed external user clock characteristics .. 103
Table 39. HSE 4-26 MHz oscillator characteristics .. 105
Table 40. LSE oscillator characteristics (fLSE = 32.768 kHz) ... 106
Table 41. HSI oscillator characteristics ... 107
Table 42. LSI oscillator characteristics ... 108
Table 43. Main PLL characteristics .. 108
Table 44. PLLI2S (audio PLL) characteristics 109
Table 45. PLLISAI characteristics .. 110
Table 46. SSCG parameters constraint .. 111
Table 47. Flash memory characteristics 112
Table 48. Flash memory programming .. 113
Table 49. Flash memory programming with VPP 113
Table 50. Flash memory endurance and data retention 114
Table 51. EMS characteristics ... 115
Table 52. EMI characteristics .. 116
Table 53. ESD absolute maximum ratings 116
Table 54. Electrical sensitivities .. 117
Table 55. I/O current injection susceptibility 117
Table 56. I/O static characteristics ... 118
Table 57. Output voltage characteristics 121
Table 58. I/O AC characteristics .. 121
Table 59. NRST pin characteristics ... 123
Table 60. TIMx characteristics ... 124
Table 61. I^2C characteristics ... 125
Table 62. FMPI^2C characteristics ... 127
Table 63. SPI dynamic characteristics ... 129
Table 64. QSPI dynamic characteristics in SDR Mode 132
Table 65. QSPI dynamic characteristics in DDR Mode 132
Table 66. I^2S dynamic characteristics ... 133
Table 67. SAI characteristics .. 136
Table 68. USB OTG full speed startup time 137
Table 69. USB OTG full speed DC electrical characteristics 138
Table 70. USB OTG full speed electrical characteristics 139
Table 71. USB HS DC electrical characteristics 139
Table 72. USB HS clock timing parameters 139
Table 73. Dynamic characteristics: USB ULPI 140
Table 74. ADC characteristics ... 141
Table 75. ADC static accuracy at f_{ADC} = 18 MHz 142
Table 76. ADC static accuracy at f_{ADC} = 30 MHz 143
Table 77. ADC static accuracy at f_{ADC} = 36 MHz 143
Table 78. ADC dynamic accuracy at f_{ADC} = 18 MHz - limited test conditions .. 143
Table 79. ADC dynamic accuracy at f_{ADC} = 36 MHz - limited test conditions .. 143
Table 80. Temperature sensor characteristics 147
Table 81. Temperature sensor calibration values 147
Table 82. V_{BAT} monitoring characteristics 148
Table 83. Internal reference voltage ... 148
Table 84. Internal reference voltage calibration values 148
Table 85. DAC characteristics ... 148
Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR - read timings .. 154
Table 87. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAi T timings .. 154
Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings .. 155
Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAi T timings .. 156
Table 90. Asynchronous multiplexed PSRAM/NOR read timings 157
Table 91. Asynchronous multiplexed PSRAM/NOR read-NWAi T timings .. 157
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>92</td>
<td>Asynchronous multiplexed PSRAM/NOR write timings</td>
<td>159</td>
</tr>
<tr>
<td>93</td>
<td>Asynchronous multiplexed PSRAM/NOR write-NWAI T timings</td>
<td>159</td>
</tr>
<tr>
<td>94</td>
<td>Synchronous multiplexed NOR/PSRAM read timings</td>
<td>161</td>
</tr>
<tr>
<td>95</td>
<td>Synchronous multiplexed PSRAM write timings</td>
<td>163</td>
</tr>
<tr>
<td>96</td>
<td>Synchronous non-multiplexed NOR/PSRAM read timings</td>
<td>164</td>
</tr>
<tr>
<td>97</td>
<td>Synchronous non-multiplexed PSRAM write timings</td>
<td>166</td>
</tr>
<tr>
<td>98</td>
<td>Switching characteristics for NAND Flash read cycles</td>
<td>168</td>
</tr>
<tr>
<td>99</td>
<td>Switching characteristics for NAND Flash write cycles</td>
<td>169</td>
</tr>
<tr>
<td>100</td>
<td>SDRAM read timings</td>
<td>170</td>
</tr>
<tr>
<td>101</td>
<td>LPSDR SDRAM read timings</td>
<td>170</td>
</tr>
<tr>
<td>102</td>
<td>SDRAM write timings</td>
<td>171</td>
</tr>
<tr>
<td>103</td>
<td>LPSDR SDRAM write timings</td>
<td>172</td>
</tr>
<tr>
<td>104</td>
<td>DCMI characteristics</td>
<td>172</td>
</tr>
<tr>
<td>105</td>
<td>Dynamic characteristics: SD / MMC characteristics</td>
<td>174</td>
</tr>
<tr>
<td>106</td>
<td>Dynamic characteristics: eMMC characteristics VDD = 1.7 V to 1.9 V</td>
<td>175</td>
</tr>
<tr>
<td>107</td>
<td>RTC characteristics</td>
<td>175</td>
</tr>
<tr>
<td>108</td>
<td>LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data</td>
<td>176</td>
</tr>
<tr>
<td>109</td>
<td>LQPF100, 14 x 14 mm 100-pin low-profile quad flat</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>package mechanical data</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>grid array package mechanical data</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>UFBGA144 recommended PCB design rules (0.50 mm pitch BGA)</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>grid array package mechanical data</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td>grid array package mechanical data</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>UFBGA144 recommended PCB design rules (0.80 mm pitch BGA)</td>
<td>190</td>
</tr>
<tr>
<td>115</td>
<td>WLCSP81- 81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale</td>
<td>192</td>
</tr>
<tr>
<td></td>
<td>package mechanical data</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>WLCSP81 recommended PCB design rules (0.4 mm pitch)</td>
<td>193</td>
</tr>
<tr>
<td>117</td>
<td>Package thermal characteristics</td>
<td>195</td>
</tr>
<tr>
<td>118</td>
<td>Ordering information scheme</td>
<td>196</td>
</tr>
<tr>
<td>119</td>
<td>Document revision history</td>
<td>200</td>
</tr>
</tbody>
</table>
1 Introduction

This document provides the description of the STM32F446xC/E products.

The STM32F446xC/E document should be read in conjunction with the STM32F4xx reference manual.

For information on the Cortex®-M4 core, please refer to the Cortex®-M4 programming manual (PM0214), available from the www.st.com.
2 Description

The STM32F446xC/E devices are based on the high-performance ARM® Cortex®-M4 32-bit RISC core operating at a frequency of up to 180 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all ARM® single-precision data-processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The STM32F446xC/E devices incorporate high-speed embedded memories (Flash memory up to 512 Kbyte, up to 128 Kbyte of SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix.

All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers. They also feature standard and advanced communication interfaces.

- Up to four I²Cs;
- Four SPIs, three I²Ss full simplex. To achieve audio class accuracy, the I²S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization;
- Four USARTs plus two UARTs;
- An USB OTG full-speed and an USB OTG high-speed with full-speed capability (with the ULPI), both with dedicated power rails allowing to use them throughout the entire power range;
- Two CANs;
- Two SAI serial audio interfaces. To achieve audio class accuracy, the SAI can be clocked via a dedicated internal audio PLL;
- An SDIO/MMC interface;
- Camera interface;
- HDMI-CEC;
- SPDIF Receiver (SPDIFRx);
- QuadSPI.

Advanced peripherals include an SDIO, a flexible memory control (FMC) interface, a camera interface for CMOS sensors. Refer to Table 2: STM32F446xC/E features and peripheral counts for the list of peripherals available on each part number.

The STM32F446xC/E devices operates in the –40 to +105 °C temperature range from a 1.7 to 3.6 V power supply.

The supply voltage can drop to 1.7 V with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF). A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F446xC/E devices offer devices in 6 packages ranging from 64 pins to 144 pins. The set of included peripherals changes with the device chosen.
These features make the STM32F446xC/E microcontrollers suitable for a wide range of applications:

- Motor drive and application control
- Medical equipment
- Industrial applications: PLC, inverters, circuit breakers
- Printers, and scanners
- Alarm systems, video intercom, and HVAC
- Home audio appliances

<table>
<thead>
<tr>
<th>Peripherals</th>
<th>STM32F446MC</th>
<th>STM32F446ME</th>
<th>STM32F446RC</th>
<th>STM32F446RE</th>
<th>STM32F446VC</th>
<th>STM32F446VE</th>
<th>STM32F446ZC</th>
<th>STM32F446ZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash memory in Kbytes</td>
<td>256</td>
<td>512</td>
<td>256</td>
<td>512</td>
<td>256</td>
<td>512</td>
<td>256</td>
<td>512</td>
</tr>
<tr>
<td>SRAM in Kbytes</td>
<td>System</td>
<td>128 (112+16)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Backup</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMC memory controller</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
<td>Yes(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General-purpose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced-control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication interfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPI / P2S</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4/3 (simplex)(2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I²C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USART/UART</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4/2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB OTG FS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes (6-Endpoints)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USB OTG HS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes (8-Endpoints)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SDIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPI-DI-Fx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDMI-CEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camera interface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPIOs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>50</td>
<td>81</td>
<td>114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-bit ADC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of channels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-bit DAC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of channels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum CPU frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating voltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperatures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packages</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WLCSP81</td>
<td>LQFP64</td>
<td>LQFP100</td>
<td>LQFP144</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UFBGA144</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. For the LQFP100 package, only FMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package.

2. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.

3. For the LQFP64 package, the Quad SPI is available with limited features.

4. V_{DD}/V_{DDA} minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF).

2.1 Compatibility with STM32F4 family

The STM32F446xC/xV is software and feature compatible with the STM32F4 family.

The STM32F446xC/xV can be used as drop-in replacement of the other STM32F4 products but some slight changes have to be done on the PCB board.

Figure 1. Compatible board design for LQFP100 package
Figure 2. Compatible board for LQFP64 package

Figure 3 shows the STM32F446xx block diagram.
Figure 3. STM32F446xC/E block diagram
3 Functional overview

3.1 ARM® Cortex®-M4 with FPU and embedded Flash and SRAM

The ARM® Cortex®-M4 with FPU processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM® Cortex®-M4 with FPU core is a 32-bit RISC processor that features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation.

The STM32F446xC/E family is compatible with all ARM tools and software.

Figure 3 shows the general block diagram of the STM32F446xC/E family.

Note: Cortex-M4 with FPU core is binary compatible with the Cortex-M3 core.

3.2 Adaptive real-time memory accelerator (ART Accelerator™)

The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry-standard ARM® Cortex®-M4 with FPU processors. It balances the inherent performance advantage of the ARM® Cortex®-M4 with FPU over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies.

To release the processor full 225 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 180 MHz.

3.3 Memory protection unit

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.
3.4 **Embedded Flash memory**

The devices embed a Flash memory of 512KB available for storing programs and data.

3.5 **CRC (cyclic redundancy check) calculation unit**

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.6 **Embedded SRAM**

All devices embed:

- Up to 128Kbytes of system SRAM.

 RAM memory is accessed (read/write) at CPU clock speed with 0 wait states.

- 4 Kbytes of backup SRAM

 This area is accessible only from the CPU. Its content is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode.

3.7 **Multi-AHB bus matrix**

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, USB HS) and the slaves Flash memory, RAM, QuadSPI, FMC, AHB and APB peripherals and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.
3.8 DMA controller (DMA)

The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB).

The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code.

Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent.
The DMA can be used with the main peripherals:

- SPI and I²S
- I²C
- USART
- General-purpose, basic and advanced-control timers TIMx
- DAC
- SDIO
- Camera interface (DCMI)
- ADC
- SAI1/SAI2
- SPDIF Receiver (SPDIFRx)
- QuadSPI

3.9 Flexible memory controller (FMC)

All devices embed an FMC. It has seven Chip Select outputs supporting the following modes: SDRAM/LPSDR SDRAM, SRAM, PSRAM, NOR Flash and NAND Flash. With the possibility to remap FMC bank 1 (NOR/PSRAM 1 and 2) and FMC SDRAM bank 1/2 in the Cortex-M4 code area.

Functionality overview:

- 8-, 16-bit data bus width
- Read FIFO for SDRAM controller
- Write FIFO
- Maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is 90 MHz.

LCD parallel interface

The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-effective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration.

3.10 Quad SPI memory interface (QUADSPI)

All devices embed a Quad SPI memory interface, which is a specialized communication interface targeting Single, Dual or Quad SPI flash memories. It can work in direct mode through registers, external flash status register polling mode and memory mapped mode. Up to 256 Mbytes external flash are memory mapped, supporting 8, 16 and 32-bit access. Code execution is supported. The opcode and the frame format are fully programmable. Communication can be either in Single Data Rate or Dual Data Rate.
3.11 Nested vectored interrupt controller (NVIC)

The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 91 maskable interrupt channels plus the 16 interrupt lines of the Cortex®-M4 with FPU core.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Allows early processing of interrupts
- Processing of late arriving, higher-priority interrupts
- Support tail chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimum interrupt latency.

3.12 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 23 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 114 GPIOs can be connected to the 16 external interrupt lines.

3.13 Clocks and startup

On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at 25 °C. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 180 MHz. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails).

Several prescalers allow the configuration of the two AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB buses is 180 MHz while the maximum frequency of the high-speed APB domains is 90 MHz. The maximum allowed frequency of the low-speed APB domain is 45 MHz.

The devices embed a dedicated PLL (PLL2S) and PLLSAI which allows to achieve audio class performance. In this case, the I²S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz.
3.14 Boot modes

At startup, boot pins are used to select one out of three boot options:
- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory through a serial (UART, I²C, CAN, SPI and USB) communication interface. Refer to application note AN2606 for details.

3.15 Power supply schemes

- VDD = 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through VDD pins.
- VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.

Note: VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF). Refer to Table 3: Voltage regulator configuration mode versus device operating mode to identify the packages supporting this option.

- VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present.
- VDDUSB can be connected either to VDD or an external independent power supply (3.0 to 3.6V) for USB transceivers.

For example, when device is powered at 1.8V, an independent power supply 3.3V can be connected to VDDUSB. When the VDDUSB is connected to a separated power supply, it is independent from VDD or VDDA but it must be the last supply to be provided and the first to disappear. The following conditions VDDUSB must be respected:
 - During power-on phase (VDD < VDD_MIN), VDDUSB should be always lower than VDD
 - During power-down phase (VDD < VDD_MIN), VDDUSB should be always lower than VDD
 - VDDUSB rising and falling time rate specifications must be respected.
 - In operating mode phase, VDDUSB could be lower or higher than VDD:
 - If USB (USB OTG_HS/OTG_FS) is used, the associated GPIOs powered by VDDUSB are operating between VDDUSB_MIN and VDDUSB_MAX. The VDDUSB supply both USB transceiver (USB OTG_HS and USB OTG_FS).
 - If only one USB transceiver is used in the application, the GPIOs associated to the other USB transceiver are still supplied by VDDUSB.
 - If USB (USB OTG_HS/OTG_FS) is not used, the associated GPIOs powered by VDDUSB are operating between VDD_MIN and VDD_MAX.
3.16 Power supply supervisor

3.16.1 Internal reset ON

On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other package, the power supply supervisor is always enabled.

The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default BOR thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when \(V_{DD} \) is below a specified threshold, \(V_{POR/PDR} \) or \(V_{BOR} \), without the need for an external reset circuit.

The device also features an embedded programmable voltage detector (PVD) that monitors the \(V_{DD}/V_{DDA} \) power supply and compares it to the \(V_{PVD} \) threshold. An interrupt can be generated when \(V_{DD}/V_{DDA} \) drops below the \(V_{PVD} \) threshold and/or when \(V_{DD}/V_{DDA} \) is higher than the \(V_{PVD} \) threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.16.2 Internal reset OFF

This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.

An external power supply supervisor should monitor \(V_{DD} \) and should maintain the device in reset mode as long as \(V_{DD} \) is below a specified threshold. PDR_ON should be connected to VSS, to allows device to operate down to 1.7v. Refer to Figure 6: Power supply supervisor interconnection with internal reset OFF.
The V_{DD} specified threshold, below which the device must be maintained under reset, is 1.7 V.

A comprehensive set of power-saving mode allows to design low-power applications.

When the internal reset is OFF, the following integrated features are no more supported:
- The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
- The brownout reset (BOR) circuitry must be disabled
- The embedded programmable voltage detector (PVD) is disabled
- V_{BAT} functionality is no more available and V_{BAT} pin should be connected to V_{DD}.

All packages, except for the LQFP100/LQFP64, allow to disable the internal reset through the PDR_ON signal.

3.17 Voltage regulator

The regulator has four operating modes:
- Regulator ON
 - Main regulator mode (MR)
 - Low power regulator (LPR)
 - Power-down
- Regulator OFF

3.17.1 Regulator ON

On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled.
There are three power modes configured by software when the regulator is ON:

- **MR mode used in Run/sleep modes or in Stop modes**
 - **In Run/Sleep mode**
 The MR mode is used either in the normal mode (default mode) or the over-drive mode (enabled by software). Different voltages scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption. The over-drive mode allows operating at a higher frequency than the normal mode for a given voltage scaling.
 - **In Stop modes**
 The MR can be configured in two ways during stop mode:
 - MR operates in normal mode (default mode of MR in stop mode)
 - MR operates in under-drive mode (reduced leakage mode).

- **LPR is used in the Stop modes:**
 The LP regulator mode is configured by software when entering Stop mode. Like the MR mode, the LPR can be configured in two ways during stop mode:
 - LPR operates in normal mode (default mode when LPR is ON)
 - LPR operates in under-drive mode (reduced leakage mode).

- **Power-down is used in Standby mode.**
 The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost.

Refer to Table 3 for a summary of voltage regulator modes versus device operating modes.

Two external ceramic capacitors should be connected on V\textsubscript{CAP}_1 and V\textsubscript{CAP}_2 pin.

All packages have the regulator ON feature.

Table 3. Voltage regulator configuration mode versus device operating mode\(^1\)

<table>
<thead>
<tr>
<th>Voltage regulator configuration</th>
<th>Run mode</th>
<th>Sleep mode</th>
<th>Stop mode</th>
<th>Standby mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal mode</td>
<td>MR</td>
<td>MR</td>
<td>MR or LPR</td>
<td>-</td>
</tr>
<tr>
<td>Over-drive mode(^2)</td>
<td>MR</td>
<td>MR</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Under-drive mode</td>
<td>-</td>
<td>-</td>
<td>MR or LPR</td>
<td>-</td>
</tr>
<tr>
<td>Power-down mode</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
</tr>
</tbody>
</table>

1. '-' means that the corresponding configuration is not available.
2. The over-drive mode is not available when \(V_{DD} = 1.7\) to 2.1 V.

3.17.2 Regulator OFF

This feature is available only on packages featuring the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a \(V_{12}\) voltage source through V\textsubscript{CAP}_1 and V\textsubscript{CAP}_2 pins.
Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. The two 2.2 µF ceramic capacitors should be replaced by two 100 nF decoupling capacitors.

When the regulator is OFF, there is no more internal monitoring on V\textsubscript{12}. An external power supply supervisor should be used to monitor the V\textsubscript{12} of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V\textsubscript{12} power domain.

In regulator OFF mode, the following features are no more supported:

- PA0 cannot be used as a GPIO pin since it allows to reset a part of the V\textsubscript{12} logic power domain which is not reset by the NRST pin.
- As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required.
- The over-drive and under-drive modes are not available.

The following conditions must be respected:

- V\textsubscript{DD} should always be higher than V\textsubscript{CAP_1} and V\textsubscript{CAP_2} to avoid current injection between power domains.
- If the time for V\textsubscript{CAP_1} and V\textsubscript{CAP_2} to reach V\textsubscript{12} minimum value is faster than the time for V\textsubscript{DD} to reach 1.7 V, then PA0 should be kept low to cover both conditions: until V\textsubscript{CAP_1} and V\textsubscript{CAP_2} reach V\textsubscript{12} minimum value and until V\textsubscript{DD} reaches 1.7 V (see Figure 8).
- Otherwise, if the time for V\textsubscript{CAP_1} and V\textsubscript{CAP_2} to reach V\textsubscript{12} minimum value is slower than the time for V\textsubscript{DD} to reach 1.7 V, then PA0 could be asserted low externally (see Figure 9).
- If V\textsubscript{CAP_1} and V\textsubscript{CAP_2} go below V\textsubscript{12} minimum value and V\textsubscript{DD} is higher than 1.7 V, then a reset must be asserted on PA0 pin.

Note: The minimum value of V\textsubscript{12} depends on the maximum frequency targeted in the application.
3.17.3 Regulator ON/OFF and internal reset ON/OFF availability

<table>
<thead>
<tr>
<th>Package</th>
<th>Regulator ON</th>
<th>Regulator OFF</th>
<th>Internal reset ON</th>
<th>Internal reset OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>LQFP64</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>LQFP100</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
3.18 Real-time clock (RTC), backup SRAM and backup registers

The backup domain includes:

- 4 Kbytes of backup SRAM
- 20 backup registers

The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are performed automatically. The RTC provides a programmable alarm and programmable periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is also available in binary format.

It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation.

Two alarm registers are used to generate an alarm at a specific time and calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.

A 20-bit prescaler is used for the time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data which need to be retained in VBAT and standby mode. This memory area is disabled by default to minimize power consumption (see Section 3.19: Low-power modes). It can be enabled by software.

The backup registers are 32-bit registers used to store 80 bytes of user application data when VDD power is not present. Backup registers are not reset by a system, a power reset, or when the device wakes up from the Standby mode (see Section 3.19: Low-power modes).

Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date.

Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the VDD supply when present or from the VBAT pin.

<table>
<thead>
<tr>
<th>Package</th>
<th>Regulator ON</th>
<th>Regulator OFF</th>
<th>Internal reset ON</th>
<th>Internal reset OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>LQFP144</td>
<td>Yes</td>
<td>No</td>
<td>Yes PDR_ON set to VDD</td>
<td>Yes PDR_ON set to VSS</td>
</tr>
<tr>
<td>UFBGA144</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes PDR_ON set to VDD</td>
<td>Yes PDR_ON set to VSS</td>
</tr>
<tr>
<td>WLCSP81</td>
<td>Yes BYPASS_REG set to Vss</td>
<td>Yes BYPASS_REG set to VDD</td>
<td>Yes PDR_ON set to VDD</td>
<td>Yes PDR_ON set to VSS</td>
</tr>
</tbody>
</table>
3.19 **Low-power modes**

The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

- **Sleep mode**
 In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

- **Stop mode**
 The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled.

 The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). Both modes can be configured as follows (see Table 5: Voltage regulator modes in stop mode):
 - Normal mode (default mode when MR or LPR is enabled)
 - Under-drive mode.

 The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup).

- **Standby mode**
 The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected.

 The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs.

 The standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power.

3.20 **V\textsubscript{BAT} operation**

The V\textsubscript{BAT} pin allows to power the device V\textsubscript{BAT} domain from an external battery, an external supercapacitor, or from V\textsubscript{DD} when no external battery and an external supercapacitor are present.

V\textsubscript{BAT} operation is activated when V\textsubscript{DD} is not present.

The V\textsubscript{BAT} pin supplies the RTC, the backup registers and the backup SRAM.

Table 5. Voltage regulator modes in stop mode

<table>
<thead>
<tr>
<th>Voltage regulator configuration</th>
<th>Main regulator (MR)</th>
<th>Low-power regulator (LPR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal mode</td>
<td>MR ON</td>
<td>LPR ON</td>
</tr>
<tr>
<td>Under-drive mode</td>
<td>MR in under-drive mode</td>
<td>LPR in under-drive mode</td>
</tr>
</tbody>
</table>

Note: When the microcontroller is supplied from \(V_{\text{BAT}} \), external interrupts and RTC alarm/events do not exit it from \(V_{\text{BAT}} \) operation.

When PDR_ON pin is not connected to \(V_{\text{DD}} \) (Internal Reset OFF), the \(V_{\text{BAT}} \) functionality is no more available and \(V_{\text{BAT}} \) pin should be connected to \(V_{\text{DD}} \).
3.21 Timers and watchdogs

The devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers.

All timer counters can be frozen in debug mode.

Table 6 compares the features of the advanced-control, general-purpose and basic timers.

<table>
<thead>
<tr>
<th>Timer type</th>
<th>Timer</th>
<th>Counter resolution</th>
<th>Counter type</th>
<th>Prescaler factor</th>
<th>DMA request generation</th>
<th>Capture/compare channels</th>
<th>Complementary output</th>
<th>Max interface clock (MHz)</th>
<th>Max timer clock (MHz)<sup>(1)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced-control</td>
<td>TIM1, TIM8</td>
<td>16-bit</td>
<td>Up, Down, Up/down</td>
<td>Any integer between 1 and 65536</td>
<td>Yes</td>
<td>4</td>
<td>Yes</td>
<td>90</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>TIM2, TIM5</td>
<td>32-bit</td>
<td>Up, Down, Up/down</td>
<td>Any integer between 1 and 65536</td>
<td>Yes</td>
<td>4</td>
<td>No</td>
<td>45</td>
<td>90/180</td>
</tr>
<tr>
<td></td>
<td>TIM3, TIM4</td>
<td>16-bit</td>
<td>Up, Down, Up/down</td>
<td>Any integer between 1 and 65536</td>
<td>Yes</td>
<td>4</td>
<td>No</td>
<td>45</td>
<td>90/180</td>
</tr>
<tr>
<td></td>
<td>TIM9</td>
<td>16-bit</td>
<td>Up</td>
<td>Any integer between 1 and 65536</td>
<td>No</td>
<td>2</td>
<td>No</td>
<td>90</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>TIM10, TIM11</td>
<td>16-bit</td>
<td>Up</td>
<td>Any integer between 1 and 65536</td>
<td>No</td>
<td>1</td>
<td>No</td>
<td>90</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>TIM12</td>
<td>16-bit</td>
<td>Up</td>
<td>Any integer between 1 and 65536</td>
<td>No</td>
<td>2</td>
<td>No</td>
<td>45</td>
<td>90/180</td>
</tr>
<tr>
<td></td>
<td>TIM13, TIM14</td>
<td>16-bit</td>
<td>Up</td>
<td>Any integer between 1 and 65536</td>
<td>No</td>
<td>1</td>
<td>No</td>
<td>45</td>
<td>90/180</td>
</tr>
<tr>
<td>Basic</td>
<td>TIM6, TIM7</td>
<td>16-bit</td>
<td>Up</td>
<td>Any integer between 1 and 65536</td>
<td>Yes</td>
<td>0</td>
<td>No</td>
<td>45</td>
<td>90/180</td>
</tr>
</tbody>
</table>

1. The maximum timer clock is either 90 or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register.
3.21.1 **Advanced-control timers (TIM1, TIM8)**

The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-100%).

The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining.

TIM1 and TIM8 support independent DMA request generation.

3.21.2 **General-purpose timers (TIMx)**

There are ten synchronized general-purpose timers embedded in the STM32F446xC/E devices (see Table 6 for differences).

- **TIM2, TIM3, TIM4, TIM5**

The STM32F446xC/E include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and TIM4. The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages.

 The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining.

 Any of these general-purpose timers can be used to generate PWM outputs.

 TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors.

- **TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14**

 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases.

3.21.3 **Basic timers TIM6 and TIM7**

These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base.

TIM6 and TIM7 support independent DMA request generation.
3.21.4 Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.

3.21.5 Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.

3.21.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
• A 24-bit downcounter
• Autoreload capability
• Maskable system interrupt generation when the counter reaches 0
• Programmable clock source.

3.22 Inter-integrated circuit interface (I2C)

Four I²C bus interfaces can operate in multimaster and slave modes. Three I²C can support
the standard (up to 100 KHz) and fast (up to 400 KHz) modes.
One I²C can support the standard (up to 100 KHz), fast (up to 400 KHz) and fast mode plus
(up to 1MHz) modes.

They (all I²C) support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as
slave).
A hardware CRC generation/verification is embedded.
They can be served by DMA and they support SMBus 2.0/PMBus.
The devices also include programmable analog and digital noise filters (see Table 7).

<table>
<thead>
<tr>
<th>Table 7. Comparison of I2C analog and digital filters</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
</tr>
<tr>
<td>Pulse width of suppressed spikes</td>
</tr>
</tbody>
</table>
3.23 Universal synchronous/asynchronous receiver transmitters (USART)

The devices embed four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3 and USART6) and four universal asynchronous receiver transmitters (UART4, and UART5).

These six interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to communicate at speeds of up to 11.25 Mbit/s. The other available interfaces communicate at up to 5.62 bit/s.

USART1, USART2, USART3 and USART6 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller.

Table 8. USART feature comparison(1)

<table>
<thead>
<tr>
<th>USART name</th>
<th>Standard features</th>
<th>Modem (RTS/CTS)</th>
<th>LIN</th>
<th>SPI master</th>
<th>irD A</th>
<th>Smartcard (ISO 7816)</th>
<th>Max. baud rate in Mbit/s (oversampling by 16)</th>
<th>Max. baud rate in Mbit/s (oversampling by 8)</th>
<th>APB mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>USART1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5.62</td>
<td>11.25</td>
<td>APB2 (max. 90 MHz)</td>
</tr>
<tr>
<td>USART2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>2.81</td>
<td>5.62</td>
<td>APB1 (max. 45 MHz)</td>
</tr>
<tr>
<td>USART3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>2.81</td>
<td>5.62</td>
<td>APB1 (max. 45 MHz)</td>
</tr>
<tr>
<td>UART4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>2.81</td>
<td>5.62</td>
<td>APB1 (max. 45 MHz)</td>
</tr>
<tr>
<td>UART5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>-</td>
<td>X</td>
<td>-</td>
<td>2.81</td>
<td>5.62</td>
<td>APB1 (max. 45 MHz)</td>
</tr>
<tr>
<td>USART6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>5.62</td>
<td>11.25</td>
<td>APB2 (max. 90 MHz)</td>
</tr>
</tbody>
</table>

1. X = feature supported.

3.24 Serial peripheral interface (SPI)

The devices feature up to four SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1, and SPI4 can communicate at up to 45 Mbits/s, SPI2 and SPI3 can communicate at up to 22.5 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.
The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode.

3.25 HDMI (high-definition multimedia interface) consumer electronics control (CEC)

The devices embed a HDMI-CEC controller that provides hardware support of consumer electronics control (CEC) (Appendix supplement 1 to the HDMI standard). This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead.

3.26 Inter-integrated sound (I²S)

Three standard I²S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They can be operated in master or slave mode, in simplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I²S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. All I2Sx can be served by the DMA controller.

3.27 SPDIF-RX Receiver Interface (SPDIFRX)

The SPDIF-RX peripheral, is designed to receive an S/PDIF flow compliant with IEC-60958 and IEC-61937. These standards support simple stereo streams up to high sample rate, and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up to 5.1).

The main features of the SPDIF-RX are the following:

- Up to 4 inputs available
- Automatic symbol rate detection
- Maximum symbol rate: 12.288 MHz
- Stereo stream from 32 to 192 kHz supported
- Supports Audio IEC-60958 and IEC-61937, consumer applications
- Parity bit management
- Communication using DMA for audio samples
- Communication using DMA for control and user channel information
- Interrupt capabilities

The SPDIF-RX receiver provides all the necessary features to detect the symbol rate, and decode the incoming data stream. The user can select the wanted SPDIF input, and when a valid signal will be available, the SPDIF-RX will re-sample the incoming signal, decode the Manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the CPU decoded data, and associated status flags.
The SPDIF-RX also offers a signal named spdifrx_frame_sync, which toggles at the S/PDIF sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms.

3.28 Serial Audio interface (SAI)

The devices feature two serial audio interfaces (SAI1 and SAI2). Each serial audio interfaces based on two independent audio sub blocks which can operate as transmitter or receiver with their FIFO. Many audio protocols are supported by each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both sub blocks can be configured in master or in slave mode. The SAIs use a PLL to achieve audio class accuracy.

In master mode, the master clock can be output to the external DAC/Codec at 256 times of the sampling frequency.

The two sub blocks can be configured in synchronous mode when full-duplex mode is required.

SAI1 and SA2 can be served by the DMA controller.

3.29 Audio PLL (PLL I²S)

The devices feature an additional dedicated PLL for audio I²S and SAI applications. It allows to achieve error-free I²S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals.

The PLLI²S configuration can be modified to manage an I²S/SAI sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.

The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz.

In addition to the audio PLL, a master clock input pin can be used to synchronize the I²S/SAI flow with an external PLL (or Codec output).

3.30 Serial Audio Interface PLL(PLL SAI)

An additional PLL dedicated to audio and USB is used for SAI1 and SAI2 peripheral in case the PLLI²S is programmed to achieve another audio sampling frequency (49.152 MHz or 11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.

The PLL SAI is also used to generate the 48MHz clock for USB FS and SDIO in case the system PLL is programmed with factors not multiple of 48MHz.

3.31 Secure digital input/output interface (SDIO)

An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.

The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory Card Specification Version 2.0.
The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

3.32 Controller area network (bxCAN)

The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOs with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated for each CAN.

3.33 Universal serial bus on-the-go full-speed (OTG_FS)

The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The USB has dedicated power rails allowing its use throughout the entire power range. The major features are:

- Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 6 bidirectional endpoints
- 12 host channels with periodic OUT support
- HNP/SNP/IP inside (no need for any external resistor)
- For OTG/Host modes, a power switch is needed in case bus-powered devices are connected

3.34 Universal serial bus on-the-go high-speed (OTG_HS)

The devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required.

The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The USB has dedicated power rails allowing its use throughout the entire power range.
The major features are:
- Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing
- Supports the session request protocol (SRP) and host negotiation protocol (HNP)
- 8 bidirectional endpoints
- 16 host channels with periodic OUT support
- Internal FS OTG PHY support
- External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output.
- Internal USB DMA
- HNP/SNP/IP inside (no need for any external resistor)
- for OTG/Host modes, a power switch is needed in case bus-powered devices are connected

3.35 Digital camera interface (DCMI)

The devices embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain a data transfer rate up to 94.5 Mbyte/s (in 14-bit mode) at 54 MHz.

Its features:
- Programmable polarity for the input pixel clock and synchronization signals
- Parallel data communication can be 8-, 10-, 12- or 14-bit
- Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG)
- Supports continuous mode or snapshot (a single frame) mode
- Capability to automatically crop the image black & white.

3.36 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission.

The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers.

Fast I/O handling allowing maximum I/O toggling up to 90 MHz.

3.37 Analog-to-digital converters (ADCs)

Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs.
Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold

The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM5, or TIM8 timer.

3.38 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the same input channel as V\textsubscript{BAT}, ADC1_IN18, which is used to convert the sensor output voltage into a digital value. When the temperature sensor and V\textsubscript{BAT} conversion are enabled at the same time, only V\textsubscript{BAT} conversion is performed.

As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used.

3.39 Digital-to-analog converter (DAC)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs.

This dual digital Interface supports the following features:

- two DAC converters: one for each output channel
- 8-bit or 10-bit monotonic output
- left or right data alignment in 12-bit mode
- synchronized update capability
- noise-wave generation
- triangular-wave generation
- dual DAC channel independent or simultaneous conversions
- DMA capability for each channel
- external triggers for conversion
- input voltage reference V\textsubscript{REF+}

Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams.

3.40 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.41 Embedded Trace Macrocell™

The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F446xx through a small number of ETM pins to an external hardware trace port analyser (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors.

The Embedded Trace Macrocell operates with third party debugger software tools.
4 Pinout and pin description

Figure 10. STM32F446xC/xE LQFP64 pinout

1. The above figure shows the package top view.
1. The above figure shows the package top view.
Figure 12. STM32F446xC LQFP144 pinout

1. The above figure shows the package top view.
1. The above figure shows the package top view.
Figure 14. STM32F446xC/xE UFBGA144 ballout

1. The above picture shows the package top view.
Table 9. Legend/abbreviations used in the pinout table

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin name</td>
<td>S</td>
<td>Supply pin</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Input only pin</td>
</tr>
<tr>
<td></td>
<td>I/O</td>
<td>Input / output pin</td>
</tr>
<tr>
<td>I/O structure</td>
<td>FT</td>
<td>5 V tolerant I/O</td>
</tr>
<tr>
<td></td>
<td>FTf</td>
<td>5V tolerant I/O, I2C FM+ option</td>
</tr>
<tr>
<td></td>
<td>TTa</td>
<td>3.3 V tolerant I/O directly connected to ADC</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Dedicated BOOT0 pin</td>
</tr>
<tr>
<td></td>
<td>RST</td>
<td>Bidirectional reset pin with weak pull-up resistor</td>
</tr>
</tbody>
</table>

Notes: Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset.

Alternate functions: Functions selected through GPIOx_AFR registers.

Additional functions: Functions directly selected/enabled through peripheral registers.

Table 10. STM32F446xx pin and ball descriptions

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin name (function after reset)</th>
<th>Pin type</th>
<th>I/O structure</th>
<th>Alternate functions</th>
<th>Additional functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>LQFP64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQFP100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WLCSP 81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UFBGA144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQFP144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 1</td>
<td>D7 A3 1</td>
<td>PE2</td>
<td>I/O FT</td>
<td>TRACECLK, SPI4_SCK,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAI1_MCLK_A, QUADSPI_BK1_IO2,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FMC_A23, EVENTOUT</td>
<td></td>
</tr>
<tr>
<td>- 2</td>
<td>D6 A2 2</td>
<td>PE3</td>
<td>I/O FT</td>
<td>TRACED0, SAI1_SD_B,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FMC_A19, EVENTOUT</td>
<td></td>
</tr>
<tr>
<td>- 3</td>
<td>A9 B2 3</td>
<td>PE4</td>
<td>I/O FT</td>
<td>TRACED1, SPI4_NSS,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAI1_FS_A, FMC_A20,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DCMI_D4, EVENTOUT</td>
<td></td>
</tr>
<tr>
<td>- 4</td>
<td>B3 4</td>
<td>PE5</td>
<td>I/O FT</td>
<td>TRACED2, TIM9_CH1,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPI4_MISO, SAI1_SCK_A,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FMC_A21, DCMI_D6,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EVENTOUT</td>
<td></td>
</tr>
<tr>
<td>Pin Number</td>
<td>Pin name (function after reset)</td>
<td>Pin type</td>
<td>I/O structure</td>
<td>Notes</td>
<td>Alternate functions</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------</td>
<td>----------</td>
<td>---------------</td>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td>LQFP64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQFP100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WL CSP 81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UF BG A144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQFP144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>PE6</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 6 B9 C2</td>
<td>6</td>
<td>VBAT</td>
<td>S</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2 7 C8 A1</td>
<td>7</td>
<td>PC13</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 8 C9 B1</td>
<td>8</td>
<td>PC14-OSC32.IN(PC14)</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
</tr>
<tr>
<td>4 9 D9 C1</td>
<td>9</td>
<td>PC15-OSC32.OUT(PC15)</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>PF0</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>PF1</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>PF2</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>PF3</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>PF4</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>PF5</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>VSS</td>
<td>S</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>VDD</td>
<td>S</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>PF6</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>PF7</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>PF8</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>PF9</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>PF10</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 12 E9 D1</td>
<td>23</td>
<td>PH0-OSC_IN(PH0)</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 10. STM32F446xx pin and ball descriptions (continued)
Table 10. STM32F446xx pin and ball descriptions (continued)

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin Number</th>
<th>Pin name (function after reset)</th>
<th>Pin type</th>
<th>I/O structure</th>
<th>Notes</th>
<th>Alternate functions</th>
<th>Additional functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 13 F9 E1 24</td>
<td>7 14 D8 F1 25</td>
<td>PH1-OSC_OUT(PH1)</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>EVENTOUT</td>
<td>OSC_OUT</td>
</tr>
<tr>
<td>8 15 G9 H1 26</td>
<td></td>
<td>PC0</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>SAI1_MCLK_B, OTG_HS_ULPI_STP, FMC_SDNWE, EVENTOUT</td>
<td>ADC123_IN10</td>
</tr>
<tr>
<td>9 16 - H2 27</td>
<td></td>
<td>PC1</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>SPI3_MOSI/I2S3_SD, SAI1_SD_A, SPI2_MOSI/I2S2_SD, EVENTOUT</td>
<td>ADC123_IN11</td>
</tr>
<tr>
<td>10 17 E8 H3 28</td>
<td></td>
<td>PC2</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>SPI2_MISO, OTG_HS_ULPI_DIR, FMC_SDNE0, EVENTOUT</td>
<td>ADC123_IN12</td>
</tr>
<tr>
<td>11 18 F8 H4 29</td>
<td></td>
<td>PC3</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>SPI2_MOSI/I2S2_SD, OTG_HS_ULPI_NXT, FMC_SDCKE0, EVENTOUT</td>
<td>ADC123_IN13</td>
</tr>
<tr>
<td>- 19 H9 - 30</td>
<td></td>
<td>VDD</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- - G8 - -</td>
<td></td>
<td>VSS</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12 20 F7 J1 31</td>
<td></td>
<td>VSSA</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- - - K1 -</td>
<td></td>
<td>VREF-</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- 21 - L1 32</td>
<td></td>
<td>VREF+</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13 22 H8 M1 33</td>
<td></td>
<td>VDDA</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14 23 J9 J2 34</td>
<td></td>
<td>PA0-WKUP(PA0)</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>TIM2_CH1/TIM2_ETR, TIM5_CH1, TIM8_ETR, USART2_CTS, UART4_TX, EVENTOUT</td>
<td>ADC123_IN0, WKUP0/TAMP_2</td>
</tr>
<tr>
<td>15 24 G7 K2 35</td>
<td></td>
<td>PA1</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>TIM2_CH2, TIM5_CH2, USART2_RTS, UART4_RX, QUADSPI_BK1_IO3, SAI2_MCLK_B, EVENTOUT</td>
<td>ADC123_IN1</td>
</tr>
<tr>
<td>16 25 E7 L2 36</td>
<td></td>
<td>PA2</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>TIM2_CH3, TIM5_CH3, TIM9_CH1, USART2_TX, SAI2_SCK_B, EVENTOUT</td>
<td>ADC123_IN2</td>
</tr>
</tbody>
</table>
Table 10. STM32F446xx pin and ball descriptions (continued)

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin name (function after reset)</th>
<th>Pin type</th>
<th>I/O structure</th>
<th>Notes</th>
<th>Alternate functions</th>
<th>Additional functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 26 E6 M2 37</td>
<td>PA3</td>
<td>I/O FT</td>
<td>-</td>
<td>TIM2_CH4, TIM5_CH4, TIM9_CH2, SAI1_FS_A, USART2_RX, OTG_HS_ULPI_D0, EVENTOUT</td>
<td>ADC123_IN3</td>
<td></td>
</tr>
<tr>
<td>18 - G4 38</td>
<td>VSS</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- - J8 H5 -</td>
<td>BYPASS_REG</td>
<td>I FT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19 28 F4 39</td>
<td>VDD</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20 29 H7 J3 40</td>
<td>PA4</td>
<td>I/O TC</td>
<td>-</td>
<td>SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, USART2_CK, OTG_HS_SOF, DCMI_HSYNC, EVENTOUT</td>
<td>ADC123_IN4, DAC_OUT1</td>
<td></td>
</tr>
<tr>
<td>21 30 F6 K3 41</td>
<td>PA5</td>
<td>I/O TC</td>
<td>-</td>
<td>TIM2_CH1/TIM2_ETR, TIM8_CH1N, SPI1_SCK/I2S1_CLK, OTG_HS_ULPI_CLK, EVENTOUT</td>
<td>ADC123_IN5, DAC_OUT2</td>
<td></td>
</tr>
<tr>
<td>22 31 G6 L3 42</td>
<td>PA6</td>
<td>I/O FT</td>
<td>-</td>
<td>TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SPI1_MISO, I2S2_MCK, TIM13_CH1, DCMI_PIXCLK, EVENTOUT</td>
<td>ADC123_IN6</td>
<td></td>
</tr>
<tr>
<td>23 32 E5 M3 43</td>
<td>PA7</td>
<td>I/O FT</td>
<td>-</td>
<td>TIM1_CH1N, TIM3_CH2, TIM8_CH1N, SPI1_MOSI/I2S1_SD, TIM14_CH1, FMC_SDWNE, EVENTOUT</td>
<td>ADC123_IN7</td>
<td></td>
</tr>
<tr>
<td>24 33 J7 J4 44</td>
<td>PC4</td>
<td>I/O FT</td>
<td>-</td>
<td>I2S1_MCK, SPDIFRX_IN2, FMC_SDNE0, EVENTOUT</td>
<td>ADC123_IN14</td>
<td></td>
</tr>
<tr>
<td>25 34 K4 45</td>
<td>PC5</td>
<td>I/O FT</td>
<td>-</td>
<td>USART3_RX, SPDIFRX_IN3, FMC_SDCKE0, EVENTOUT</td>
<td>ADC123_IN15</td>
<td></td>
</tr>
<tr>
<td>Pin Number</td>
<td>Pin name (function after reset)</td>
<td>Pin type</td>
<td>I/O structure</td>
<td>Alternate functions</td>
<td>Additional functions</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------</td>
<td>----------</td>
<td>---------------</td>
<td>---------------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>26 35</td>
<td>PB0 I/O FT</td>
<td></td>
<td></td>
<td>TIM1.CH2N, TIM3.CH3,</td>
<td>ADC12.IN8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TIM8.CH2N, SPI3.MOSI/I2S3_SD,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UART4.CTS, OTG_HS_ULPI_D1, SDIO_D1, EVENTOUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 36</td>
<td>PB1 I/O FT</td>
<td></td>
<td></td>
<td>TIM1.CH3N, TIM3.CH4,</td>
<td>ADC12.IN9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TIM8.CH3N, OTG_HS_ULPI_D2, SDIO_D2, EVENTOUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28 37</td>
<td>PB2-BOOT1 (PB2) I/O FT</td>
<td></td>
<td></td>
<td>TIM2.CH4, SAI1.SD_A,</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPI3.MOSI/I2S3_SD, QUADSPI_CLK, OTG_HS_ULPI_D4, SDIO_CK, EVENTOUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29 38</td>
<td></td>
<td></td>
<td></td>
<td>SAI2.SD_B, FMC_SDNRAS, DCMI_D12, EVENTOUT</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>30 39</td>
<td></td>
<td></td>
<td></td>
<td>FMI2C1.SMBA, FMC_A7, EVENTOUT</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>31 40</td>
<td></td>
<td></td>
<td></td>
<td>FMI2C1.SCL, FMC_A8, EVENTOUT</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Table 10. STM32F446xx pin and ball descriptions (continued)

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin name (function after reset)</th>
<th>Pin type</th>
<th>I/O structure</th>
<th>Notes</th>
<th>Alternate functions</th>
<th>Additional functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 47 H4 M9 69</td>
<td>PB10</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>TIM2_CH3, I2C2_SCL, SPI2_SCK/I2S2_CLK, USAI1_SCK_A, USART3_TX, OTG_HS_ULPI_D3, EVENTOUT</td>
<td>-</td>
</tr>
<tr>
<td>20 46 M8 68</td>
<td>PE15</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>TIM1_BKIN, FMC_D12, EVENTOUT</td>
<td>-</td>
</tr>
<tr>
<td>30 48 J3 H7 71</td>
<td>VCAP_1</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31 49 H3</td>
<td>VSS</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>32 50 J2 G7 72</td>
<td>VDD</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>33 51 G4 M11 73</td>
<td>PB12</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>TIM1_BKIN, I2C2_SMB, SPI2_NSS/I2S2_WS, USAI1_SCK_B, USART3_CLK, CAN2_RX, OTG_HS_ULPI_D5, OTG_HS_ID, EVENTOUT</td>
<td>-</td>
</tr>
<tr>
<td>Pin Number</td>
<td>Pin name (function after reset)</td>
<td>Pin type</td>
<td>I/O structure</td>
<td>Notes</td>
<td>Alternate functions</td>
<td>Additional functions</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------</td>
<td>----------</td>
<td>---------------</td>
<td>-------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>LQFP64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34 52 H2 M12 74</td>
<td>PB13</td>
<td>I/O FT</td>
<td>-</td>
<td>-</td>
<td>TIM1_CH1N, SPI2_SCK/I2S2_CK, USART3_CTS, CAN2_TX, OTG_HS_ULPI_D6, EVENTOUT</td>
<td>OTG_HS_VBUS</td>
</tr>
<tr>
<td>LQFP100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 53 J1 L11 75</td>
<td>PB14(1)</td>
<td>I/O FT</td>
<td>-</td>
<td>-</td>
<td>TIM1_CH2N, TIM8_CH2N, SPI2_MISO, USART3_RTS, TIM12_CH1, OTG_HS_DM, EVENTOUT</td>
<td>-</td>
</tr>
<tr>
<td>WLCSP 81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36 54 G3 L12 76</td>
<td>PB15(1)</td>
<td>I/O FT</td>
<td>-</td>
<td>-</td>
<td>RTC_REFIN, TIM1_CH3N, TIM8_CH3N, SPI2_MOSI/I2S2_SD, TIM12_CH2, OTG_HS_DP, EVENTOUT</td>
<td>-</td>
</tr>
<tr>
<td>UFQGA144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55 - L9 77</td>
<td>PD8</td>
<td>I/O FT</td>
<td>-</td>
<td>-</td>
<td>USART3_TX, SPDIFRX_IN1, FMC_D13, EVENTOUT</td>
<td>-</td>
</tr>
<tr>
<td>LQFP144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56 - K9 78</td>
<td>PD9</td>
<td>I/O FT</td>
<td>-</td>
<td>-</td>
<td>USART3_RX, FMC_D14, EVENTOUT</td>
<td>-</td>
</tr>
<tr>
<td>57 - J9 79</td>
<td>PD10</td>
<td>I/O FT</td>
<td>-</td>
<td>-</td>
<td>USART3_CK, FMC_D15, EVENTOUT</td>
<td>-</td>
</tr>
<tr>
<td>58 - H1 H9 80</td>
<td>PD11</td>
<td>I/O FT</td>
<td>-</td>
<td>-</td>
<td>FMI2C1_SMB, USART3_CTS, QUADSPI_BK1 IO0, SAI2_SD_A, FMC_A16, EVENTOUT</td>
<td>-</td>
</tr>
<tr>
<td>59 - G2 L10 81</td>
<td>PD12</td>
<td>I/O FTt</td>
<td>-</td>
<td>-</td>
<td>TIM4_CH1, FMI2C1_SCL, USART3_RTS, QUADSPI_BK1 IO1, SAI2_FS_A, FMC_A17, EVENTOUT</td>
<td>-</td>
</tr>
<tr>
<td>60 - G1 K10 82</td>
<td>PD13</td>
<td>I/O FTt</td>
<td>-</td>
<td>-</td>
<td>TIM4_CH2, FMI2C1_SDA, QUADSPI_BK1 IO3, SAI2_SCK_A, FMC_A18, EVENTOUT</td>
<td>-</td>
</tr>
<tr>
<td>- - G8 83</td>
<td>VSS</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>- - F8 84</td>
<td>VDD</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Pin Number</td>
<td>Pin name (function after reset)</td>
<td>Pin type</td>
<td>I/O structure</td>
<td>Notes</td>
<td>Alternate functions</td>
<td>Additional functions</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------</td>
<td>----------</td>
<td>---------------</td>
<td>-------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>LQFP64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQFP100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WLCSP 81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UFBGA144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQFP144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 61</td>
<td>K11 85 PD14</td>
<td>I/O</td>
<td>FTf</td>
<td>-</td>
<td>TIM4.CH3, FMPI2C1_SCL, SAI2_SCL, FMC_D0, EVENTOUT</td>
<td>-</td>
</tr>
<tr>
<td>- 62</td>
<td>K12 86 PD15</td>
<td>I/O</td>
<td>FTf</td>
<td>-</td>
<td>TIM4.CH4, FMPI2C1_SDA, FMC_D1, EVENTOUT</td>
<td>-</td>
</tr>
<tr>
<td>- - J12 87</td>
<td>PG2</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>FMC_A12, EVENTOUT</td>
<td>-</td>
</tr>
<tr>
<td>- - J11 88</td>
<td>PG3</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>FMC_A13, EVENTOUT</td>
<td>-</td>
</tr>
<tr>
<td>- - J10 89</td>
<td>PG4</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>FMC_A14/FMC_BA0, EVENTOUT</td>
<td>-</td>
</tr>
<tr>
<td>- - H12 90</td>
<td>PG5</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>FMC_A15/FMC_BA1, EVENTOUT</td>
<td>-</td>
</tr>
<tr>
<td>- - H11 91</td>
<td>PG6</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>QUADSPI_BK1_NCS, DCMI_D12, EVENTOUT</td>
<td>-</td>
</tr>
<tr>
<td>- - H10 92</td>
<td>PG7</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>USART6_CK, FMC_INT, DCMI_D13, EVENTOUT</td>
<td>-</td>
</tr>
<tr>
<td>- - G11 93</td>
<td>PG8</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>SPDIFRX_IN2, USART6_RTS, FMC_SDCLK, EVENTOUT</td>
<td>-</td>
</tr>
<tr>
<td>- - - 94</td>
<td>VSS</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>- - F10</td>
<td>VDD</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>- - E1 C11</td>
<td>VDDUSB</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>37 63 F1 G12</td>
<td>96 PC6</td>
<td>I/O</td>
<td>FTf</td>
<td>-</td>
<td>TIM3.CH1, TIM8.CH1, FMPI2C1_SCL, I2S2_MCK, USART6_TX, SDIO_D6, DCMI_D0, EVENTOUT</td>
<td>-</td>
</tr>
<tr>
<td>38 64 F2 F12</td>
<td>97 PC7</td>
<td>I/O</td>
<td>FTf</td>
<td>-</td>
<td>TIM3.CH2, TIM8.CH2, FMPI2C1_SDA, SPI2_SCK/I2S2_CK, I2S3_MCK, SPDIFRX_IN1, USART6_RX, SDIO_D7, DCMI_D1, EVENTOUT</td>
<td>-</td>
</tr>
<tr>
<td>39 65 F3 F11</td>
<td>98 PC8</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>TRACED0, TIM3.CH3, TIM8.CH3, UART5_CLK, USART6_RX, SDIO_D0, DCMI_D2, EVENTOUT</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 10. STM32F446xx pin and ball descriptions (continued)

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin name (function after reset)</th>
<th>Pin type</th>
<th>I/O structure</th>
<th>Alternate functions</th>
<th>Additional functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>LQFP64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQFP100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WLCSP 81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UFQGA144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQFP144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 66</td>
<td>PC9</td>
<td>I/O</td>
<td>FT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41 67</td>
<td>PA8</td>
<td>I/O</td>
<td>FT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42 68</td>
<td>PA9</td>
<td>I/O</td>
<td>FT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43 69</td>
<td>PA10</td>
<td>I/O</td>
<td>FT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44 70</td>
<td>PA11(1)</td>
<td>I/O</td>
<td>FT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 71</td>
<td>PA12(1)</td>
<td>I/O</td>
<td>FT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46 72</td>
<td>PA13(JTMS-SWDIO)</td>
<td>I/O</td>
<td>FT</td>
<td>JTMS-SWDIO,</td>
<td></td>
</tr>
<tr>
<td>47 74</td>
<td>VSS</td>
<td>S</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48 75</td>
<td>VDD</td>
<td>S</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49 76</td>
<td>PA14(JTCK-SWCLK)</td>
<td>I/O</td>
<td>FT</td>
<td>JTCK-SWCLK,</td>
<td></td>
</tr>
<tr>
<td>50 77</td>
<td>PA15(JTDI)</td>
<td>I/O</td>
<td>FT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- MCO2, TIM3_CH4, TIM8_CH4, I2C3_SDA, I2S_CKIN, UARTS_CTS, QUADSPI_BK1_I00, SDIO_D1, DCM1_D3, EVENTOUT
- MCO1, TIM1_CH1, I2C3_SCL, USART1_CK, OTG_FS_SOF, EVENTOUT
- TIM1_CH3, USART1_RX, OTG_FS_ID, DCM1_D1, EVENTOUT
- TIM1_CH4, USART1_CTS, CAN1_RX, OTG_FS_DM, EVENTOUT
- TIM1_ETR, USART1_RTS, SA2_S_B, CAN1_TX, OTG_FS_DP, EVENTOUT
- -
Table 10. STM32F446xx pin and ball descriptions (continued)

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin name (function after reset)</th>
<th>Pin type</th>
<th>I/O structure</th>
<th>Alternate functions</th>
<th>Additional functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>LQFP64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQFP100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WLCS81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UFBGA144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQFP144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51 78 D3</td>
<td>PC10</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B11 111</td>
<td></td>
<td></td>
<td></td>
<td>SPI3_SCK/I2S3_CK,</td>
<td>UART3_RX, UART4_RX,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>QUADSPI_BK1_IO1,</td>
<td>SDIO_D2, DCMI_D8,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EVENTOUT</td>
</tr>
<tr>
<td>52 79 D4</td>
<td>PC11</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B10 112</td>
<td></td>
<td></td>
<td></td>
<td>SPI3_MISO, UART3_RX,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UART4_RX, QUADSPI_BK2_NCS, SDIO_D3, DCMI_D4,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EVENTOUT</td>
</tr>
<tr>
<td>53 80 A2</td>
<td>PC12</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C10 113</td>
<td></td>
<td></td>
<td></td>
<td>I2C2_SDA, SPI3_MOSI/I2S3_SD,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UART3_RX, UART5_RX,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SDIO_CLK, DCMI_D9,</td>
<td>EVENTOUT</td>
</tr>
<tr>
<td>- 81 B3</td>
<td>PD0</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E10 114</td>
<td></td>
<td></td>
<td></td>
<td>SPI4_MISO, SPI3_MOSI/I2S3_SD,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CAN1_RX, FMC_D2,</td>
<td>EVENTOUT</td>
</tr>
<tr>
<td>- 82 C4</td>
<td>PD1</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D10 115</td>
<td></td>
<td></td>
<td></td>
<td>SPI2_NSS/I2S2_WS,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CAN1_TX, FMC_D3,</td>
<td>EVENTOUT</td>
</tr>
<tr>
<td>54 83 D5</td>
<td>PD2</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E9 116</td>
<td></td>
<td></td>
<td></td>
<td>TIM3_ETR, UART5_RX,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SDIO_CMD, DCMI_D11,</td>
<td>EVENTOUT</td>
</tr>
<tr>
<td>- 84 D9</td>
<td>PD3</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>117</td>
<td></td>
<td></td>
<td></td>
<td>TRACED1, SPI2_SCK/I2S2_CK,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>USART2_CTS, QUADSPI_CLK,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FMC_CLK, DCMI_D5,</td>
<td>EVENTOUT</td>
</tr>
<tr>
<td>- 85 A3</td>
<td>PD4</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C9 118</td>
<td></td>
<td></td>
<td></td>
<td>USART2_RTS, FMC_NOE,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EVENTOUT</td>
<td></td>
</tr>
<tr>
<td>- 86 B9</td>
<td>PD5</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td>USART2_TX, FMC_NWE,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EVENTOUT</td>
<td></td>
</tr>
<tr>
<td>- E7</td>
<td>VSS</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- F7</td>
<td>VDD</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pin Number</td>
<td>Pin name (function after reset)</td>
<td>Pin type</td>
<td>I/O structure</td>
<td>Notes</td>
<td>Alternate functions</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------------</td>
<td>----------</td>
<td>---------------</td>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td>LQFP64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQFP100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WLCSP 81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UFBGA144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LQFP144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 87</td>
<td>B4</td>
<td>A8</td>
<td>122</td>
<td>PD6</td>
<td>I/O FT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 88</td>
<td>A4</td>
<td>A9</td>
<td>123</td>
<td>PD7</td>
<td>I/O FT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- - -</td>
<td>E8</td>
<td>124</td>
<td>PG9</td>
<td>I/O</td>
<td>FT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- - -</td>
<td>D8</td>
<td>125</td>
<td>PG10</td>
<td>I/O</td>
<td>FT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- - -</td>
<td>C8</td>
<td>126</td>
<td>PG11</td>
<td>I/O</td>
<td>FT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- - -</td>
<td>B8</td>
<td>127</td>
<td>PG12</td>
<td>I/O</td>
<td>FT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- - -</td>
<td>D7</td>
<td>128</td>
<td>PG13</td>
<td>I/O</td>
<td>FT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- - -</td>
<td>C7</td>
<td>129</td>
<td>PG14</td>
<td>I/O</td>
<td>FT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- - - -</td>
<td>130</td>
<td>VSS</td>
<td>S</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- - - -</td>
<td>F6</td>
<td>131</td>
<td>VDD</td>
<td>S</td>
<td>-</td>
</tr>
<tr>
<td>- - - -</td>
<td>B7</td>
<td>132</td>
<td>PG15</td>
<td>I/O</td>
<td>FT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55 89</td>
<td>A5</td>
<td>A7</td>
<td>133</td>
<td>PB3(JTDO/TRACES WO)</td>
<td>I/O FT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pin Number</td>
<td>Pin name (function after reset)</td>
<td>Pin type</td>
<td>I/O structure</td>
<td>Notes</td>
<td>Alternate functions</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------------------</td>
<td>----------</td>
<td>---------------</td>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td>56 90 B5 A6 A6 134</td>
<td>PB4(NJTRST)</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>NJTRST, TIM3_CH1, I2C3_SDA, SPI1_MISO, SPI3_MISO, SPI2_NSS/I2S2_WS, EVENTOUT</td>
</tr>
<tr>
<td>57 91 A6 B6 B6 135</td>
<td>PB5</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>TIM3_CH2, I2C1_SMBA, SPI1_MOSI/I2S1_SD, SPI3_MOSI/I2S3_SD, CAN2_RX, OTG_HS_ULPI_D7, FMC_SDCEK1, DCMI_D10, EVENTOUT</td>
</tr>
<tr>
<td>58 92 C5 C6 C6 136</td>
<td>PB6</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>TIM4_CH1, HDMI_CEC, I2C1_SCL, USART1_TX, CAN2_TX, QUADSPI_BK1_NCS, FMC_SDNE1, DCMI_D5, EVENTOUT</td>
</tr>
<tr>
<td>59 93 B6 D6 D6 137</td>
<td>PB7</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>TIM4_CH2, I2C1_SDA, USART1_RX, SPDIFRX_IN0, FMC_NL, DCMI_VSYNC, EVENTOUT</td>
</tr>
<tr>
<td>60 94 A7 D5 D5 138</td>
<td>BOOT0</td>
<td>I</td>
<td>B</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61 95 C6 C5 C6 139</td>
<td>PB8</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>TIM2_CH1/TIM2_ETR, TIM4_Ch3, TIM10_Ch1, I2C1_SCL, CAN1_RX, SDIO_D4, DCMI_D6, EVENTOUT</td>
</tr>
<tr>
<td>62 96 C7 B5 B5 140</td>
<td>PB9</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>TIM2_CH2, TIM4_CH4, TIM11_CH1, I2C1_SDA, SPI2_NSS/I2S2_WS, SA11_FS_B, CAN1_TX, SDIO_D5, DCMI_D7, EVENTOUT</td>
</tr>
<tr>
<td>- 97 - A5 A5 141</td>
<td>PE0</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>TIM4_ETR, SA2_MCLK_A, FMC_NBL0, DCMI_D2, EVENTOUT</td>
</tr>
<tr>
<td>- 98 - A4 A4 142</td>
<td>PE1</td>
<td>I/O</td>
<td>FT</td>
<td>-</td>
<td>FMC_NBL1, DCMI_D3, EVENTOUT</td>
</tr>
<tr>
<td>Pin Number</td>
<td>Pin name (function after reset)</td>
<td>Pin type</td>
<td>I/O structure</td>
<td>Notes</td>
<td>Alternate functions</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------</td>
<td>----------</td>
<td>---------------</td>
<td>-------</td>
<td>---------------------</td>
</tr>
<tr>
<td>63 99 B7 E6</td>
<td>VSS</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>- - B8 E5 143</td>
<td>PDR_ON</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>64 100 A8 F5 144</td>
<td>VDD</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1. PA11, PA12, PB14 and PB15 I/Os are supplied by VDDUSB
<table>
<thead>
<tr>
<th>Port A</th>
<th>AF0</th>
<th>AF1</th>
<th>AF2</th>
<th>AF3</th>
<th>AF4</th>
<th>AF5</th>
<th>AF6</th>
<th>AF7</th>
<th>AF8</th>
<th>AF9</th>
<th>AF10</th>
<th>AF11</th>
<th>AF12</th>
<th>AF13</th>
<th>AF14</th>
<th>AF15</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA0</td>
<td>-</td>
<td>T1M2.CH1/ TIM2.ETR</td>
<td>TIM5.CH1</td>
<td>TIM8.ETR</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>USART2. CTS</td>
<td>U4.RX</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PA1</td>
<td>-</td>
<td>T1M2.CH2</td>
<td>TIM5.CH2</td>
<td>TIM8.ETR</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>USART2. CTS</td>
<td>U4.RX</td>
<td>QUADSP1. BK1.IO3</td>
<td>SA1. MCLK.B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PA2</td>
<td>-</td>
<td>T1M2.CH3</td>
<td>TIM5.CH3</td>
<td>TIM8.ETR</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>USART2. CTS</td>
<td>U4.RX</td>
<td>SA1. SCK.B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PA3</td>
<td>-</td>
<td>T1M2.CH4</td>
<td>TIM5.CH4</td>
<td>TIM8.ETR</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>USART2. CTS</td>
<td>U4.RX</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PA4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SP11.NSS/I 2ST.WS</td>
<td>SP13.NSS/I 2ST3.WS</td>
<td>USART2. CTS</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PA5</td>
<td>-</td>
<td>T1M2.CH1/ TIM2.ETR</td>
<td>TIM8. CH1N</td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PA6</td>
<td>-</td>
<td>T1M1. BKIN</td>
<td>TIM3.CH1</td>
<td>TIM8. CH1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SP11.MISO</td>
<td>I2S2.MCK</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>TIM13.CH1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PA7</td>
<td>-</td>
<td>T1M1. CH1N</td>
<td>TIM3.CH2</td>
<td>TIM8. CH1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SP11.MOSI</td>
<td>I2S1.SD</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>TIM14.CH1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PA8</td>
<td>MCO1</td>
<td>TIM1.CH1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I2C3_SCL</td>
<td>-</td>
<td>-</td>
<td>USART1. CTS</td>
<td>-</td>
<td>-</td>
<td>OTG_FS. SOF</td>
<td>-</td>
</tr>
<tr>
<td>PA9</td>
<td>-</td>
<td>TIM1.CH2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>I2C3.SMB</td>
<td>A</td>
<td>SP12.SCK</td>
<td>I2S2.CK</td>
<td>SA1. SD.B</td>
<td>USART1. TX</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PA10</td>
<td>-</td>
<td>TIM1.CH3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>USART1. CTS</td>
<td>-</td>
<td>-</td>
<td>OTG_FS. ID</td>
<td>-</td>
</tr>
<tr>
<td>PA11</td>
<td>-</td>
<td>TIM1.CH4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>USART1. CTS</td>
<td>-</td>
<td>CAN1. RX</td>
<td>OTG_FS. DP</td>
<td>-</td>
</tr>
<tr>
<td>PA12</td>
<td>-</td>
<td>TIM1.ETR</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>USART1. CTS</td>
<td>-</td>
<td>-</td>
<td>CAN1.TX</td>
<td>OTG_FS. DP</td>
</tr>
<tr>
<td>PA13</td>
<td>-</td>
<td>JTMS. SWDIO</td>
<td>-</td>
</tr>
<tr>
<td>PA14</td>
<td>-</td>
<td>JTCK. SWCLK</td>
<td>-</td>
</tr>
<tr>
<td>PA15</td>
<td>-</td>
<td>TIM2.CH1/ TIM2.ETR</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>HDMI.CEC</td>
<td>SP11.NSS/I 2ST1.WS</td>
<td>SP13.NSS/I 2ST3.WS</td>
<td>USART1. TX</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 11. Alternate function
<table>
<thead>
<tr>
<th>Port</th>
<th>AF0</th>
<th>AF1</th>
<th>AF2</th>
<th>AF3</th>
<th>AF4</th>
<th>AF5</th>
<th>AF6</th>
<th>AF7</th>
<th>AF8</th>
<th>AF9</th>
<th>AF10</th>
<th>AF11</th>
<th>AF12</th>
<th>AF13</th>
<th>AF14</th>
<th>AF15</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB0</td>
<td>-</td>
<td>TIM1_CH2N</td>
<td>TIM3_CH3</td>
<td>TIM8_CH2N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SP3_MOS I2S3_SD</td>
<td>UART4CTS</td>
<td>-</td>
<td>OTG_HS ULPI_D1</td>
<td>-</td>
<td>SDIO_D1</td>
<td>-</td>
</tr>
<tr>
<td>PB1</td>
<td>-</td>
<td>TIM1_CH3N</td>
<td>TIM3_CH4</td>
<td>TIM8_CH3N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SAI1_SD_A</td>
<td>SP3_MOS I2S3_SD</td>
<td>-</td>
<td>QUADSPI CLK</td>
<td>OTG_HS ULPI_D4</td>
<td>-</td>
<td>SDIO_OK</td>
</tr>
<tr>
<td>PB2</td>
<td>-</td>
<td>TIM2_CH4</td>
<td>-</td>
<td>-</td>
<td>TIM3_MOS</td>
<td>I2S3_SD</td>
<td>SAI1_SD_A</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PB3</td>
<td>JTDI/ TRACES WD</td>
<td>TIM2_CH2</td>
<td>-</td>
<td>-</td>
<td>I2C2 SDA</td>
<td>SPI1_SCK I2S1_CLK</td>
<td>SPI3_SCK I2S3_CLK</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PB4</td>
<td>JTTRST</td>
<td>TIM3_CH1</td>
<td>-</td>
<td>-</td>
<td>I2C3 SDA</td>
<td>SPI1_MISO</td>
<td>SP3_MISO</td>
<td>I2S2 WS</td>
<td>-</td>
<td>-</td>
<td>CAN2_RX</td>
<td>OTG_HS ULPI_D7</td>
<td>-</td>
<td>FMC SDCE1</td>
<td>DCM1 D10</td>
<td>-</td>
</tr>
<tr>
<td>PB5</td>
<td>-</td>
<td>TIM3_CH2</td>
<td>-</td>
<td>-</td>
<td>I2C1 SMBA</td>
<td>SPI1_MOSI I2S1_SD</td>
<td>SPI3_MOSI I2S3_SD</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>CAN2_RX</td>
<td>OTG_HS ULPI_D8</td>
<td>-</td>
<td>FMC NL</td>
<td>DCM1 D9</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PB6</td>
<td>-</td>
<td>TIM4_CH1</td>
<td>-</td>
<td>-</td>
<td>HDMI CEC</td>
<td>I2C1 SCL</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UART1 TX</td>
<td>CAN2_TX</td>
<td>QUADSPI BK1_NCS</td>
<td>-</td>
</tr>
<tr>
<td>PB7</td>
<td>-</td>
<td>TIM4_CH2</td>
<td>-</td>
<td>-</td>
<td>I2C1 SCL</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UART1 RX</td>
<td>SPDIF0_RX0</td>
<td>-</td>
<td>FMC NL</td>
</tr>
<tr>
<td>PB8</td>
<td>-</td>
<td>TIM2_CH1/ TIM2_ETR</td>
<td>TIM4_CH3</td>
<td>TIM10 CH1</td>
<td>I2C1 SCL</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>CAN1_RX</td>
<td>-</td>
<td>SDIO_D4</td>
<td>DCM1_D6</td>
</tr>
<tr>
<td>PB9</td>
<td>-</td>
<td>TIM2 CH2</td>
<td>TIM4 CH4</td>
<td>TIM11 CH1</td>
<td>I2C1 SCL</td>
<td>SPI2_NSSI2S2 WS</td>
<td>SPI1_SCK I2S1_CLK</td>
<td>SPI3_SCK I2S3_CLK</td>
<td>SA11 SCK_B</td>
<td>-</td>
<td>-</td>
<td>CAN1_TX</td>
<td>-</td>
<td>SDIO_D5</td>
<td>DCM1_D7</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PB10</td>
<td>-</td>
<td>TIM2_CH3</td>
<td>-</td>
<td>-</td>
<td>I2C2 SCL</td>
<td>SPI2_SCK I2S2_CLK</td>
<td>SPI1_SCK I2S1_CLK</td>
<td>SPI3_SCK I2S3_CLK</td>
<td>SA11_SCK_A</td>
<td>UART3_TX</td>
<td>-</td>
<td>-</td>
<td>CAN1_TX</td>
<td>-</td>
<td>OTG_HS ULPI_D3</td>
<td>-</td>
</tr>
<tr>
<td>PB11</td>
<td>-</td>
<td>TIM2_CH4</td>
<td>-</td>
<td>-</td>
<td>I2C2 SCL</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>UART3_RX</td>
<td>SA2_SDA</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PB12</td>
<td>-</td>
<td>TIM1 BK0N</td>
<td>-</td>
<td>-</td>
<td>I2C2 SMBA</td>
<td>SPI2_NSSI2S2 WS</td>
<td>SPI1_SCK I2S1_CLK</td>
<td>SPI3_SCK I2S3_CLK</td>
<td>SA11_SCK_B</td>
<td>UART3_CTS</td>
<td>-</td>
<td>CAN2_RX</td>
<td>OTG_HS ULPI_D5</td>
<td>-</td>
<td>OTG_HS_ID</td>
<td>-</td>
</tr>
<tr>
<td>PB13</td>
<td>-</td>
<td>TIM1 CH1N</td>
<td>-</td>
<td>-</td>
<td>SPI2 SCK I2S2_CLK</td>
<td>SPI1_SCK I2S1_CLK</td>
<td>SPI3_SCK I2S3_CLK</td>
<td>SA11_SCK_B</td>
<td>UART3_CTS</td>
<td>-</td>
<td>CAN2_TX</td>
<td>OTG_HS ULPI_D6</td>
<td>-</td>
<td>OTG_HS_D0</td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PB14</td>
<td>-</td>
<td>TIM1 CH2N</td>
<td>-</td>
<td>-</td>
<td>SPI2_MISO I2S2_SD</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>USA3_RTS</td>
<td>TIM12 CH1</td>
<td>-</td>
<td>OTG_HS_D1</td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PB15</td>
<td>RTC REF</td>
<td>TIM1 CH3N</td>
<td>-</td>
<td>-</td>
<td>SPI2_MISO I2S2_SD</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>USA3_RTS</td>
<td>TIM12_CH2</td>
<td>-</td>
<td>OTG_HS_D0</td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
</tbody>
</table>
Table 11. Alternate function (continued)

<table>
<thead>
<tr>
<th>Port</th>
<th>AF0</th>
<th>AF1</th>
<th>AF2</th>
<th>AF3</th>
<th>AF4</th>
<th>AF5</th>
<th>AF6</th>
<th>AF7</th>
<th>AF8</th>
<th>AF9</th>
<th>AF10</th>
<th>AF11</th>
<th>AF12</th>
<th>AF13</th>
<th>AF14</th>
<th>AF15</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC0</td>
<td></td>
</tr>
<tr>
<td>PC1</td>
<td></td>
</tr>
<tr>
<td>PC2</td>
<td></td>
</tr>
<tr>
<td>PC3</td>
<td></td>
</tr>
<tr>
<td>PC4</td>
<td></td>
</tr>
<tr>
<td>PC5</td>
<td></td>
</tr>
<tr>
<td>PC6</td>
<td></td>
</tr>
<tr>
<td>PC7</td>
<td></td>
</tr>
<tr>
<td>PC8</td>
<td></td>
</tr>
<tr>
<td>PC9</td>
<td></td>
</tr>
<tr>
<td>PC10</td>
<td></td>
</tr>
<tr>
<td>PC11</td>
<td></td>
</tr>
<tr>
<td>PC12</td>
<td></td>
</tr>
<tr>
<td>PC13</td>
<td></td>
</tr>
<tr>
<td>PC14</td>
<td></td>
</tr>
<tr>
<td>PC15</td>
<td></td>
</tr>
</tbody>
</table>

Table notes:
- Port: Port number
- AF0 to AF15: Alternate function pins
- SYS: System
- TIM1/2: Timer 1/2
- TIM8/9/10/11/CEC: Timer 8/9/10/11
- I2C1/2/3/4/CEC: I2C 1/2/3/4
- SPI2/3/4/SAI1: SPI 2/3/4/SAI 1
- SPI2/3/USART/SPDIFRX: SPI 2/3/USART/SPDIFRX
- SAI2/QUADSPI/OTG2_HS/OTG1_FS: SAI2/QUADSPI/OTG2_HS/OTG1_FS
- FMC/SDIO/OTG2_FS: FMC/SDIO/OTG2_FS
- DCMI: DCMI
- EVENT OUT: Event output

Table continued...
<table>
<thead>
<tr>
<th>Port</th>
<th>AF0</th>
<th>AF1</th>
<th>AF2</th>
<th>AF3</th>
<th>AF4</th>
<th>AF5</th>
<th>AF6</th>
<th>AF7</th>
<th>AF8</th>
<th>AF9</th>
<th>AF10</th>
<th>AF11</th>
<th>AF12</th>
<th>AF13</th>
<th>AF14</th>
<th>AF15</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD0</td>
<td>-</td>
</tr>
<tr>
<td>PD1</td>
<td>-</td>
</tr>
<tr>
<td>PD2</td>
<td>-</td>
</tr>
<tr>
<td>PD3</td>
<td>-</td>
</tr>
<tr>
<td>PD4</td>
<td>-</td>
</tr>
<tr>
<td>PD5</td>
<td>-</td>
</tr>
<tr>
<td>PD6</td>
<td>-</td>
</tr>
<tr>
<td>PD7</td>
<td>-</td>
</tr>
<tr>
<td>PD8</td>
<td>-</td>
</tr>
<tr>
<td>PD9</td>
<td>-</td>
</tr>
<tr>
<td>PD10</td>
<td>-</td>
</tr>
<tr>
<td>PD11</td>
<td>-</td>
</tr>
<tr>
<td>PD12</td>
<td>-</td>
</tr>
<tr>
<td>PD13</td>
<td>-</td>
</tr>
<tr>
<td>PD14</td>
<td>-</td>
</tr>
<tr>
<td>PD15</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 11. Alternate function (continued)
<table>
<thead>
<tr>
<th>Port</th>
<th>AF0</th>
<th>AF1</th>
<th>AF2</th>
<th>AF3</th>
<th>AF4</th>
<th>AF5</th>
<th>AF6</th>
<th>AF7</th>
<th>AF8</th>
<th>AF9</th>
<th>AF10</th>
<th>AF11</th>
<th>AF12</th>
<th>AF13</th>
<th>AF14</th>
<th>AF15</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE0</td>
<td>-</td>
</tr>
<tr>
<td>PE1</td>
<td>-</td>
</tr>
<tr>
<td>PE2</td>
<td>TRACE_CLK</td>
<td>-</td>
</tr>
<tr>
<td>PE3</td>
<td>TRACE_D0</td>
<td>-</td>
</tr>
<tr>
<td>PE4</td>
<td>TRACE_D1</td>
<td>-</td>
</tr>
<tr>
<td>PE5</td>
<td>TRACE_D2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>TIM9_CH1</td>
<td>-</td>
</tr>
<tr>
<td>PE6</td>
<td>TRACE_D3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>TIM9_CH2</td>
<td>-</td>
</tr>
<tr>
<td>PE7</td>
<td>TIM1_ETR</td>
<td>-</td>
</tr>
<tr>
<td>PE8</td>
<td>TIM1_CH1N</td>
<td>-</td>
</tr>
<tr>
<td>PE9</td>
<td>TIM1_CH1</td>
<td>-</td>
</tr>
<tr>
<td>PE10</td>
<td>TIM1_CH2N</td>
<td>-</td>
</tr>
<tr>
<td>PE11</td>
<td>TIM1_CH2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>TIM9_CH1</td>
<td>-</td>
</tr>
<tr>
<td>PE12</td>
<td>TIM1_CH3N</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SP4_MISO</td>
<td>-</td>
</tr>
<tr>
<td>PE13</td>
<td>TIM1_CH3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SP4_MISO</td>
<td>-</td>
</tr>
<tr>
<td>PE14</td>
<td>TIM1_CH4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>SP4_MISO</td>
<td>-</td>
</tr>
<tr>
<td>PE15</td>
<td>TIM1_BKIN</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 11. Alternate function (continued)
<table>
<thead>
<tr>
<th>Port</th>
<th>AF0</th>
<th>AF1</th>
<th>AF2</th>
<th>AF3</th>
<th>AF4</th>
<th>AF5</th>
<th>AF6</th>
<th>AF7</th>
<th>AF8</th>
<th>AF9</th>
<th>AF10</th>
<th>AF11</th>
<th>AF12</th>
<th>AF13</th>
<th>AF14</th>
<th>AF15</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF0</td>
<td></td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PF1</td>
<td></td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PF2</td>
<td></td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PF3</td>
<td></td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PF4</td>
<td></td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PF5</td>
<td></td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PF6</td>
<td></td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PF7</td>
<td></td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PF8</td>
<td></td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PF9</td>
<td></td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PF10</td>
<td></td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PF11</td>
<td></td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PF12</td>
<td></td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PF13</td>
<td></td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PF14</td>
<td></td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PF15</td>
<td></td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>Port</td>
<td>AF0</td>
<td>AF1</td>
<td>AF2</td>
<td>AF3</td>
<td>AF4</td>
<td>AF5</td>
<td>AF6</td>
<td>AF7</td>
<td>AF8</td>
<td>AF9</td>
<td>AF10</td>
<td>AF11</td>
<td>AF12</td>
<td>AF13</td>
<td>AF14</td>
<td>AF15</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>PG0</td>
<td>-</td>
<td>FMC_A10</td>
<td>-</td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PG1</td>
<td>-</td>
<td>FMC_A11</td>
<td>-</td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PG2</td>
<td>-</td>
<td>FMC_A12</td>
<td>-</td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PG3</td>
<td>-</td>
<td>FMC_A13</td>
<td>-</td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PG4</td>
<td>-</td>
<td>FMC_A14/FMC_BA0</td>
<td>-</td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PG5</td>
<td>-</td>
<td>FMC_A15/FMC_BA1</td>
<td>-</td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PG6</td>
<td>-</td>
<td>QUADSPI_BK1_NCS</td>
<td>-</td>
<td>-</td>
<td>DCMI_D12</td>
</tr>
<tr>
<td>PG7</td>
<td>-</td>
<td>USART6_CK</td>
<td>-</td>
<td>-</td>
<td>FMC_INT</td>
</tr>
<tr>
<td>PG8</td>
<td>-</td>
<td>USART6_R</td>
<td>-</td>
<td>-</td>
<td>FMC_SDCLK</td>
</tr>
<tr>
<td>PG9</td>
<td>-</td>
<td>SPDIFRX_IN3</td>
<td>-</td>
<td>-</td>
<td>USART6_RX</td>
</tr>
<tr>
<td>PG10</td>
<td>-</td>
<td>SPDIFRX_BK2_IO2</td>
<td>-</td>
<td>-</td>
<td>SAI2_FS_B</td>
</tr>
<tr>
<td>PG11</td>
<td>-</td>
<td>SAI2_SD_B</td>
<td>-</td>
<td>-</td>
<td>FMC_NE3</td>
</tr>
<tr>
<td>PG12</td>
<td>-</td>
<td>SPI4_SCK</td>
<td>-</td>
<td>-</td>
<td>DCMI_D3</td>
</tr>
<tr>
<td>PG13</td>
<td>-</td>
<td>SPI4_MISO</td>
<td>-</td>
<td>-</td>
<td>USART6CTS</td>
</tr>
<tr>
<td>PG14</td>
<td>-</td>
<td>SPI4_NSS</td>
<td>-</td>
<td>-</td>
<td>USART6_Tx</td>
</tr>
<tr>
<td>PG15</td>
<td>-</td>
<td>USART6_CTS</td>
<td>-</td>
<td>-</td>
<td>FMC_SDN</td>
</tr>
</tbody>
</table>

Table 11. Alternate function (continued)
<table>
<thead>
<tr>
<th>Port</th>
<th>AF0</th>
<th>AF1</th>
<th>AF2</th>
<th>AF3</th>
<th>AF4</th>
<th>AF5</th>
<th>AF6</th>
<th>AF7</th>
<th>AF8</th>
<th>AF9</th>
<th>AF10</th>
<th>AF11</th>
<th>AF12</th>
<th>AF13</th>
<th>AF14</th>
<th>AF15</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH0</td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
<tr>
<td>PH1</td>
<td>-</td>
<td>EVENT OUT</td>
</tr>
</tbody>
</table>

1. The DCMI_VSYNC alternate function on PG9 is only available on silicon revision 3.
5 Memory mapping

The memory map is shown in Figure 15.
Table 12. STM32F446xC/E register boundary addresses(1)

<table>
<thead>
<tr>
<th>Bus</th>
<th>Boundary address</th>
<th>Peripheral</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>0xE00 0000 - 0xE000 FFFF</td>
<td>Reserved</td>
</tr>
<tr>
<td>Cortex-M4</td>
<td>0xE000 0000 - 0xE00F FFFF</td>
<td>Cortex-M4 internal peripherals</td>
</tr>
<tr>
<td>AHB3</td>
<td>0xD000 0000 - 0xDFFF FFFF</td>
<td>FMC bank 6</td>
</tr>
<tr>
<td></td>
<td>0xC000 0000 - 0xCFFF FFFF</td>
<td>FMC bank 5</td>
</tr>
<tr>
<td></td>
<td>0xA000 2000 - 0xA000 BFFF</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>0xA000 1000 - 0xA000 1FFF</td>
<td>QuadSPI control register</td>
</tr>
<tr>
<td></td>
<td>0xA000 0000 - 0xA000 0FFF</td>
<td>FMC control register</td>
</tr>
<tr>
<td></td>
<td>0x9000 0000 - 0x9FFF FFFF</td>
<td>QuadSPI</td>
</tr>
<tr>
<td></td>
<td>0x8000 0000 - 0x8FFF FFFF</td>
<td>FMC bank 3</td>
</tr>
<tr>
<td></td>
<td>0x7000 0000 - 0x7FFF FFFF</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>0x6000 0000 - 0x6FFF FFFF</td>
<td>FMC bank 1</td>
</tr>
<tr>
<td>AHB2</td>
<td>0x5006 0800 - 0x500F 07FF</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>0x5005 0400 - 0x5006 07FF</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>0x5005 0000 - 0x5005 03FF</td>
<td>DCMI</td>
</tr>
<tr>
<td></td>
<td>0x5004 0000 - 0x5004 FFFF</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>0x5000 0000 - 0x5003 FFFF</td>
<td>USB OTG FS</td>
</tr>
</tbody>
</table>
Table 12. STM32F446xC/E register boundary addresses

<table>
<thead>
<tr>
<th>Bus</th>
<th>Boundary address</th>
<th>Peripheral</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0x4008 0000 - 0x4008 FFFF</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>0x4004 0000 - 0x4007 FFFF</td>
<td>USB OTG HS</td>
</tr>
<tr>
<td></td>
<td>0x4002 BC00 - 0x4003 FFFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x4002 B000 - 0x4002 BBFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x4002 9400 - 0x4002 AFFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x4002 9000 - 0x4002 93FF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x4002 8C00 - 0x4002 8FFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x4002 8800 - 0x4002 8BFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x4002 8400 - 0x4002 87FF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x4002 8000 - 0x4002 83FF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x4002 6800 - 0x4002 7FFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x4002 6400 - 0x4002 67FF</td>
<td>DMA2</td>
</tr>
<tr>
<td></td>
<td>0x4002 6000 - 0x4002 63FF</td>
<td>DMA1</td>
</tr>
<tr>
<td></td>
<td>0x4002 5000 - 0x4002 5FFF</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>0x4002 4000 - 0x4002 4FFF</td>
<td>BKPSRAM</td>
</tr>
<tr>
<td></td>
<td>0x4002 3C00 - 0x4002 3FFF</td>
<td>Flash interface register</td>
</tr>
<tr>
<td></td>
<td>0x4002 3800 - 0x4002 3BFF</td>
<td>RCC</td>
</tr>
<tr>
<td></td>
<td>0x4002 3400 - 0x4002 37FF</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>0x4002 3000 - 0x4002 33FF</td>
<td>CRC</td>
</tr>
<tr>
<td></td>
<td>0x4002 2C00 - 0x4002 2FFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x4002 2800 - 0x4002 2BFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x4002 2400 - 0x4002 27FF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x4002 2000 - 0x4002 23FF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x4002 1C00 - 0x4002 1FFF</td>
<td>GPIOH</td>
</tr>
<tr>
<td></td>
<td>0x4002 1800 - 0x4002 1BFF</td>
<td>GPIOG</td>
</tr>
<tr>
<td></td>
<td>0x4002 1400 - 0x4002 17FF</td>
<td>GPIOF</td>
</tr>
<tr>
<td></td>
<td>0x4002 1000 - 0x4002 13FF</td>
<td>GPIOE</td>
</tr>
<tr>
<td></td>
<td>0x4002 0C00 - 0x4002 0FFF</td>
<td>GPIOD</td>
</tr>
<tr>
<td></td>
<td>0x4002 0800 - 0x4002 0BFF</td>
<td>GPIOC</td>
</tr>
<tr>
<td></td>
<td>0x4002 0400 - 0x4002 07FF</td>
<td>GPIOB</td>
</tr>
<tr>
<td></td>
<td>0x4002 0000 - 0x4002 03FF</td>
<td>GPIOA</td>
</tr>
<tr>
<td>AHB1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bus</td>
<td>Boundary address</td>
<td>Peripheral</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>0x4001 6C00 - 0x4001 FFFF</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>0x4001 6800 - 0x4001 6BFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x4001 5C00 - 0x4001 5FFF</td>
<td>SAI2</td>
</tr>
<tr>
<td></td>
<td>0x4001 6000 - 0x4001 67FF</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>0x4001 5800 - 0x4001 5BFF</td>
<td>SAI1</td>
</tr>
<tr>
<td></td>
<td>0x4001 5400 - 0x4001 57FF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x4001 5000 - 0x4001 53FF</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>0x4001 4C00 - 0x4001 4FFF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0x4001 4800 - 0x4001 4BFF</td>
<td>TIM11</td>
</tr>
<tr>
<td></td>
<td>0x4001 4400 - 0x4001 47FF</td>
<td>TIM10</td>
</tr>
<tr>
<td></td>
<td>0x4001 4000 - 0x4001 43FF</td>
<td>TIM9</td>
</tr>
<tr>
<td></td>
<td>0x4001 3C00 - 0x4001 3FFF</td>
<td>EXTI</td>
</tr>
<tr>
<td></td>
<td>0x4001 3800 - 0x4001 3BFF</td>
<td>SYSCFG</td>
</tr>
<tr>
<td></td>
<td>0x4001 3400 - 0x4001 37FF</td>
<td>SPI4</td>
</tr>
<tr>
<td></td>
<td>0x4001 3000 - 0x4001 33FF</td>
<td>SPI1</td>
</tr>
<tr>
<td></td>
<td>0x4001 2C00 - 0x4001 2FFF</td>
<td>SDIO</td>
</tr>
<tr>
<td></td>
<td>0x4001 2400 - 0x4001 2BFF</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>0x4001 2000 - 0x4001 1FFF</td>
<td>ADC1 - ADC2 - ADC3</td>
</tr>
<tr>
<td></td>
<td>0x4001 1800 - 0x4001 1FFFF</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>0x4001 1400 - 0x4001 17FF</td>
<td>USART6</td>
</tr>
<tr>
<td></td>
<td>0x4001 1000 - 0x4001 13FF</td>
<td>USART1</td>
</tr>
<tr>
<td></td>
<td>0x4001 0800 - 0x4001 0FFFF</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>0x4001 0400 - 0x4001 07FF</td>
<td>TIM8</td>
</tr>
<tr>
<td></td>
<td>0x4001 0000 - 0x4001 03FF</td>
<td>TIM1</td>
</tr>
</tbody>
</table>
Table 12. STM32F446x/C/E register boundary addresses (1) (continued)

<table>
<thead>
<tr>
<th>Bus</th>
<th>Boundary address</th>
<th>Peripheral</th>
</tr>
</thead>
<tbody>
<tr>
<td>APB1</td>
<td>0x4000 8000 - 0x4000 FFFF</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>0x4000 7C00 - 0x4000 7FFF</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>0x4000 7800 - 0x4000 7BFF</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>0x4000 7400 - 0x4000 77FF</td>
<td>DAC</td>
</tr>
<tr>
<td></td>
<td>0x4000 7000 - 0x4000 73FF</td>
<td>PWR</td>
</tr>
<tr>
<td></td>
<td>0x4000 6C00 - 0x4000 6FFF</td>
<td>HDMI-CEC</td>
</tr>
<tr>
<td></td>
<td>0x4000 6800 - 0x4000 6BFF</td>
<td>CAN2</td>
</tr>
<tr>
<td></td>
<td>0x4000 6400 - 0x4000 67FF</td>
<td>CAN1</td>
</tr>
<tr>
<td></td>
<td>0x4000 6000 - 0x4000 63FF</td>
<td>FMPI2C1</td>
</tr>
<tr>
<td></td>
<td>0x4000 5C00 - 0x4000 5FFF</td>
<td>I2C3</td>
</tr>
<tr>
<td></td>
<td>0x4000 5800 - 0x4000 5BFF</td>
<td>I2C2</td>
</tr>
<tr>
<td></td>
<td>0x4000 5400 - 0x4000 57FF</td>
<td>I2C1</td>
</tr>
<tr>
<td></td>
<td>0x4000 5000 - 0x4000 53FF</td>
<td>UART5</td>
</tr>
<tr>
<td></td>
<td>0x4000 4C00 - 0x4000 4FFF</td>
<td>UART4</td>
</tr>
<tr>
<td></td>
<td>0x4000 4800 - 0x4000 4BFF</td>
<td>USART3</td>
</tr>
<tr>
<td></td>
<td>0x4000 4400 - 0x4000 47FF</td>
<td>USART2</td>
</tr>
<tr>
<td></td>
<td>0x4000 3C00 - 0x4000 3FFF</td>
<td>SPDIFRX</td>
</tr>
<tr>
<td></td>
<td>0x4000 3800 - 0x4000 3BFF</td>
<td>SPI3 / I2S3</td>
</tr>
<tr>
<td></td>
<td>0x4000 3400 - 0x4000 37FF</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>0x4000 3000 - 0x4000 33FF</td>
<td>IWDG</td>
</tr>
<tr>
<td></td>
<td>0x4000 2C00 - 0x4000 2FFF</td>
<td>WWDG</td>
</tr>
<tr>
<td></td>
<td>0x4000 2800 - 0x4000 2BFF</td>
<td>RTC & BKP Registers</td>
</tr>
<tr>
<td></td>
<td>0x4000 2400 - 0x4000 27FF</td>
<td>Reserved</td>
</tr>
<tr>
<td></td>
<td>0x4000 2000 - 0x4000 23FF</td>
<td>TIM14</td>
</tr>
<tr>
<td></td>
<td>0x4000 1C00 - 0x4000 1FFF</td>
<td>TIM13</td>
</tr>
<tr>
<td></td>
<td>0x4000 1800 - 0x4000 1BFF</td>
<td>TIM12</td>
</tr>
<tr>
<td></td>
<td>0x4000 1400 - 0x4000 17FF</td>
<td>TIM7</td>
</tr>
<tr>
<td></td>
<td>0x4000 1000 - 0x4000 13FF</td>
<td>TIM6</td>
</tr>
<tr>
<td></td>
<td>0x4000 0C00 - 0x4000 0FFF</td>
<td>TIM5</td>
</tr>
<tr>
<td></td>
<td>0x4000 0800 - 0x4000 0BFF</td>
<td>TIM4</td>
</tr>
<tr>
<td></td>
<td>0x4000 0400 - 0x4000 07FF</td>
<td>TIM3</td>
</tr>
<tr>
<td></td>
<td>0x4000 0000 - 0x4000 03FF</td>
<td>TIM2</td>
</tr>
</tbody>
</table>

1. The grey color is used for reserved boundary addresses.
6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to \(V_{SS} \).

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at \(T_A = 25 \, ^\circ C \) and \(T_A = T_{A\text{max}} \) (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (\(\text{mean} \pm 3\sigma \)).

6.1.2 Typical values

Unless otherwise specified, typical data are based on \(T_A = 25 \, ^\circ C \), \(V_{DD} = 3.3 \, V \) (for the \(1.7 \, V \leq V_{DD} \leq 3.6 \, V \) voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (\(\text{mean} \pm 2\sigma \)).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 16.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 17.
6.1.6 Power supply scheme

Figure 18. Power supply scheme

1. \(V_{DDA} \) and \(V_{SSA} \) must be connected to \(V_{DD} \) and \(V_{SS} \), respectively.
2. \(V_{DDUSB} \) is a dedicated independent USB power supply for the on-chip full-speed OTG PHY module and associated DP/DM GPIOs. Its value is independent from the \(V_{DD} \) and \(V_{DDA} \) values, but must be the last supply to be provided and the first to disappear. If \(V_{DD} \) is different from \(V_{DDUSB} \) and only one on-chip OTG PHY is used, the second OTG PHY GPIOs (DP/DM) are still supplied at \(V_{DDUSB} \) (3.3V).
3. \(V_{DDUSB} \) is available only on WLCSP81, UFBGA144 and LQFP144 packages. For packages where \(V_{DDUSB} \) pin is not available, it is internally connected to \(V_{DD} \).
4. \(V_{CAP_2} \) pad is not available on LQFP64.

Caution: Each power supply pair (\(V_{DD}/V_{SS}, V_{DDA}/V_{SSA}, \ldots \)) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure good operation of the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost. This might cause incorrect operation of the device.
6.1.7 Current consumption measurement

![Current consumption measurement scheme](image)

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Table 13: Voltage characteristics, Table 14: Current characteristics, and Table 15: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 13. Voltage characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Ratings</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{DD}-V_{SS}$</td>
<td>External main supply voltage (including V_{DDA}, V_{DD}, V_{DDUSB} and V_{BAT})(^{(1)})</td>
<td>-0.3</td>
<td>4.0</td>
<td>V</td>
</tr>
<tr>
<td>V_{IN}</td>
<td>Input voltage on FT & FTf pins(^{(2)})</td>
<td>$V_{SS}-0.3$</td>
<td>$V_{DD}+4.0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input voltage on TTa pins</td>
<td>$V_{SS}-0.3$</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input voltage on any other pin</td>
<td>$V_{SS}-0.3$</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Input voltage on BOOT0 pin</td>
<td>V_{SS}</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\Delta V_{DDx}</td>
<td>$</td>
<td>Variations between different V_{DD} power pins</td>
<td>-</td>
</tr>
<tr>
<td>$</td>
<td>V_{SSX}-V_{SSL}</td>
<td>$</td>
<td>Variations between all the different ground pins</td>
<td>-</td>
</tr>
<tr>
<td>$V_{ESD(HBM)}$</td>
<td>Electrostatic discharge voltage (human body model)</td>
<td>see Section 6.3.15: Absolute maximum ratings (electrical sensitivity)</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1. All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum value must always be respected. Refer to Table 14 for the values of the maximum allowed injected current.
Table 14. Current characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Ratings</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΣI_{VDD}</td>
<td>Total current into sum of all V_{DD} power lines (source)$^{(1)}$</td>
<td>240</td>
<td>mA</td>
</tr>
<tr>
<td>ΣI_{VSS}</td>
<td>Total current out of sum of all V_{SS} ground lines (sink)$^{(1)}$</td>
<td>-240</td>
<td>mA</td>
</tr>
<tr>
<td>ΣI_{VDDUSB}</td>
<td>Total current into V_{DDUSB} power line (source)</td>
<td>25</td>
<td>mA</td>
</tr>
<tr>
<td>I_{VDD}</td>
<td>Maximum current into each V_{DD} power pin (source)$^{(1)}$</td>
<td>100</td>
<td>mA</td>
</tr>
<tr>
<td>I_{VSS}</td>
<td>Maximum current out of each V_{SS} ground pin (sink)$^{(1)}$</td>
<td>-100</td>
<td>mA</td>
</tr>
<tr>
<td>I_{IO}</td>
<td>Output current sunk by any I/O and control pin</td>
<td>25</td>
<td>mA</td>
</tr>
<tr>
<td>I_{IO}</td>
<td>Output current sourced by any I/Os and control pin</td>
<td>-25</td>
<td>mA</td>
</tr>
<tr>
<td>ΣI_{IO}</td>
<td>Total output current sunk by sum of all I/Os and control pins$^{(2)}$</td>
<td>120</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Total output current sunk by sum of all USB I/Os</td>
<td>25</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Total output current sourced by sum of all I/Os and control pins$^{(2)}$</td>
<td>-120</td>
<td>mA</td>
</tr>
<tr>
<td>$I_{INJ(PIN)}$</td>
<td>Injected current on FT, FTf, RST and B pins</td>
<td>$-5/+0$</td>
<td>mA</td>
</tr>
<tr>
<td>$I_{INJ(PIN)}$</td>
<td>Injected current on TTa pins</td>
<td>± 5</td>
<td>mA</td>
</tr>
<tr>
<td>$\Sigma I_{INJ(PIN)}$</td>
<td>Total injected current (sum of all I/O and control pins)$^{(5)}$</td>
<td>± 25</td>
<td>mA</td>
</tr>
</tbody>
</table>

1. All main power (V_{DD}, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.
4. A positive injection is induced by $V_{IN}>V_{DDA}$ while a negative injection is induced by $V_{IN}<V_{SS}$. $I_{INJ(PIN)}$ must never be exceeded. Refer to Table 13 for the maximum allowed input voltage value.
5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 15. Thermal characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Ratings</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{STG}</td>
<td>Storage temperature range</td>
<td>-65 to +150</td>
<td>°C</td>
</tr>
<tr>
<td>T_J</td>
<td>Maximum junction temperature</td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>
6.3 Operating conditions

6.3.1 General operating conditions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions(^{(1)})</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{\text{HCLK}})</td>
<td>Internal AHB clock frequency</td>
<td>Power Scale 3 (VOS[1:0] bits in PWR_CR register = 0x01), Regulator ON, over-drive OFF</td>
<td>0</td>
<td>-</td>
<td>120</td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power Scale 2 (VOS[1:0] bits in PWR_CR register = 0x10), Regulator ON Over-drive OFF</td>
<td>0</td>
<td>-</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over-drive ON</td>
<td>-</td>
<td>-</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power Scale 1 (VOS[1:0] bits in PWR_CR register = 0x11), Regulator ON Over-drive OFF</td>
<td>0</td>
<td>-</td>
<td>168</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over-drive ON</td>
<td>-</td>
<td>-</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>(f_{\text{PCLK1}})</td>
<td>Internal APB1 clock frequency</td>
<td>Over-drive OFF</td>
<td>0</td>
<td>-</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over-drive ON</td>
<td>0</td>
<td>-</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>(f_{\text{PCLK2}})</td>
<td>Internal APB2 clock frequency</td>
<td>Over-drive OFF</td>
<td>0</td>
<td>-</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Over-drive ON</td>
<td>0</td>
<td>-</td>
<td>90</td>
<td></td>
</tr>
</tbody>
</table>
Table 16. General operating conditions (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions(1)</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>Standard operating voltage</td>
<td>-</td>
<td>1.7(2)</td>
<td>-</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>V_{DDA}</td>
<td>Analog operating voltage (ADC limited to 1.2 M samples)</td>
<td>Must be the same potential as V_{DD}</td>
<td>1.7(2)</td>
<td>-</td>
<td>2.4</td>
<td>V</td>
</tr>
<tr>
<td>V_{DD}</td>
<td>Analog operating voltage (ADC limited to 2.4 M samples)</td>
<td>-</td>
<td>2.4</td>
<td>-</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>V_{BAT}</td>
<td>Backup operating voltage</td>
<td>-</td>
<td>1.65</td>
<td>-</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>VDDUSB</td>
<td>USB supply voltage (supply voltage for PA11, PA12, PB14 and PB15 pins)</td>
<td>USB not used</td>
<td>1.7</td>
<td>-</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>USB used</td>
<td>3</td>
<td>-</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>V_{12}</td>
<td>Regulator ON: 1.2 V internal voltage on V_{CAP_1}/V_{CAP_2} pins</td>
<td>Power Scale 3 ($V_{OS[1:0]}$ bits in PWR_CR register = 0x01), 120 MHz HCLK max frequency</td>
<td>1.08</td>
<td>1.14</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Power Scale 2 ($V_{OS[1:0]}$ bits in PWR_CR register = 0x10), 144 MHz HCLK max frequency with over-drive OFF or 168 MHz with over-drive ON</td>
<td>1.20</td>
<td>1.26</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Power Scale 1 ($V_{OS[1:0]}$ bits in PWR_CR register = 0x11), 168 MHz HCLK max frequency with over-drive OFF or 180 MHz with over-drive ON</td>
<td>1.26</td>
<td>1.32</td>
<td>1.40</td>
</tr>
<tr>
<td></td>
<td>Regulator OFF: 1.2 V external voltage must be supplied from external regulator on V_{CAP_1}/V_{CAP_2} pins</td>
<td>Max frequency 120 MHz</td>
<td>1.10</td>
<td>1.14</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max frequency 144 MHz</td>
<td>1.20</td>
<td>1.26</td>
<td>1.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max frequency 168 MHz</td>
<td>1.26</td>
<td>1.32</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>V_{IN}</td>
<td>Input voltage on RST, FTf and FT pins(7)</td>
<td>$2 \leq V_{DD} \leq 3.6 \text{ V}$</td>
<td>-0.3</td>
<td>-</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1.7 \leq V_{DD} \leq 2 \text{ V}$</td>
<td>-0.3</td>
<td>-</td>
<td>5.2</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Input voltage on TTa pins</td>
<td>-</td>
<td>-0.3</td>
<td>-</td>
<td>$V_{DDA} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Input voltage on BOOT0 pin</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>9</td>
<td>V</td>
</tr>
<tr>
<td>P_D</td>
<td>Power dissipation at $T_A = 85$ °C for suffix 6 or $T_A = 105$ °C for suffix 7(8)</td>
<td>LQFP64</td>
<td>-</td>
<td>-</td>
<td>345</td>
<td>mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WL CSP81</td>
<td>-</td>
<td>-</td>
<td>417</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LQFP100</td>
<td>-</td>
<td>-</td>
<td>476</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LQFP 144</td>
<td>-</td>
<td>-</td>
<td>606</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UFBGA144 (7x7)</td>
<td>-</td>
<td>-</td>
<td>392</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>UFBGA144 (10x10)</td>
<td>-</td>
<td>-</td>
<td>417</td>
<td></td>
</tr>
<tr>
<td>T_A</td>
<td>Ambient temperature for 6 suffix version</td>
<td>Maximum power dissipation</td>
<td>-40</td>
<td>-</td>
<td>85</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low power dissipation(9)</td>
<td>-40</td>
<td>-</td>
<td>105</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td>Ambient temperature for 7 suffix version</td>
<td>Maximum power dissipation</td>
<td>-40</td>
<td>-</td>
<td>105</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low power dissipation(9)</td>
<td>-40</td>
<td>-</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>T_J</td>
<td>Junction temperature range</td>
<td>6 suffix version</td>
<td>-40</td>
<td>-</td>
<td>105</td>
<td>°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 suffix version</td>
<td>-40</td>
<td>-</td>
<td>125</td>
<td>°C</td>
</tr>
</tbody>
</table>
1. The over-drive mode is not supported at the voltage ranges from 1.7 to 2.1 V.
2. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.
3. When the ADC is used, refer to Table 74: ADC characteristics.
4. If the internal Pull-up and Pull-Down resistors must be disabled
5. The over-drive mode is not supported when the internal regulator is OFF.
6. To sustain a voltage higher than VDDA + 0.3 V, the internal Pull-up and Pull-Down resistors must be disabled
7. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_Jmax.
8. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_Jmax.

Table 17. Limitations depending on the operating power supply range

<table>
<thead>
<tr>
<th>Operating power supply range</th>
<th>ADC operation</th>
<th>Maximum Flash memory access frequency with no wait states (f_{flashmax})</th>
<th>Maximum HCLK frequency vs Flash memory wait states (1)(2)</th>
<th>I/O operation</th>
<th>Possible Flash memory operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_DD = 1.7 to 2.1 V(3)</td>
<td>Conversion time up to 1.2 Msp</td>
<td>20 MHz(4)</td>
<td>168 MHz with 8 wait states and over-drive OFF</td>
<td>-- No I/O compensation</td>
<td>8-bit erase and program operations only</td>
</tr>
<tr>
<td>V_DD = 2.1 to 2.4 V</td>
<td>Conversion time up to 1.2 Msp</td>
<td>22 MHz</td>
<td>180 MHz with 8 wait states and over-drive OFF</td>
<td>-- No I/O compensation</td>
<td>16-bit erase and program operations</td>
</tr>
<tr>
<td>V_DD = 2.4 to 2.7 V</td>
<td>Conversion time up to 2.4 Msp</td>
<td>24 MHz</td>
<td>180 MHz with 7 wait states and over-drive ON</td>
<td>-- I/O compensation works</td>
<td>16-bit erase and program operations</td>
</tr>
<tr>
<td>V_DD = 2.7 to 3.6 V(5)</td>
<td>Conversion time up to 2.4 Msp</td>
<td>30 MHz</td>
<td>180 MHz with 5 wait states and over-drive ON</td>
<td>-- I/O compensation works</td>
<td>32-bit erase and program operations</td>
</tr>
</tbody>
</table>

1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is required.
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.
3. V_DD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF).
4. Prefetch is not available.
5. The voltage range for USB full speed PHYs can drop down to 2.7 V. However the electrical characteristics of D- and D+ pins will be degraded between 2.7 and 3 V.

6.3.2 VCAP_1/VCAP_2 external capacitor

Stabilization for the main regulator is achieved by connecting external capacitor C_{EXT} to the V_{CAP_1} and V_{CAP_2} pin. For packages supporting only 1 V_{CAP} pin, the 2 C_{EXT} capacitors are replaced by a single capacitor. C_{EXT} is specified in Table 18.
Figure 20. External capacitor C_{EXT}

1. Legend: ESR is the equivalent series resistance.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{EXT}</td>
<td>Capacitance of external capacitor</td>
<td>2.2 μF</td>
</tr>
<tr>
<td>ESR</td>
<td>ESR of external capacitor</td>
<td>$< 2 , \Omega$</td>
</tr>
<tr>
<td>C_{EXT}</td>
<td>Capacitance of external capacitor with a single V_{CAP} pin available</td>
<td>4.7 μF</td>
</tr>
<tr>
<td>ESR</td>
<td>ESR of external capacitor with a single V_{CAP} pin available</td>
<td>$< 1 , \Omega$</td>
</tr>
</tbody>
</table>

1. When bypassing the voltage regulator, the two 2.2 μF V_{CAP} capacitors are not required and should be replaced by two 100 nF decoupling capacitors.

6.3.3 Operating conditions at power-up / power-down (regulator ON)

Subject to general operating conditions for T_A.

Table 19. Operating conditions at power-up/power-down (regulator ON)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{V_{\text{DD}}}$</td>
<td>V_{DD} rise time rate</td>
<td>20</td>
<td>∞</td>
</tr>
<tr>
<td></td>
<td>V_{DD} fall time rate</td>
<td>20</td>
<td>∞</td>
</tr>
</tbody>
</table>

6.3.4 Operating conditions at power-up / power-down (regulator OFF)

Subject to general operating conditions for T_A.

Table 20. Operating conditions at power-up / power-down (regulator OFF)$^{(1)}$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{V_{\text{DD}}}$</td>
<td>V_{DD} rise time rate</td>
<td>Power-up</td>
<td>20</td>
<td>∞</td>
<td>μs/V</td>
</tr>
<tr>
<td></td>
<td>V_{DD} fall time rate</td>
<td>Power-down</td>
<td>20</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td>$t_{V_{\text{CAP}}}$</td>
<td>$V_{\text{CAP}1}$ and $V{\text{CAP}_2}$ rise time rate</td>
<td>Power-up</td>
<td>20</td>
<td>∞</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{\text{CAP}1}$ and $V{\text{CAP}_2}$ fall time rate</td>
<td>Power-down</td>
<td>20</td>
<td>∞</td>
<td></td>
</tr>
</tbody>
</table>

1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when V_{DD} reach below 1.08 V.
6.3.5 Reset and power control block characteristics

The parameters given in Table 21 are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in Table 16.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{PVD}</td>
<td>Programmable voltage detector level selection</td>
<td>PLS[2:0]=000 (rising edge)</td>
<td>2.09</td>
<td>2.14</td>
<td>2.19</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLS[2:0]=000 (falling edge)</td>
<td>1.98</td>
<td>2.04</td>
<td>2.08</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLS[2:0]=001 (rising edge)</td>
<td>2.23</td>
<td>2.30</td>
<td>2.37</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLS[2:0]=001 (falling edge)</td>
<td>2.13</td>
<td>2.19</td>
<td>2.25</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLS[2:0]=010 (rising edge)</td>
<td>2.39</td>
<td>2.45</td>
<td>2.51</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLS[2:0]=010 (falling edge)</td>
<td>2.29</td>
<td>2.35</td>
<td>2.39</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLS[2:0]=011 (rising edge)</td>
<td>2.54</td>
<td>2.60</td>
<td>2.65</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLS[2:0]=011 (falling edge)</td>
<td>2.44</td>
<td>2.51</td>
<td>2.56</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLS[2:0]=100 (rising edge)</td>
<td>2.70</td>
<td>2.76</td>
<td>2.82</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLS[2:0]=100 (falling edge)</td>
<td>2.59</td>
<td>2.66</td>
<td>2.71</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLS[2:0]=101 (rising edge)</td>
<td>2.86</td>
<td>2.93</td>
<td>2.99</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLS[2:0]=101 (falling edge)</td>
<td>2.65</td>
<td>2.84</td>
<td>3.02</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLS[2:0]=110 (rising edge)</td>
<td>2.96</td>
<td>3.03</td>
<td>3.10</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLS[2:0]=110 (falling edge)</td>
<td>2.85</td>
<td>2.93</td>
<td>2.99</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLS[2:0]=111 (rising edge)</td>
<td>3.07</td>
<td>3.14</td>
<td>3.21</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PLS[2:0]=111 (falling edge)</td>
<td>2.95</td>
<td>3.03</td>
<td>3.09</td>
<td>V</td>
</tr>
<tr>
<td>$V_{PVDhyst}$</td>
<td>PVD hysteresis</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>mV</td>
</tr>
<tr>
<td>$V_{POR/PDR}$</td>
<td>Power-on/power-down reset threshold</td>
<td>Falling edge</td>
<td>1.60</td>
<td>1.68</td>
<td>1.76</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rising edge</td>
<td>1.64</td>
<td>1.72</td>
<td>1.80</td>
<td>V</td>
</tr>
<tr>
<td>$V_{PDRhyst}$</td>
<td>PDR hysteresis</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>-</td>
<td>mV</td>
</tr>
<tr>
<td>V_{BOR1}</td>
<td>Brownout level 1 threshold</td>
<td>Falling edge</td>
<td>2.13</td>
<td>2.19</td>
<td>2.24</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rising edge</td>
<td>2.23</td>
<td>2.29</td>
<td>2.33</td>
<td>V</td>
</tr>
<tr>
<td>V_{BOR2}</td>
<td>Brownout level 2 threshold</td>
<td>Falling edge</td>
<td>2.44</td>
<td>2.50</td>
<td>2.56</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rising edge</td>
<td>2.53</td>
<td>2.59</td>
<td>2.63</td>
<td>V</td>
</tr>
<tr>
<td>V_{BOR3}</td>
<td>Brownout level 3 threshold</td>
<td>Falling edge</td>
<td>2.75</td>
<td>2.83</td>
<td>2.88</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rising edge</td>
<td>2.85</td>
<td>2.92</td>
<td>2.97</td>
<td>V</td>
</tr>
<tr>
<td>$V_{BORhyst}$</td>
<td>BOR hysteresis</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>mV</td>
</tr>
<tr>
<td>$T_{RSTTEMPO}$</td>
<td>POR reset temporization</td>
<td>-</td>
<td>0.5</td>
<td>1.5</td>
<td>3.0</td>
<td>ms</td>
</tr>
</tbody>
</table>
6.3.6 Over-drive switching characteristics

When the over-drive mode switches from enabled to disabled or disabled to enabled, the system clock is stalled during the internal voltage set-up.

The over-drive switching characteristics are given in Table 22. They are subject to general operating conditions for T_A.

Table 22. Over-drive switching characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$I_{RUSH}^{(1)}$</td>
<td>InRush current on voltage regulator power-on (POR or wakeup from Standby)</td>
<td>$V_{DD} = 1.7\ V, T_A = 105\ ^\circ C, I_{RUSH} = 171\ mA$ for $31\ \mu s$</td>
<td>-</td>
<td></td>
<td>160</td>
<td>200</td>
</tr>
<tr>
<td>$E_{RUSH}^{(1)}$</td>
<td>InRush energy on voltage regulator power-on (POR or wakeup from Standby)</td>
<td>$V_{DD} = 1.7\ V, T_A = 105\ ^\circ C$</td>
<td>-</td>
<td></td>
<td>5.4</td>
<td>μC</td>
</tr>
</tbody>
</table>

1. Guaranteed based on test during characterization.
2. The reset temporization is measured from the power-on (POR reset or wakeup from V_{BAT}) to the instant when first instruction is read by the user application code.

6.3.7 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in Figure 19: Current consumption measurement scheme.

All the run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.
Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at \(V_{DD} \) or \(V_{SS} \) (no load).
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash memory access time is adjusted both to \(f_{HCLK} \) frequency and \(V_{DD} \) range (see Table 17: Limitations depending on the operating power supply range).
- Regulator ON
- The voltage scaling and over-drive mode are adjusted to \(f_{HCLK} \) frequency as follows:
 - Scale 3 for \(f_{HCLK} \leq 120 \) MHz
 - Scale 2 for 120 MHz < \(f_{HCLK} \leq 144 \) MHz
 - Scale 1 for 144 MHz < \(f_{HCLK} \leq 180 \) MHz. The over-drive is only ON at 180 MHz.
- The system clock is HCLK, \(f_{PCLK1} = f_{HCLK}/4 \), and \(f_{PCLK2} = f_{HCLK}/2 \).
- External clock frequency is 8 MHz and PLL is ON when \(f_{HCLK} \) is higher than 16 MHz.
- Flash is enabled except if explicitly mentioned as disable.
- The maximum values are obtained for \(V_{DD} = 3.6 \) V and a maximum ambient temperature \((T_A) \), and the typical values for \(T_A = 25 \) °C and \(V_{DD} = 3.3 \) V unless otherwise specified.
Table 23. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled except prefetch) or RAM\(^{(1)}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>(f_{\text{HCLK}}) (MHz)</th>
<th>Typ</th>
<th>(\text{Max}^{(2)})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(TA = 25\ ^\circ\text{C})</td>
<td>(TA = 85\ ^\circ\text{C})</td>
<td>(TA = 105\ ^\circ\text{C})</td>
</tr>
<tr>
<td>(\text{ IDD})</td>
<td>Supply current in RUN mode</td>
<td>External clock, PLL ON, all peripherals enabled(^{(3)(4)})</td>
<td>180</td>
<td>72</td>
<td>83.0(^{(5)})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>168</td>
<td>65</td>
<td>71.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>59</td>
<td>63.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>144(^{(6)})</td>
<td>54</td>
<td>58.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>40</td>
<td>44.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>30</td>
<td>35.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>21</td>
<td>25.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>12</td>
<td>16.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>10</td>
<td>14.41</td>
</tr>
<tr>
<td>(\text{ IDD})</td>
<td>Supply current in RUN mode</td>
<td>HSI, PLL OFF, all peripherals enabled</td>
<td>16</td>
<td>6</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>3</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2.3</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1.8</td>
<td>7.7</td>
</tr>
<tr>
<td>(\text{ IDD})</td>
<td>Supply current in RUN mode</td>
<td>External clock, PLL ON, all peripherals disabled(^{(3)})</td>
<td>180</td>
<td>32</td>
<td>42.0(^{(5)})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>168</td>
<td>29</td>
<td>35.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>26</td>
<td>31.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>144(^{(6)})</td>
<td>24</td>
<td>29.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>18</td>
<td>23.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>14</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>10</td>
<td>14.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>6</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>5</td>
<td>9.96</td>
</tr>
<tr>
<td>(\text{ IDD})</td>
<td>Supply current in RUN mode</td>
<td>HSI, PLL OFF, all peripherals disabled(^{(3)})</td>
<td>16</td>
<td>3</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>2</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1.7</td>
<td>7.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1.4</td>
<td>7.4</td>
</tr>
</tbody>
</table>

1. Code and data processing running from SRAM1 using boot pins.
2. Guaranteed based on test during characterization.
3. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.
4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.
5. Tested in production.
6. Overdrive OFF
Table 24. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled with prefetch) or RAM\(^{(1)}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>(f_{\text{HCLK}}) (MHz)</th>
<th>Typ</th>
<th>(\text{Max}^{(2)})</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(T_A = 25 , ^\circ\text{C})</td>
<td>(T_A = 85 , ^\circ\text{C})</td>
</tr>
<tr>
<td>(I_{DD})</td>
<td>Supply current in RUN mode</td>
<td>External clock, PLL ON, all peripherals enabled(^{(3)(4)})</td>
<td>180</td>
<td>86</td>
<td>93.0</td>
<td>115.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>168(^{(5)})</td>
<td>79</td>
<td>85.1</td>
<td>111.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>73</td>
<td>79.6</td>
<td>104.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>144(^{(5)})</td>
<td>68</td>
<td>73.5</td>
<td>97.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>54</td>
<td>59.3</td>
<td>79.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>42</td>
<td>47.23</td>
<td>65.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>29</td>
<td>33.7</td>
<td>49.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>16</td>
<td>20.8</td>
<td>34.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>13</td>
<td>18.4</td>
<td>31.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HSI, PLL OFF, all peripherals enabled(^{(3)})</td>
<td>16</td>
<td>8</td>
<td>13.8</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>5</td>
<td>10.8</td>
<td>21.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>3</td>
<td>9.1</td>
<td>18.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2.1</td>
<td>8.1</td>
<td>17.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External clock, PLL ON, all peripherals disabled(^{(3)})</td>
<td>180</td>
<td>46</td>
<td>55.0</td>
<td>75.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>168</td>
<td>43</td>
<td>49.6</td>
<td>67.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>41</td>
<td>48.2</td>
<td>65.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>144(^{(5)})</td>
<td>38</td>
<td>43.6</td>
<td>61.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>32</td>
<td>37.3</td>
<td>53.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>26</td>
<td>30.7</td>
<td>46.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>18</td>
<td>22.8</td>
<td>36.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>10</td>
<td>14.9</td>
<td>27.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>9</td>
<td>13.55</td>
<td>25.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HSI, PLL OFF, all peripherals disabled(^{(3)})</td>
<td>16</td>
<td>5</td>
<td>11.1</td>
<td>21.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>3</td>
<td>9.5</td>
<td>19.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2.4</td>
<td>8.34</td>
<td>18.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1.8</td>
<td>7.77</td>
<td>17.39</td>
</tr>
</tbody>
</table>

1. Code and data processing running from SRAM1 using boot pins.
2. Guaranteed based on test during characterization.
3. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.
4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.
5. Overdrive OFF
Table 25. Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>(f_{\text{HCLK}}) (MHz)</th>
<th>Typ</th>
<th>(\text{Max}^{(1)})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\text{Unit} TA=25 °C</td>
</tr>
<tr>
<td>IDD</td>
<td>Supply current in RUN mode</td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External clock, PLL ON, all peripherals enabled(^{(2)(3)})</td>
<td>180</td>
<td>81</td>
<td>89.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>168(^{(4)})</td>
<td>74</td>
<td>80.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>69</td>
<td>74.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>144(^{(4)})</td>
<td>63</td>
<td>69.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>51</td>
<td>56.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>40</td>
<td>45.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>28</td>
<td>33.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>16</td>
<td>20.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>13</td>
<td>18.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External clock, PLL ON, all Peripherals disabled(^{(2)(3)})</td>
<td>16</td>
<td>8</td>
<td>13.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>5</td>
<td>10.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>3.0</td>
<td>9.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2.1</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>180</td>
<td>41</td>
<td>47.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>168</td>
<td>38</td>
<td>43.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>37</td>
<td>41.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>144(^{(4)})</td>
<td>34</td>
<td>39.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>29</td>
<td>34.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HSI, PLL OFF, all peripherals disabled(^{(3)})</td>
<td>90</td>
<td>24</td>
<td>28.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>17</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>10</td>
<td>14.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>8</td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HSI, PLL OFF, all Peripherals disabled(^{(3)})</td>
<td>16</td>
<td>5</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>3</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2.3</td>
<td>8.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1.8</td>
<td>7.78</td>
</tr>
</tbody>
</table>

1. Guaranteed based on test during characterization unless otherwise specified.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for the analog part.
4. Overdrive OFF
Table 26. Typical and maximum current consumption in Sleep mode

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>fHCLK (MHz)</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IDD</td>
<td>Supply current in Sleep mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>all peripherals enabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>External clock, PLL ON, Flash on</td>
<td>180</td>
<td>51.2</td>
<td>59.00</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>168(2)</td>
<td>46.8</td>
<td>53.94</td>
<td>66.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>42.2</td>
<td>49.26</td>
<td>60.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>144(2)</td>
<td>38.6</td>
<td>45.37</td>
<td>55.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>29.3</td>
<td>35.70</td>
<td>42.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>22.8</td>
<td>29.17</td>
<td>34.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>16.3</td>
<td>22.41</td>
<td>27.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>10.1</td>
<td>16.03</td>
<td>19.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>9.0</td>
<td>14.92</td>
<td>18.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HSI, PLL off, Flash on</td>
<td>16</td>
<td>6.5</td>
<td>13.10</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>5.2</td>
<td>12.31</td>
<td>13.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>4.5</td>
<td>11.63</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>4.1</td>
<td>11.23</td>
<td>12.0</td>
</tr>
</tbody>
</table>
Table 26. Typical and maximum current consumption in Sleep mode\(^{(1)}\) (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>fHCLK (MHz)</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unit</td>
</tr>
<tr>
<td></td>
<td>IDD</td>
<td>Supply current in Sleep mode</td>
<td>180</td>
<td>11.36</td>
<td>17.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>168(^{(2)})</td>
<td>10.20</td>
<td>16.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>9.53</td>
<td>15.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>144(^{(2)})</td>
<td>8.90</td>
<td>14.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>7.35</td>
<td>13.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>6.39</td>
<td>12.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>5.28</td>
<td>11.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>4.43</td>
<td>10.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>4.23</td>
<td>10.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flash on External clock, PLL on all peripherals</td>
<td>180</td>
<td>8.3</td>
<td>13.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>disabled</td>
<td>168(^{(2)})</td>
<td>7.3</td>
<td>12.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>6.7</td>
<td>11.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>144(^{(2)})</td>
<td>6.1</td>
<td>11.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>4.7</td>
<td>9.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>3.8</td>
<td>8.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>2.8</td>
<td>7.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>2.0</td>
<td>6.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>1.8</td>
<td>6.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flash in Deep Power Down mode</td>
<td>180</td>
<td>8.3</td>
<td>13.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>168(^{(2)})</td>
<td>7.3</td>
<td>12.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>6.7</td>
<td>11.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>144(^{(2)})</td>
<td>6.1</td>
<td>11.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>4.7</td>
<td>9.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>3.8</td>
<td>8.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>2.8</td>
<td>7.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>2.0</td>
<td>6.89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>1.8</td>
<td>6.70</td>
</tr>
</tbody>
</table>
Table 26. Typical and maximum current consumption in Sleep mode$^{(1)}$ (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>fHCLK (MHz)</th>
<th>Typ</th>
<th>Max $^{(1)}$</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Flash on</td>
<td>16</td>
<td>3.89</td>
<td>4.93</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>2.45</td>
<td>3.29</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1.69</td>
<td>2.56</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1.28</td>
<td>2.22</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flash in Deep Power Down mode</td>
<td>16</td>
<td>1.0</td>
<td>6.65</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>0.9</td>
<td>6.93</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.9</td>
<td>6.90</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.9</td>
<td>6.88</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flash in STOP mode</td>
<td>16</td>
<td>1.0</td>
<td>6.70</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>0.9</td>
<td>6.90</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>0.9</td>
<td>6.90</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0.9</td>
<td>6.90</td>
<td>mA</td>
</tr>
</tbody>
</table>

1. Guaranteed based on test during characterization unless otherwise specified.
2. Overdrive OFF
Table 27. Typical and maximum current consumptions in Stop mode

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Conditions</th>
<th>Typ</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$V_{DD} = 3.6$ V</td>
<td>$T_A = 25$ °C</td>
</tr>
<tr>
<td>$I_{DD_STOP_NM}$</td>
<td>Supply current in Stop mode with voltage regulator in main regulator mode</td>
<td>Flash memory in Stop mode, all oscillators OFF, no independent watchdog</td>
<td>0.234</td>
<td>1.2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flash memory in Deep power down mode, all oscillators OFF, no independent watchdog</td>
<td>0.205</td>
<td>1</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>Supply current in Stop mode with voltage regulator in Low Power regulator mode</td>
<td>Flash memory in Stop mode, all oscillators OFF, no independent watchdog</td>
<td>0.15</td>
<td>0.95</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flash memory in Deep power down mode, all oscillators OFF, no independent watchdog</td>
<td>0.121</td>
<td>0.9</td>
<td>6</td>
</tr>
<tr>
<td>$I_{DD_STOP_UD}$</td>
<td>Supply current in Stop mode with voltage regulator in main regulator and under-drive mode</td>
<td>Flash memory in Deep power down mode, main regulator in under-drive mode, all oscillators OFF, no independent watchdog</td>
<td>0.119</td>
<td>0.4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Supply current in Stop mode with voltage regulator in Low Power regulator and under-drive mode</td>
<td>Flash memory in Deep power down mode, Low Power regulator in under-drive mode, all oscillators OFF, no independent watchdog</td>
<td>0.055</td>
<td>0.35</td>
<td>3</td>
</tr>
</tbody>
</table>

1. Data based on characterization, tested in production.
Table 28. Typical and maximum current consumptions in Standby mode

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Conditions</th>
<th>Conditions</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDD_STBY</td>
<td>Supply current in Standby mode</td>
<td>Backup SRAM ON, and LSE oscillator in low power mode</td>
<td>$V_{DD} = 1.7, \text{V}$</td>
<td>$V_{DD} = 2.4, \text{V}$</td>
<td>$V_{DD} = 3.3, \text{V}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Backup SRAM OFF, RTC ON and LSE oscillator in low power mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Backup SRAM ON, RTC ON and LSE oscillator in high drive mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Backup SRAM OFF, RTC ON and LSE oscillator in high drive mode</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Backup SRAM ON, RTC and LSE OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Backup SRAM OFF, RTC and LSE OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$T_A = 25, ^\circ\text{C}$</td>
<td>$T_A = 85, ^\circ\text{C}$</td>
<td>$T_A = 105, ^\circ\text{C}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.43</td>
<td>3.44</td>
<td>4.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.81</td>
<td>2.81</td>
<td>3.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.32</td>
<td>4.33</td>
<td>4.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.57</td>
<td>3.59</td>
<td>4.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.03</td>
<td>2.73</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.28</td>
<td>1.97</td>
<td>2.03</td>
</tr>
</tbody>
</table>

1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 µA.
2. Guaranteed based on test during characterization unless otherwise specified.
3. Tested in production.
Table 29. Typical and maximum current consumptions in V\textsubscript{BAT} mode

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions(1)</th>
<th>Typ</th>
<th>Max(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(T_A = 25 , ^\circ\text{C})</td>
<td>(T_A = 85 , ^\circ\text{C})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{\text{BAT}} = 1.7 , \text{V})</td>
<td>(V_{\text{BAT}} = 2.4 , \text{V})</td>
<td>(V_{\text{BAT}} = 3.3 , \text{V})</td>
</tr>
<tr>
<td>(I_{\text{DD,VBAT}})</td>
<td>Backup domain supply current</td>
<td>Backup SRAM ON, RTC ON and LSE oscillator in low power mode</td>
<td>1.46</td>
<td>1.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Backup SRAM OFF, RTC ON and LSE oscillator in low power mode</td>
<td>0.72</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Backup SRAM ON, RTC ON and LSE oscillator in high drive mode</td>
<td>2.24</td>
<td>2.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Backup SRAM OFF, RTC ON and LSE oscillator in high drive mode</td>
<td>1.50</td>
<td>1.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Backup SRAM ON, RTC and LSE OFF</td>
<td>0.74</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Backup SRAM OFF, RTC and LSE OFF</td>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

1 Crystal used: Abracon ABS07-120-32.768 kHz-T with a \(C_L\) of 6 pF for typical values.

2 Guaranteed based on test during characterization.

![Figure 21. Typical V\textsubscript{BAT} current consumption (RTC ON/backup RAM OFF and LSE in low power mode)](image-url)
Additional current consumption

The MCU is placed under the following conditions:

- All I/O pins are configured in analog mode.
- The Flash memory access time is adjusted to fHCLK frequency.
- The voltage scaling is adjusted to fHCLK frequency as follows:
 - Scale 3 for f_{HCLK} ≤ 120 MHz,
 - Scale 2 for 120 MHz < f_{HCLK} ≤ 144 MHz
 - Scale 1 for 144 MHz < f_{HCLK} ≤ 180 MHz. The over-drive is only ON at 180 MHz.
- The system clock is HCLK, f_{PCLK1} = f_{HCLK}/4, and f_{PCLK2} = f_{HCLK}/2.
- HSE crystal clock frequency is 8 MHz.
- Flash is enabled except if explicitly mentioned as disable.
- When the regulator is OFF, V12 is provided externally as described in Table 16: General operating conditions
- T_A = 25 °C.
Table 30. Typical current consumption in Run mode, code with data processing running from Flash memory or RAM, regulator ON (ART accelerator enabled except prefetch), VDD=1.7 V\(^{(1)}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>(f_{HCLK}) (MHz)</th>
<th>Typ</th>
<th>(\text{Max} T_A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(25 , ^\circ\text{C})</td>
<td>(85 , ^\circ\text{C})</td>
<td>(105 , ^\circ\text{C})</td>
</tr>
<tr>
<td>(I_{DD})</td>
<td>Supply current in Run mode from VDD supply</td>
<td>All Peripherals enabled</td>
<td>168</td>
<td>65.11</td>
<td>70.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>58.31</td>
<td>62.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>144</td>
<td>53.14</td>
<td>57.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>39.58</td>
<td>47.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>29.99</td>
<td>34.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>20.37</td>
<td>25.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>11.37</td>
<td>12.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>9.65</td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All Peripherals disabled</td>
<td>168</td>
<td>29.74</td>
<td>32.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>25.81</td>
<td>29.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>144</td>
<td>24.57</td>
<td>26.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>17.69</td>
<td>22.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>13.58</td>
<td>15.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>9.41</td>
<td>11.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>5.44</td>
<td>6.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>4.73</td>
<td>5.72</td>
</tr>
</tbody>
</table>

1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC, or DAC) is not included.
Table 31. Typical current consumption in Run mode, code with data processing running from Flash memory, regulator OFF (ART accelerator enabled except prefetch)\(^{(1)}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>(f_{HCLK}) (MHz)</th>
<th>(VDD=3.3) V</th>
<th>(VDD=1.7) V</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(I_{DD12}/I_{DD})</td>
<td>All Peripherals enabled</td>
<td>168</td>
<td>61.72</td>
<td>1.6</td>
<td>60.15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>51.69</td>
<td>1.5</td>
<td>55.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>144</td>
<td>51.45</td>
<td>1.5</td>
<td>50.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>38.94</td>
<td>1.3</td>
<td>40.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>29.48</td>
<td>1.1</td>
<td>28.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>19.23</td>
<td>1.0</td>
<td>20.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>10.41</td>
<td>0.9</td>
<td>11.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>8.83</td>
<td>0.8</td>
<td>9.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All Peripherals disabled</td>
<td>168</td>
<td>31.44</td>
<td>1.6</td>
<td>30.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>28.67</td>
<td>1.5</td>
<td>27.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>144</td>
<td>25.51</td>
<td>1.5</td>
<td>23.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>19.06</td>
<td>1.3</td>
<td>21.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>14.83</td>
<td>1.2</td>
<td>14.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>10.16</td>
<td>1.0</td>
<td>10.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>5.41</td>
<td>0.9</td>
<td>5.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>4.599</td>
<td>0.8</td>
<td>4.80</td>
</tr>
</tbody>
</table>

1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC, or DAC) is not included.
Table 32. Typical current consumption in Sleep mode, regulator ON, $V_{DD}=1.7$ V$^{(1)}$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>f_{HCLK} (MHz)</th>
<th>Typ</th>
<th>Max $T_A = 25{^\circ}C$</th>
<th>Max $T_A = 85{^\circ}C$</th>
<th>Max $T_A = 105{^\circ}C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{DD}</td>
<td>Supply current in Sleep mode from V_{DD} supply</td>
<td>All Peripherals enabled Flash on</td>
<td>168</td>
<td>43.7</td>
<td>47.5</td>
<td>66.5</td>
<td>79.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>39.2</td>
<td>42.7</td>
<td>60.7</td>
<td>73.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>144</td>
<td>35.7</td>
<td>38.8</td>
<td>55.3</td>
<td>66.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>26.5</td>
<td>28.6</td>
<td>41.8</td>
<td>51.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>20.0</td>
<td>21.91</td>
<td>33.85</td>
<td>43.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>13.6</td>
<td>15.2</td>
<td>25.8</td>
<td>34.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>7.4</td>
<td>8.5</td>
<td>18.4</td>
<td>27.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>6.3</td>
<td>7.5</td>
<td>16.9</td>
<td>25.5</td>
</tr>
<tr>
<td></td>
<td>Supply current in Sleep mode from V_{DD} supply</td>
<td>All Peripherals disabled, flash on</td>
<td>168</td>
<td>7.3</td>
<td>8.6</td>
<td>21.2</td>
<td>31.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>6.6</td>
<td>7.94</td>
<td>20.4</td>
<td>31.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>144</td>
<td>6.0</td>
<td>7.3</td>
<td>18.6</td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>4.6</td>
<td>5.5</td>
<td>14.9</td>
<td>23.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>3.6</td>
<td>4.6</td>
<td>13.6</td>
<td>22.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>2.6</td>
<td>3.4</td>
<td>12.5</td>
<td>20.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>1.8</td>
<td>2.7</td>
<td>11.3</td>
<td>19.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>1.6</td>
<td>2.49</td>
<td>11.09</td>
<td>19.42</td>
</tr>
</tbody>
</table>

1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC, or DAC) is not included.
I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 56: I/O static characteristics.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Table 33. Typical current consumption in Sleep mode, regulator OFF(1)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>f_{HCLK} (MHz)</th>
<th>VDD=3.3 V</th>
<th>VDD=1.7 V</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>I_{DD12}</td>
<td>I_{DD}</td>
<td>I_{DD12}</td>
<td>I_{DD}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>All Peripherals enabled</td>
<td>180</td>
<td>47.605</td>
<td>1.2</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>168</td>
<td>44.35</td>
<td>1.0</td>
<td>41.53</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>40.58</td>
<td>0.9</td>
<td>39.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>144</td>
<td>35.68</td>
<td>0.9</td>
<td>34.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>27.30</td>
<td>0.9</td>
<td>29.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>20.69</td>
<td>0.8</td>
<td>19.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>13.88</td>
<td>0.7</td>
<td>13.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>7.66</td>
<td>0.7</td>
<td>7.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>6.49</td>
<td>0.7</td>
<td>6.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supply current in Sleep mode from V_{12} and V_{DD} supply</td>
<td>All Peripherals enabled</td>
<td>180</td>
<td>8.71</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>168</td>
<td>7.00</td>
<td>0.9</td>
<td>8.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>6.88</td>
<td>0.9</td>
<td>7.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>144</td>
<td>6.29</td>
<td>0.9</td>
<td>6.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>4.87</td>
<td>0.9</td>
<td>5.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td>3.78</td>
<td>0.8</td>
<td>3.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>2.66</td>
<td>0.7</td>
<td>2.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>1.65</td>
<td>0.7</td>
<td>1.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td>1.45</td>
<td>0.7</td>
<td>1.52</td>
</tr>
</tbody>
</table>

1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC, or DAC) is not included.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see Table 35: Peripheral current consumption), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

\[I_{SW} = V_{DD} \times f_{SW} \times C \]

where

- \(I_{SW} \) is the current sunk by a switching I/O to charge/discharge the capacitive load
- \(V_{DD} \) is the MCU supply voltage
- \(f_{SW} \) is the I/O switching frequency
- \(C \) is the total capacitance seen by the I/O pin: \(C = C_{INT} + C_{EXT} \)

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>I/O toggling frequency (fsw)</th>
<th>Typ</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDDIO</td>
<td>I/O switching Current</td>
<td>(V_{DD} = 3.3 \text{ V}) (C = C_{INT}^{(2)})</td>
<td>2 MHz</td>
<td>0.0</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 3.3 \text{ V}) (C = C_{INT} + C_{EXT} + C_{S})</td>
<td>8 MHz</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 3.3 \text{ V}) (C = C_{INT} + C_{EXT})</td>
<td>25 MHz</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 3.3 \text{ V}) (C = C_{INT} + C_{EXT} + C_{S})</td>
<td>50 MHz</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 3.3 \text{ V}) (C = C_{INT})</td>
<td>60 MHz</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 3.3 \text{ V}) (C = C_{INT} + C_{EXT} + C_{S})</td>
<td>84 MHz</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 3.3 \text{ V}) (C = C_{INT} + C_{EXT})</td>
<td>90 MHz</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 3.3 \text{ V}) (C = C_{INT} + C_{EXT} + C_{S})</td>
<td>2 MHz</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 3.3 \text{ V}) (C = C_{INT})</td>
<td>8 MHz</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 3.3 \text{ V}) (C = C_{INT} + C_{EXT} + C_{S})</td>
<td>25 MHz</td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 3.3 \text{ V}) (C = C_{INT})</td>
<td>50 MHz</td>
<td>2.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 3.3 \text{ V}) (C = C_{INT} + C_{EXT} + C_{S})</td>
<td>60 MHz</td>
<td>2.93</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 3.3 \text{ V}) (C = C_{INT})</td>
<td>84 MHz</td>
<td>3.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 3.3 \text{ V}) (C = C_{INT} + C_{EXT} + C_{S})</td>
<td>90 MHz</td>
<td>4.07</td>
<td></td>
</tr>
</tbody>
</table>
On-chip peripheral current consumption

The MCU is placed under the following conditions:

- At startup, all I/O pins are in analog input configuration.
- All peripherals are disabled unless otherwise mentioned.
- HCLK is the system clock, \(f_{PCLK1} = f_{HCLK}/4 \), and \(f_{PCLK2} = f_{HCLK}/2 \).
 The given value is calculated by measuring the difference of current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
 - \(f_{HCLK} = 180 \text{ MHz (Scale1 + over-drive ON)}, f_{HCLK} = 144 \text{ MHz (Scale 2)}, f_{HCLK} = 120 \text{ MHz (Scale 3)} \)
- Ambient operating temperature is 25 °C and \(V_{DD}=3.3 \text{ V} \).

1. \(C_S \) is the PCB board capacitance including the pad pin, \(C_S = 7 \text{ pF (estimated value)} \).
2. This test is performed by cutting the LQFP144 package pin (pad removal).
Table 35. Peripheral current consumption

<table>
<thead>
<tr>
<th>Peripheral</th>
<th>(I_{\text{DD}}(\text{Typ Appli}))</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\text{Scale 1 + OverDrive})</td>
<td>(\text{Scale 2})</td>
</tr>
<tr>
<td>AHB1</td>
<td>GPIOA</td>
<td>2.29</td>
</tr>
<tr>
<td></td>
<td>GPIOB</td>
<td>2.29</td>
</tr>
<tr>
<td></td>
<td>GPIOC</td>
<td>2.33</td>
</tr>
<tr>
<td></td>
<td>GPIOD</td>
<td>2.34</td>
</tr>
<tr>
<td></td>
<td>GPIOE</td>
<td>2.39</td>
</tr>
<tr>
<td></td>
<td>GPIOF</td>
<td>2.31</td>
</tr>
<tr>
<td></td>
<td>GPIOG</td>
<td>2.36</td>
</tr>
<tr>
<td></td>
<td>GPIOH</td>
<td>2.13</td>
</tr>
<tr>
<td></td>
<td>CRC</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>BKPSRAM</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>DMA1(^{(1)})</td>
<td>2.39N + 4.13</td>
</tr>
<tr>
<td></td>
<td>DMA2(^{(1)})</td>
<td>2.39N + 4.45</td>
</tr>
<tr>
<td></td>
<td>OTG_HS+ULPI</td>
<td>45.45</td>
</tr>
<tr>
<td>AHB2</td>
<td>DCMI</td>
<td>3.74</td>
</tr>
<tr>
<td></td>
<td>OTGFS</td>
<td>30.04</td>
</tr>
<tr>
<td>AHB3</td>
<td>FMC</td>
<td>16.15</td>
</tr>
<tr>
<td></td>
<td>QSPI</td>
<td>16.78</td>
</tr>
</tbody>
</table>

\(\mu A/\text{MHz} \)
Table 35. Peripheral current consumption (continued)

<table>
<thead>
<tr>
<th>Peripheral</th>
<th>I_{DD}(Typ Appli)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Scale 1 + OverDrive</td>
<td>Scale 2</td>
</tr>
<tr>
<td>TIM2</td>
<td>18.18</td>
<td>16.92</td>
</tr>
<tr>
<td>TIM3</td>
<td>14.49</td>
<td>13.47</td>
</tr>
<tr>
<td>TIM4</td>
<td>15.18</td>
<td>14.11</td>
</tr>
<tr>
<td>TIM5</td>
<td>16.91</td>
<td>15.69</td>
</tr>
<tr>
<td>TIM6</td>
<td>2.69</td>
<td>2.47</td>
</tr>
<tr>
<td>TIM7</td>
<td>2.56</td>
<td>2.44</td>
</tr>
<tr>
<td>TIM12</td>
<td>7.07</td>
<td>6.56</td>
</tr>
<tr>
<td>TIM13</td>
<td>4.96</td>
<td>4.64</td>
</tr>
<tr>
<td>TIM14</td>
<td>5.09</td>
<td>4.72</td>
</tr>
<tr>
<td>WWDG</td>
<td>1.07</td>
<td>1.00</td>
</tr>
<tr>
<td>SPI2(2)</td>
<td>1.89</td>
<td>1.78</td>
</tr>
<tr>
<td>SPI3(2)</td>
<td>1.93</td>
<td>1.81</td>
</tr>
<tr>
<td>SPDIFRX</td>
<td>6.91</td>
<td>6.44</td>
</tr>
<tr>
<td>USART2</td>
<td>4.20</td>
<td>3.83</td>
</tr>
<tr>
<td>USART3</td>
<td>4.22</td>
<td>3.94</td>
</tr>
<tr>
<td>UART4</td>
<td>4.13</td>
<td>3.89</td>
</tr>
<tr>
<td>UART5</td>
<td>4.04</td>
<td>3.78</td>
</tr>
<tr>
<td>I2C1</td>
<td>3.98</td>
<td>3.69</td>
</tr>
<tr>
<td>I2C2</td>
<td>3.91</td>
<td>3.61</td>
</tr>
<tr>
<td>I2C3</td>
<td>3.76</td>
<td>3.53</td>
</tr>
<tr>
<td>FMPI2C1</td>
<td>5.51</td>
<td>5.19</td>
</tr>
<tr>
<td>CAN1</td>
<td>6.58</td>
<td>6.14</td>
</tr>
<tr>
<td>CAN2</td>
<td>5.91</td>
<td>5.56</td>
</tr>
<tr>
<td>CEC</td>
<td>0.71</td>
<td>0.69</td>
</tr>
<tr>
<td>DAC</td>
<td>2.96</td>
<td>2.72</td>
</tr>
</tbody>
</table>
6.3.8 Wakeup time from low-power modes

The wakeup times given in Table 36 are measured starting from the wakeup event trigger up to the first instruction executed by the CPU:

- For Stop or Sleep modes: the wakeup event is WFE.
- WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.

All timings are derived from tests performed under ambient temperature and \(V_{\text{DD}} = 3.3 \) V.
6.3.9 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the Table 56: I/O static characteristics. However, the recommended clock input waveform is shown in Figure 23.

The characteristics given in Table 37 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 16.
Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The external clock signal has to respect the Table 56: I/O static characteristics. However, the recommended clock input waveform is shown in Figure 24.

The characteristics given in Table 38 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 16.

Table 37. High-speed external user clock characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{HSE_ext})</td>
<td>External user clock source frequency(1)</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>50</td>
<td>MHz</td>
</tr>
<tr>
<td>(V_{HSEH})</td>
<td>OSC_IN input pin high level voltage</td>
<td>-</td>
<td>0.7VDD</td>
<td>-</td>
<td>VDD</td>
<td>V</td>
</tr>
<tr>
<td>(V_{HSEL})</td>
<td>OSC_IN input pin low level voltage</td>
<td>VSS</td>
<td>0.3VDD</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_w(HSE))</td>
<td>OSC_IN high or low time(1)</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_r(HSE))</td>
<td>OSC_IN rise or fall time(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>(C_{in}(HSE))</td>
<td>OSC_IN input capacitance(1)</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>(I_L)</td>
<td>OSC_IN Input leakage current</td>
<td>VSS ≤ VIN ≤ VDD</td>
<td>-</td>
<td>-</td>
<td>±1</td>
<td>μA</td>
</tr>
</tbody>
</table>

1. Guaranteed by design.

Table 38. Low-speed external user clock characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{LSE_ext})</td>
<td>User External clock source frequency(1)</td>
<td>-</td>
<td>-</td>
<td>32.768</td>
<td>1000</td>
<td>kHz</td>
</tr>
<tr>
<td>(V_{LSEH})</td>
<td>OSC32_IN input pin high level voltage</td>
<td>-</td>
<td>0.7VDD</td>
<td>-</td>
<td>VDD</td>
<td>V</td>
</tr>
<tr>
<td>(V_{LSEL})</td>
<td>OSC32_IN input pin low level voltage</td>
<td>VSS</td>
<td>0.3VDD</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_w(LSE))</td>
<td>OSC32_IN high or low time(1)</td>
<td>-</td>
<td>450</td>
<td>-</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_r(LSE))</td>
<td>OSC32_IN rise or fall time(1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>(C_{in}(LSE))</td>
<td>OSC32_IN input capacitance(1)</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>pF</td>
</tr>
<tr>
<td>(I_L)</td>
<td>OSC32_IN Input leakage current</td>
<td>VSS ≤ VIN ≤ VDD</td>
<td>-</td>
<td>-</td>
<td>±1</td>
<td>μA</td>
</tr>
</tbody>
</table>

1. Guaranteed by design.
High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 39. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).
For **C\textsubscript{L1}** and **C\textsubscript{L2}**, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 25). **C\textsubscript{L1}** and **C\textsubscript{L2}** are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of **C\textsubscript{L1}** and **C\textsubscript{L2}**. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing **C\textsubscript{L1}** and **C\textsubscript{L2}**.

Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com.

Figure 25. Typical application with an 8 MHz crystal

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 40. In the application, the resonator and the load capacitors have to be placed as close as possible.
possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table 40. LSE oscillator characteristics \((f_{\text{LSE}} = 32.768 \text{ kHz}) \) \(^{(1)}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_F)</td>
<td>Feedback resistor</td>
<td>-</td>
<td>18.4</td>
<td>-</td>
<td>-</td>
<td>M(\Omega)</td>
</tr>
<tr>
<td>(I_{DD})</td>
<td>LSE current consumption</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>(\mu)A</td>
</tr>
<tr>
<td>ACC(_{LSE}^{(2)})</td>
<td>LSE accuracy</td>
<td>Startup low-power mode</td>
<td>-</td>
<td>-</td>
<td>0.56</td>
<td>(\mu)A/V</td>
</tr>
<tr>
<td>(G_{m_{\text{crit max}}})</td>
<td>Maximum critical crystal (g_m)</td>
<td>Startup high-drive mode</td>
<td>-</td>
<td>-</td>
<td>1.5</td>
<td>(\mu)A/V</td>
</tr>
<tr>
<td>(t_{SU(LSE)}^{(3)})</td>
<td>startup time</td>
<td>(V_{DD}) is stabilized</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>s</td>
</tr>
</tbody>
</table>

1. Guaranteed by design.
2. This parameter depends on the crystal used in the application. Refer to application note AN2867.
3. \(t_{SU(LSE)} \) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is guaranteed based on test during characterization. It is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator design guide for ST microcontrollers” available from the ST website www.st.com.

Figure 26. Typical application with a 32.768 kHz crystal

![Typical application with a 32.768 kHz crystal](image_url)
6.3.10 Internal clock source characteristics

The parameters given in Table 41 and Table 42 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 16.

High-speed internal (HSI) RC oscillator

Table 41. HSI oscillator characteristics (1)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>fHSI</td>
<td>Frequency</td>
<td>-</td>
<td>-</td>
<td>16</td>
<td>-</td>
<td>MHz</td>
</tr>
<tr>
<td>ACCHSI</td>
<td>Accuracy of the HSI oscillator</td>
<td>User-trimmed with the RCC_CR register(2)</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_A = -40) to (105) °C(3)</td>
<td>-8</td>
<td>-</td>
<td>4.5</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_A = -10) to (85) °C(3)</td>
<td>-4</td>
<td>-</td>
<td>4</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_A = 25) °C(4)</td>
<td>-1</td>
<td>-</td>
<td>1</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tSU(HSI)(2)</td>
<td>HSI oscillator startup time</td>
<td>-</td>
<td>-</td>
<td>2.2</td>
<td>4</td>
<td>µs</td>
</tr>
<tr>
<td>lDD(HSI)(2)</td>
<td>HSI oscillator power consumption</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>80</td>
<td>µA</td>
</tr>
</tbody>
</table>

1. \(V_{DD} = 3.3 \) V, \(T_A = -40 \) to \(105 \) °C unless otherwise specified.
2. Guaranteed by design.
3. Guaranteed based on test during characterization.
4. Factory calibrated, parts not soldered.

Figure 27. LACC\(_{HSI}\) versus temperature

1. Guaranteed based on test during characterization.
Low-speed internal (LSI) RC oscillator

Table 42. LSI oscillator characteristics (1)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>f<sub>LSI</sub> (2)</td>
<td>Frequency</td>
<td>17</td>
<td>32</td>
<td>47</td>
<td>kHz</td>
</tr>
<tr>
<td>t<sub>su(LSI)</sub> (3)</td>
<td>LSI oscillator startup time</td>
<td>-</td>
<td>15</td>
<td>40</td>
<td>µs</td>
</tr>
<tr>
<td>ID<sub>DD(LSI)</sub> (3)</td>
<td>LSI oscillator power consumption</td>
<td>-</td>
<td>0.4</td>
<td>0.6</td>
<td>µA</td>
</tr>
</tbody>
</table>

1. V_{DD} = 3 V, T_A = –40 to 105 °C unless otherwise specified.
2. Guaranteed based on test during characterization.
3. Guaranteed by design.

6.3.11 PLL characteristics

The parameters given in Table 43 and Table 44 are derived from tests performed under temperature and V_{DD} supply voltage conditions summarized in Table 16.

Table 43. Main PLL characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>f<sub>PLL_IN</sub></td>
<td>PLL input clock(1)</td>
<td>-</td>
<td>0.95(2)</td>
<td>1</td>
<td>2.10</td>
<td>MHz</td>
</tr>
<tr>
<td>f<sub>PLL_OUT</sub></td>
<td>PLL multiplier output clock</td>
<td>-</td>
<td>12.5</td>
<td>-</td>
<td>180</td>
<td>MHz</td>
</tr>
<tr>
<td>f<sub>PLL48_OUT</sub></td>
<td>48 MHz PLL multiplier output clock</td>
<td>-</td>
<td>-</td>
<td>48</td>
<td>75</td>
<td>MHz</td>
</tr>
<tr>
<td>f<sub>VCO_OUT</sub></td>
<td>PLL VCO output</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>432</td>
<td>MHz</td>
</tr>
</tbody>
</table>
STM32F446xC/E Electrical characteristics

Table 43. Main PLL characteristics (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{LOCK}</td>
<td>PLL lock time</td>
<td>VCO freq = 100 MHz</td>
<td>75</td>
<td>-</td>
<td>200</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VCO freq = 432 MHz</td>
<td>100</td>
<td>-</td>
<td>300</td>
<td>µs</td>
</tr>
<tr>
<td>Jitter$^{(3)}$</td>
<td>Cycle-to-cycle jitter</td>
<td>System clock 120 MHz</td>
<td>RMS peak to peak</td>
<td>-</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Period Jitter</td>
<td>System clock 120 MHz</td>
<td>RMS peak to peak</td>
<td>-</td>
<td>±150</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Bit Time CAN jitter</td>
<td>Cycle to cycle at 1 MHz on 1000 samples</td>
<td>-</td>
<td>330</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>$I_{\text{DD}(PLL)}$$^{(4)}$</td>
<td>PLL power consumption on VDD</td>
<td>VCO freq = 100 MHz</td>
<td>0.15</td>
<td>-</td>
<td>0.40</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VCO freq = 432 MHz</td>
<td>0.45</td>
<td>-</td>
<td>0.75</td>
<td>mA</td>
</tr>
<tr>
<td>$I_{\text{DDA}(PLL)}$$^{(4)}$</td>
<td>PLL power consumption on VDDA</td>
<td>VCO freq = 100 MHz</td>
<td>0.30</td>
<td>-</td>
<td>0.40</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VCO freq = 432 MHz</td>
<td>0.55</td>
<td>-</td>
<td>0.85</td>
<td>mA</td>
</tr>
</tbody>
</table>

1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S.
2. Guaranteed by design.
3. The use of 2 PLLs in parallel could degrade the Jitter up to +30%.
4. Guaranteed based on test during characterization.

Table 44. PLLI2S (audio PLL) characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_{\text{PLL2S _IN}}$</td>
<td>PLL2S input clock$^{(1)}$</td>
<td>-</td>
<td>0.95$^{(2)}$</td>
<td>1</td>
<td>2.10</td>
<td>MHz</td>
</tr>
<tr>
<td>$f_{\text{PLL2S _OUT}}$</td>
<td>PLL2S multiplier output clock</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>216</td>
<td>MHz</td>
</tr>
<tr>
<td>$f_{\text{VCO _OUT}}$</td>
<td>PLL2S VCO output</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>432</td>
<td>MHz</td>
</tr>
<tr>
<td>t_{LOCK}</td>
<td>PLL2S lock time</td>
<td>VCO freq = 100 MHz</td>
<td>75</td>
<td>-</td>
<td>200</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VCO freq = 432 MHz</td>
<td>100</td>
<td>-</td>
<td>300</td>
<td>µs</td>
</tr>
<tr>
<td>Jitter$^{(3)}$</td>
<td>Master I2S clock jitter</td>
<td>Cycle to cycle at 12.288 MHz on 48KHz period, N=432, R=5</td>
<td>RMS peak to peak</td>
<td>-</td>
<td>90</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Average frequency of 12.288 MHz N = 432, R = 5 on 1000 samples</td>
<td>-</td>
<td>90</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WS I2S clock jitter</td>
<td>Cycle to cycle at 48 KHz on 1000 samples</td>
<td>-</td>
<td>400</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic interferences (see Table 52: EMI characteristics). It is available only on the main PLL.

6.3.12 PLL spread spectrum clock generation (SSCG) characteristics

The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic interferences (see Table 52: EMI characteristics). It is available only on the main PLL.
Equation 1

The frequency modulation period (MODEPER) is given by the equation below:

\[\text{MODEPER} = \text{round}\left(\frac{\text{f}_{\text{PLL_IN}}}{4 \times \text{f}_{\text{Mod}}}\right) \]

\(f_{\text{PLL_IN}} \) and \(f_{\text{Mod}} \) must be expressed in Hz.

As an example:

If \(f_{\text{PLL_IN}} = 1 \text{ MHz} \), and \(f_{\text{Mod}} = 1 \text{ kHz} \), the modulation depth (MODEPER) is given by equation 1:

\[\text{MODEPER} = \text{round}\left(\frac{10^6}{4 \times 10^3}\right) = 250 \]

Equation 2

Equation 2 allows to calculate the increment step (INCSTEP):

\[\text{INCSTEP} = \text{round}\left(\frac{(2^{15} - 1) \times \text{md} \times \text{PLLN}}{100 \times 5 \times \text{MODEPER}}\right) \]

\(f_{\text{VCO_OUT}} \) must be expressed in MHz.

With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):

\[\text{INCSTEP} = \text{round}\left(\frac{(2^{15} - 1) \times 2 \times 240}{100 \times 5 \times 250}\right) = 126 \text{md(quantitized)}\% \]

An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula:

\[\text{md}_{\text{quantized}}\% = \frac{(\text{MODEPER} \times \text{INCSTEP} \times 100 \times 5)}{(2^{15} - 1) \times \text{PLLN}} \]

As a result:

\[\text{md}_{\text{quantized}}\% = \frac{(250 \times 126 \times 100 \times 5)}{(2^{15} - 1) \times 240} = 2.002\%(\text{peak}) \]
Figure 29 and Figure 30 show the main PLL output clock waveforms in center spread and down spread modes, where:

- F_0 is $f_{\text{PLL.OUT}}$ nominal.
- T_{mode} is the modulation period.
- md is the modulation depth.

Figure 29. PLL output clock waveforms in center spread mode

Figure 30. PLL output clock waveforms in down spread mode

6.3.13 Memory characteristics

Flash memory

The characteristics are given at $T_A = -40$ to 105 °C unless otherwise specified. The devices are shipped to customers with the Flash memory erased.

Table 47. Flash memory characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{DD}</td>
<td>Supply current</td>
<td>Write / Erase 8-bit mode, $V_{\text{DD}} = 1.7$ V</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Write / Erase 16-bit mode, $V_{\text{DD}} = 2.1$ V</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Write / Erase 32-bit mode, $V_{\text{DD}} = 3.3$ V</td>
<td>-</td>
<td>12</td>
<td>-</td>
<td>mA</td>
</tr>
</tbody>
</table>
Table 48. Flash memory programming

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min(^{(1)})</th>
<th>Typ</th>
<th>Max(^{(2)})</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{\text{prog}})</td>
<td>Word programming time</td>
<td>Program/erase parallelism ((\text{PSIZE}) = x 8/16/32)</td>
<td>-</td>
<td>16</td>
<td>100(^{(2)})</td>
<td>µs</td>
</tr>
<tr>
<td>(t_{\text{ERASE16KB}})</td>
<td>Sector (16 KB) erase time</td>
<td>Program/erase parallelism ((\text{PSIZE}) = x 8)</td>
<td>-</td>
<td>400</td>
<td>800</td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Program/erase parallelism ((\text{PSIZE}) = x 16)</td>
<td>-</td>
<td>300</td>
<td>600</td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Program/erase parallelism ((\text{PSIZE}) = x 32)</td>
<td>-</td>
<td>250</td>
<td>500</td>
<td>ms</td>
</tr>
<tr>
<td>(t_{\text{ERASE64KB}})</td>
<td>Sector (64 KB) erase time</td>
<td>Program/erase parallelism ((\text{PSIZE}) = x 8)</td>
<td>-</td>
<td>1200</td>
<td>2400</td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Program/erase parallelism ((\text{PSIZE}) = x 16)</td>
<td>-</td>
<td>700</td>
<td>1400</td>
<td>ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Program/erase parallelism ((\text{PSIZE}) = x 32)</td>
<td>-</td>
<td>550</td>
<td>1100</td>
<td>ms</td>
</tr>
<tr>
<td>(t_{\text{ERASE128KB}})</td>
<td>Sector (128 KB) erase time</td>
<td>Program/erase parallelism ((\text{PSIZE}) = x 8)</td>
<td>-</td>
<td>2</td>
<td>4</td>
<td>s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Program/erase parallelism ((\text{PSIZE}) = x 16)</td>
<td>-</td>
<td>1.3</td>
<td>2.6</td>
<td>s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Program/erase parallelism ((\text{PSIZE}) = x 32)</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>s</td>
</tr>
<tr>
<td>(t_{\text{ME}})</td>
<td>Mass erase time</td>
<td>Program/erase parallelism ((\text{PSIZE}) = x 8)</td>
<td>-</td>
<td>8</td>
<td>16</td>
<td>s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Program/erase parallelism ((\text{PSIZE}) = x 16)</td>
<td>-</td>
<td>5.5</td>
<td>11</td>
<td>s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Program/erase parallelism ((\text{PSIZE}) = x 32)</td>
<td>-</td>
<td>8</td>
<td>16</td>
<td>s</td>
</tr>
<tr>
<td>(V_{\text{prog}})</td>
<td>Programming voltage</td>
<td>32-bit program operation</td>
<td>2.7</td>
<td>-</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16-bit program operation</td>
<td>2.1</td>
<td>-</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-bit program operation</td>
<td>1.7</td>
<td>-</td>
<td>3.6</td>
<td>V</td>
</tr>
</tbody>
</table>

1. Guaranteed based on test during characterization.
2. The maximum programming time is measured after 100K erase operations.

Table 49. Flash memory programming with \(V_{PP}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min(^{(1)})</th>
<th>Typ</th>
<th>Max(^{(2)})</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{\text{prog}})</td>
<td>Double word programming</td>
<td>(T_A = 0 \text{ to } +40 ^\circ C) (V_{\text{DD}} = 3.3 \text{ V}) (V_{\text{PP}} = 8.5 \text{ V})</td>
<td>-</td>
<td>16</td>
<td>100(^{(2)})</td>
<td>µs</td>
</tr>
<tr>
<td>(t_{\text{ERASE16KB}})</td>
<td>Sector (16 KB) erase time</td>
<td>(V_{\text{DD}} = 3.3 \text{ V}) (V_{\text{PP}} = 8.5 \text{ V})</td>
<td>-</td>
<td>230</td>
<td>-</td>
<td>ms</td>
</tr>
<tr>
<td>(t_{\text{ERASE64KB}})</td>
<td>Sector (64 KB) erase time</td>
<td>(V_{\text{DD}} = 3.3 \text{ V}) (V_{\text{PP}} = 8.5 \text{ V})</td>
<td>-</td>
<td>490</td>
<td>-</td>
<td>ms</td>
</tr>
<tr>
<td>(t_{\text{ERASE128KB}})</td>
<td>Sector (128 KB) erase time</td>
<td>(V_{\text{DD}} = 3.3 \text{ V}) (V_{\text{PP}} = 8.5 \text{ V})</td>
<td>-</td>
<td>875</td>
<td>-</td>
<td>ms</td>
</tr>
<tr>
<td>(t_{\text{ME}})</td>
<td>Mass erase time</td>
<td>(V_{\text{DD}} = 3.3 \text{ V}) (V_{\text{PP}} = 8.5 \text{ V})</td>
<td>-</td>
<td>3.5</td>
<td>-</td>
<td>s</td>
</tr>
<tr>
<td>(V_{\text{prog}})</td>
<td>Programming voltage</td>
<td></td>
<td>2.7</td>
<td>-</td>
<td>3.6</td>
<td>V</td>
</tr>
</tbody>
</table>
Electrical characteristics

6.3.14 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports), the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- **Electrostatic discharge (ESD)** (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- **FTB**: A burst of fast transient voltage (positive and negative) is applied to V\textsubscript{DD} and V\textsubscript{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in Table 51. They are based on the EMS levels and classes defined in application note AN1709.

Table 49. Flash memory programming with V\textsubscript{PP} (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min(1)</th>
<th>Typ</th>
<th>Max(1)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V\textsubscript{PP}</td>
<td>V\textsubscript{PP} voltage range</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>9</td>
<td>V</td>
</tr>
<tr>
<td>I\textsubscript{PP}</td>
<td>Minimum current sunk on the V\textsubscript{PP} pin</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td>t\textsubscript{VPP}(3)</td>
<td>Cumulative time during which V\textsubscript{PP} is applied</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>hour</td>
</tr>
</tbody>
</table>

1. Guaranteed by design.
2. The maximum programming time is measured after 100K erase operations.
3. V\textsubscript{PP} should only be connected during programming/erasing.

Table 50. Flash memory endurance and data retention

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>T\textsubscript{A} = –40 to +85 °C (6 suffix versions) T\textsubscript{A} = –40 to +105 °C (7 suffix versions)</td>
<td>10</td>
<td>Kcycles</td>
</tr>
<tr>
<td>N\textsubscript{END}</td>
<td>Endurance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t\textsubscript{RET}</td>
<td>Data retention</td>
<td>1 kcycle(2) at T\textsubscript{A} = 85 °C</td>
<td>30</td>
<td>Years</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 kcycle(2) at T\textsubscript{A} = 105 °C</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 kcycles(2) at T\textsubscript{A} = 55 °C</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application, executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2 standard which specifies the test board and the pin loading.

Table 51. EMS characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Level/Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{FESD}</td>
<td>Voltage limits to be applied on any I/O pin to induce a functional disturbance</td>
<td>$V_{\text{DD}} = 3.3 , \text{V}, , \text{LQFP144, } T_A = +25 , ^\circ\text{C}, , f_{\text{HCLK}} = 168 , \text{MHz, conforms to IEC 61000-4-2}$</td>
<td>2B</td>
</tr>
<tr>
<td>V_{EFTB}</td>
<td>Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance</td>
<td>$V_{\text{DD}} = 3.3 , \text{V}, , \text{LQFP144, } T_A = +25 , ^\circ\text{C}, , f_{\text{HCLK}} = 168 , \text{MHz, conforms to IEC 61000-4-2}$</td>
<td>4B</td>
</tr>
</tbody>
</table>
6.3.15 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the ANSI/JEDEC standard.

Table 52. EMI characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Monitored frequency band</th>
<th>Max vs. *[f({HSE})/f({CPU})]</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>8/180 MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1 to 30 MHz</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 to 130 MHz</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>130 MHz to 1GHz</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAE EMI Level</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAE EMI level</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1 to 30 MHz</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 to 130 MHz</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>130 MHz to 1GHz</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAE EMI level</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 53. ESD absolute maximum ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Ratings</th>
<th>Conditions</th>
<th>Class</th>
<th>Maximum value(^{(1)})</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{ESD(HBM)})</td>
<td>Electrostatic discharge voltage (human body model)</td>
<td>(T_A = +25^\circ C) conforming to ANSI/JEDEC JS-001</td>
<td>2</td>
<td>2000 V</td>
<td>V</td>
</tr>
<tr>
<td>(V_{ESD(CDM)})</td>
<td>Electrostatic discharge voltage (charge device model)</td>
<td>2.0 (V) + 25 °C conforming to ANSI/ESD STM5.3.1, LQFP64, LQFP100, WLCSP81 packages</td>
<td>C4</td>
<td>500 V</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T_A = +25^\circ C) conforming to ANSI/ESD STM5.3.1, LQFP144, UFBGA144 (7 x 7), UFBGA144 (10 x 10) packages</td>
<td>C3</td>
<td>250 V</td>
<td>V</td>
</tr>
</tbody>
</table>

1. Guaranteed based on test during characterization.

Static latchup

Two complementary static tests are required on six parts to assess the latchup performance:
- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latchup standard.

Table 54. Electrical sensitivities

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>LU</td>
<td>Static latch-up class</td>
<td>$T_A = +105 , ^\circ C$ conforming to JESD78A</td>
<td>II level A</td>
</tr>
</tbody>
</table>

6.3.16 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of $-5 \mu A$/$+0 \mu A$ range), or other functional failure (for example reset, oscillator frequency deviation).

Negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection.

The test results are given in Table 55.

Table 55. I/O current injection susceptibility\(^{(1)}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Functional susceptibility</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{INJ}</td>
<td>Injected current on BOOT0 pin</td>
<td>-0</td>
<td>NA</td>
</tr>
<tr>
<td>I_{INJ}</td>
<td>Injected current on NRST pin</td>
<td>-0</td>
<td>NA</td>
</tr>
<tr>
<td>I_{INJ}</td>
<td>Injected current on PE2, PE3, PE4, PE5, PE6, PC13, PC14, PF10, PH0, PH1, NRST, PC0, PC1, PC2, PC3, PG15, PB3, PB4, PB5, PB6, PB7, PB8, PB9, PE0, PE1</td>
<td>-0</td>
<td>NA</td>
</tr>
<tr>
<td>I_{INJ}</td>
<td>Injected current on any other FT and FTf pins</td>
<td>-5</td>
<td>NA</td>
</tr>
<tr>
<td>I_{INJ}</td>
<td>Injected current on any other pins</td>
<td>-5</td>
<td>+5</td>
</tr>
</tbody>
</table>

1. NA = not applicable.

Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.
6.3.17 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 56: I/O static characteristics* are derived from tests performed under the conditions summarized in *Table 16*. All I/Os are CMOS and TTL compliant.

Table 56. I/O static characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIL</td>
<td>FT, FTI, TTa and NRST I/O input low level voltage</td>
<td>$1.7 \leq V_{DD} \leq 3.6 \text{ V}$</td>
<td>-</td>
<td>-</td>
<td>0.35V_{DD} - 0.04</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>BOOT0 I/O input low level voltage</td>
<td>$1.75 \leq V_{DD} \leq 3.6 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 105^\circ\text{C}$</td>
<td>-</td>
<td>-</td>
<td>0.1V_{DD} + 0.1</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1.7 \leq V_{DD} \leq 3.6 \text{ V}$, $0^\circ\text{C} \leq T_A \leq 105^\circ\text{C}$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>VIH</td>
<td>FT, FTI, TTa and NRST I/O input high level voltage(4)</td>
<td>$1.7 \leq V_{DD} \leq 3.6 \text{ V}$</td>
<td>0.45V_{DD} + 0.3</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>BOOT0 I/O input high level voltage</td>
<td>$1.75 \leq V_{DD} \leq 3.6 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 105^\circ\text{C}$</td>
<td>0.17V_{DD} + 0.1</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1.7 \leq V_{DD} \leq 3.6 \text{ V}$, $0^\circ\text{C} \leq T_A \leq 105^\circ\text{C}$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>VHY</td>
<td>FT, FTI, TTa and NRST I/O input hysteresis</td>
<td>$1.7 \leq V_{DD} \leq 3.6 \text{ V}$</td>
<td>-</td>
<td>10%V_{DD}</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>BOOT0 I/O input hysteresis</td>
<td>$1.75 \leq V_{DD} \leq 3.6 \text{ V}$, $-40^\circ\text{C} \leq T_A \leq 105^\circ\text{C}$</td>
<td>-</td>
<td>100 m</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$1.7 \leq V_{DD} \leq 3.6 \text{ V}$, $0^\circ\text{C} \leq T_A \leq 105^\circ\text{C}$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>Ikg</td>
<td>I/O input leakage current (3)</td>
<td>$V_{SS} \leq V_{IN} \leq V_{DD}$</td>
<td>-</td>
<td>-</td>
<td>±1</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>I/O FT input leakage current (4)</td>
<td>$V_{IN} = 5 \text{ V}$</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>µA</td>
</tr>
</tbody>
</table>
All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in Figure 31.

Table 56. I/O static characteristics (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{PU}</td>
<td>Weak pull-up equivalent resistor(5)</td>
<td>All pins except for PA10/PB12 (OTG_FS_ID, OTG_HS_ID) (V_{IN} = V_{SS})</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>kΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PA10/PB12 (OTG_FS_ID, OTG_HS_ID)</td>
<td>7</td>
<td>10</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>R_{PD}</td>
<td>Weak pull-down equivalent resistor(6)</td>
<td>All pins except for PA10/PB12 (OTG_FS_ID, OTG_HS_ID) (V_{IN} = V_{DD})</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>PA10/PB12 (OTG_FS_ID, OTG_HS_ID)</td>
<td>7</td>
<td>10</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>C_{IO}</td>
<td>I/O pin capacitance</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>pF</td>
</tr>
</tbody>
</table>

1. Guaranteed by design.
2. Tested in production.
3. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 55: I/O current injection susceptibility.
4. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to Table 55: I/O current injection susceptibility.
5. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimum (~10% order).
6. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum (~10% order).
Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or source up to ±20 mA (with a relaxed V_{OL}/V_{OH}) except PC13, PC14 and PC15 which can sink or source up to ±3 mA. When using the PC13 to PC15 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2. In particular:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see Table 14).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating ΣI_{VSS} (see Table 14).

Output voltage levels

Unless otherwise specified, the parameters given in Table 57 are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in Table 16. All I/Os are CMOS and TTL compliant.
Table 57. Output voltage characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{\text{OL}}^{(1)}$</td>
<td>Output low level voltage for an I/O pin</td>
<td>$I_{\text{IO}} = +8 \text{ mA}$, $2.7 \text{ V} \leq V_{\text{DD}} \leq 3.6 \text{ V}$</td>
<td>-</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>$V_{\text{OH}}^{(3)}$</td>
<td>Output high level voltage for an I/O pin</td>
<td>$I_{\text{IO}} = +8 \text{ mA}$, $2.7 \text{ V} \leq V_{\text{DD}} \leq 3.6 \text{ V}$</td>
<td>$V_{\text{DD}}-0.4$</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>$V_{\text{OL}}^{(1)}$</td>
<td>Output low level voltage for an I/O pin</td>
<td>$I_{\text{IO}} = +8 \text{ mA}$, $2.7 \text{ V} \leq V_{\text{DD}} \leq 3.6 \text{ V}$</td>
<td>-</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>$V_{\text{OH}}^{(3)}$</td>
<td>Output high level voltage for an I/O pin</td>
<td>$I_{\text{IO}} = +8 \text{ mA}$, $2.7 \text{ V} \leq V_{\text{DD}} \leq 3.6 \text{ V}$</td>
<td>$V_{\text{DD}}-1.3^{(4)}$</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>$V_{\text{OL}}^{(1)}$</td>
<td>Output low level voltage for an I/O pin</td>
<td>$I_{\text{IO}} = +8 \text{ mA}$, $2.7 \text{ V} \leq V_{\text{DD}} \leq 3.6 \text{ V}$</td>
<td>-</td>
<td>1.3$^{(4)}$</td>
<td>V</td>
</tr>
<tr>
<td>$V_{\text{OH}}^{(3)}$</td>
<td>Output high level voltage for an I/O pin</td>
<td>$I_{\text{IO}} = +8 \text{ mA}$, $2.7 \text{ V} \leq V_{\text{DD}} \leq 3.6 \text{ V}$</td>
<td>$V_{\text{DD}}-1.3^{(4)}$</td>
<td>-</td>
<td>V</td>
</tr>
</tbody>
</table>

1. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in Table 14 and the sum of I_{IO} (I/O ports and control pins) must not exceed IVSS.
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 14 and the sum of I_{IO} (I/O ports and control pins) must not exceed IVDD.
4. Based on characterization data.
5. Guaranteed by design.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in Figure 32 and Table 58, respectively.

Unless otherwise specified, the parameters given in Table 58 are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in Table 16.

Table 58. I/O AC characteristics$^{(1)(2)}$

<table>
<thead>
<tr>
<th>OSPEEDR y[1:0] bit value$^{(1)}$</th>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>$f_{\text{max}(\text{I/O})out}$</td>
<td>Maximum frequency$^{(3)}$</td>
<td>$C_L = 50 \text{ pF}, V_{\text{DD}} \geq 2.7 \text{ V}$</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$C_L = 50 \text{ pF}, V_{\text{DD}} \geq 1.7 \text{ V}$</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$C_L = 10 \text{ pF}, V_{\text{DD}} \geq 2.7 \text{ V}$</td>
<td>-</td>
<td>-</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$C_L = 10 \text{ pF}, V_{\text{DD}} \geq 1.8 \text{ V}$</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$C_L = 10 \text{ pF}, V_{\text{DD}} \geq 1.7 \text{ V}$</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$t_{\text{f(I/O)out}}/t_{\text{r(I/O)out}}$</td>
<td>Output high to low level fall time and output low to high level rise time</td>
<td>$C_L = 50 \text{ pF}, V_{\text{DD}} = 1.7 \text{ V}$ to 3.6 V</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>ns</td>
</tr>
</tbody>
</table>
Table 58. I/O AC characteristics\(^{(1)(2)}\) (continued)

<table>
<thead>
<tr>
<th>OSPEEDR y[1:0] bit value(^{(1)})</th>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>(f_{\text{max}(\text{IO})\text{out}})</td>
<td>Maximum frequency(^{(3)})</td>
<td>(C_L = 50\ \text{pF}, V_{DD} \geq 2.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 50\ \text{pF}, V_{DD} \geq 1.8\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 50\ \text{pF}, V_{DD} \geq 1.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 10\ \text{pF}, V_{DD} \geq 2.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 10\ \text{pF}, V_{DD} \geq 1.8\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 10\ \text{pF}, V_{DD} \geq 1.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>(t_{\text{f}(\text{IO})\text{out}}/t_{\text{r}(\text{IO})\text{out}})</td>
<td>Output high to low level fall time and output low to high level rise time</td>
<td>(C_L = 50\ \text{pF}, V_{DD} \geq 2.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 10\ \text{pF}, V_{DD} \geq 2.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 50\ \text{pF}, V_{DD} \geq 1.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 10\ \text{pF}, V_{DD} \geq 1.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(f_{\text{max}(\text{IO})\text{out}})</td>
<td>Maximum frequency(^{(3)})</td>
<td>(C_L = 40\ \text{pF}, V_{DD} \geq 2.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>50(^{(4)})</td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 10\ \text{pF}, V_{DD} \geq 2.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>100(^{(4)})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 40\ \text{pF}, V_{DD} \geq 1.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 10\ \text{pF}, V_{DD} \geq 1.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 10\ \text{pF}, V_{DD} \geq 1.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>42.5</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>(t_{\text{f}(\text{IO})\text{out}}/t_{\text{r}(\text{IO})\text{out}})</td>
<td>Output high to low level fall time and output low to high level rise time</td>
<td>(C_L = 40\ \text{pF}, V_{DD} \geq 2.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 10\ \text{pF}, V_{DD} \geq 2.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 40\ \text{pF}, V_{DD} \geq 1.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 10\ \text{pF}, V_{DD} \geq 1.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(f_{\text{max}(\text{IO})\text{out}})</td>
<td>Maximum frequency(^{(3)})</td>
<td>(C_L = 30\ \text{pF}, V_{DD} \geq 2.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>100(^{(4)})</td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 30\ \text{pF}, V_{DD} \geq 1.8\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 30\ \text{pF}, V_{DD} \geq 1.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>42.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 10\ \text{pF}, V_{DD} \geq 2.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>180(^{(4)})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 10\ \text{pF}, V_{DD} \geq 1.8\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 10\ \text{pF}, V_{DD} \geq 1.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>72.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(t_{\text{f}(\text{IO})\text{out}}/t_{\text{r}(\text{IO})\text{out}})</td>
<td>Output high to low level fall time and output low to high level rise time</td>
<td>(C_L = 30\ \text{pF}, V_{DD} \geq 2.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 30\ \text{pF}, V_{DD} \geq 1.8\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 30\ \text{pF}, V_{DD} \geq 1.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 10\ \text{pF}, V_{DD} \geq 2.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 10\ \text{pF}, V_{DD} \geq 1.8\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C_L = 10\ \text{pF}, V_{DD} \geq 1.7\ \text{V})</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>(t_{\text{EXTIpw}})</td>
<td>Pulse width of external signals detected by the EXTI controller</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>ns</td>
<td></td>
</tr>
</tbody>
</table>
1. Guaranteed by design.
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register.
3. The maximum frequency is defined in Figure 32.
4. For maximum frequencies above 50 MHz and \(V_{DD} > 2.4 \text{ V} \), the compensation cell should be used.

6.3.18 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, \(R_{PU} \) (see Table 56: I/O static characteristics).

Unless otherwise specified, the parameters given in Table 59 are derived from tests performed under the ambient temperature and \(V_{DD} \) supply voltage conditions summarized in Table 16.

Table 59. NRST pin characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{PU})</td>
<td>Weak pull-up equivalent resistor(^{1})</td>
<td>(V_{IN} = V_{SS})</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>kΩ</td>
</tr>
<tr>
<td>(V_{F(NRST)}(2))</td>
<td>NRST input filtered pulse</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>ns</td>
</tr>
<tr>
<td>(V_{NF(NRST)}(2))</td>
<td>NRST input not filtered pulse</td>
<td>(V_{DD} > 2.7) V</td>
<td>300</td>
<td>-</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(T_{NRST_OUT})</td>
<td>Generated reset pulse duration</td>
<td>Internal Reset source</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>µs</td>
</tr>
</tbody>
</table>

1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order).
2. Guaranteed by design.
The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the $V_{IL(NRST)}$ max level specified in Table 59. Otherwise the reset is not taken into account by the device.
3. The external capacitor on NRST must be placed as close as possible to the device.

6.3.19 TIM timer characteristics

The parameters given in Table 60 are guaranteed by design.

Refer to Section 6.3.17: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Table 60. TIMx characteristics(1)(2)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions(3)</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{res ,(TIM)}$</td>
<td>Timer resolution time</td>
<td>$f_{TIMxCLK} = 180$ MHz</td>
<td>1</td>
<td>-</td>
<td>$t_{TIMxCLK}$</td>
</tr>
<tr>
<td>fEXT</td>
<td>Timer external clock frequency on CH1 to CH4</td>
<td>$f_{TIMxCLK} = 180$ MHz</td>
<td>0</td>
<td>$f_{TIMxCLK}/2$</td>
<td>MHz</td>
</tr>
<tr>
<td>ResTIM</td>
<td>Timer resolution</td>
<td>$f_{TIMxCLK} = 180$ MHz</td>
<td>-</td>
<td>16/32</td>
<td>bit</td>
</tr>
<tr>
<td>tMAX_COUNT</td>
<td>Maximum possible count with 32-bit counter</td>
<td>$f_{TIMxCLK} = 180$ MHz</td>
<td>-</td>
<td>65536×65536</td>
<td>$t_{TIMxCLK}$</td>
</tr>
</tbody>
</table>

1. TIMx is used as a general term to refer to the TIM1 to TIM12 timers.
2. Guaranteed by design.
3. The maximum timer frequency on APB1 or APB2 is up to 180 MHz, by setting the TIMPRE bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then $f_{TIMxCLK} = HCKL$, otherwise $f_{TIMxCLK} = 4x \times PCLKx$.

6.3.20 Communications interfaces

I²C interface characteristics

The I²C interface meets the requirements of the standard I²C communication protocol with the following restrictions: the I/O pins SDA and SCL too are mapped as not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.
The I\(^2\)C characteristics are described in Table 61. Refer also to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

Table 61. I\(^2\)C characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Standard mode I(^2)C(^{(1)(2)})</th>
<th>Fast mode I(^2)C(^{(1)(2)})</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(_{w}(\text{SCLL}))</td>
<td>SCL clock low time</td>
<td>4.7 - 1.3</td>
<td>-</td>
<td>µs</td>
</tr>
<tr>
<td>t(_{w}(\text{SCLH}))</td>
<td>SCL clock high time</td>
<td>4.0 - 0.6</td>
<td>-</td>
<td>µs</td>
</tr>
<tr>
<td>t(_{su}(\text{SDA}))</td>
<td>SDA setup time</td>
<td>250 - 100</td>
<td>-</td>
<td>µs</td>
</tr>
<tr>
<td>t(_{H}(\text{SDA}))</td>
<td>SDA data hold time</td>
<td>- 3450(^{(3)})</td>
<td>- 900(^{(4)})</td>
<td>µs</td>
</tr>
<tr>
<td>t(_{W}(\text{SDA, ACK}))</td>
<td>Data, ACK valid time</td>
<td>- 3.45</td>
<td>- 0.9</td>
<td>ns</td>
</tr>
<tr>
<td>t(_{R}(\text{SDA}))</td>
<td>SDA and SCL rise time</td>
<td>- 1000</td>
<td>- 300</td>
<td>µs</td>
</tr>
<tr>
<td>t(_{R}(\text{SCL}))</td>
<td>SDA and SCL fall time</td>
<td>- 300</td>
<td>- 300</td>
<td>µs</td>
</tr>
<tr>
<td>t(_{H}(\text{STA}))</td>
<td>Start condition hold time</td>
<td>4.0 - 0.6</td>
<td>-</td>
<td>µs</td>
</tr>
<tr>
<td>t(_{su}(\text{STA}))</td>
<td>Repeated Start condition setup time</td>
<td>4.7 - 0.6</td>
<td>-</td>
<td>µs</td>
</tr>
<tr>
<td>t(_{su}(\text{STO}))</td>
<td>Stop condition setup time</td>
<td>4.0 - 0.6</td>
<td>-</td>
<td>µs</td>
</tr>
<tr>
<td>t(_{W}(\text{STO:STA}))</td>
<td>Stop to Start condition time (bus free)</td>
<td>4.7 - 1.3</td>
<td>-</td>
<td>µs</td>
</tr>
<tr>
<td>t(_{SP})</td>
<td>Pulse width of the spikes that are suppressed by the analog filter for standard and fast mode</td>
<td>- - 0.05</td>
<td>0.09(^{(5)})</td>
<td>µs</td>
</tr>
<tr>
<td>C(_{b})</td>
<td>Capacitive load for each bus line</td>
<td>- 400</td>
<td>- 400</td>
<td>pF</td>
</tr>
</tbody>
</table>

1. Guaranteed based on test during characterization.
2. \(f_{PCLK1}\) must be at least 2 MHz to achieve standard mode I\(^2\)C frequencies. It must be at least 4 MHz to achieve fast mode I\(^2\)C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I\(^2\)C fast mode clock.
3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.
4. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL signal.
5. The minimum width of the spikes filtered by the analog filter is above \(t_{SP}\)(max).
Figure 34. I2C bus AC waveforms and measurement circuit

1. R_S = series protection resistor.
2. R_P = external pull-up resistor.
3. $V_{DD_{I2C}}$ is the I2C bus power supply.
FMPI\(^2\)C characteristics

The FMPI2C characteristics are described in Table 62.

Refer also to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

Table 62. FMPI\(^2\)C characteristics\(^{(1)}\)

<table>
<thead>
<tr>
<th>-</th>
<th>Parameter</th>
<th>Standard mode</th>
<th>Fast mode</th>
<th>Fast+ mode</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
</tr>
</tbody>
</table>

\(f_{\text{FMPI2C}}\)	\(F_{\text{MPI2CCLK}}\) frequency	2	-	8	-	17	16\(^{(2)}\)	-
\(t_{\text{W(SCL)}}\)	SCL clock low time	4.7	-	1.3	-	0.5	-	
\(t_{\text{W(SCH)}}\)	SCL clock high time	4.0	-	0.6	-	0.26	-	
\(t_{\text{su(SDA)}}\)	SDA setup time	0.25	-	0.10	-	0.05	-	
\(t_{\text{H(SDA)}}\)	SDA data hold time	0	-	0	-	0	-	
\(t_{\text{w(SDA,ACK)}}\)	Data, ACK valid time	-	3.45	-	0.9	-	0.45	
\(t_{\text{r(SDA)}}\)	SDA and SCL rise time	-	0.100	-	0.30	-	0.12	
\(t_{\text{f(SDA)}}\)	SDA and SCL fall time	-	0.30	-	0.30	-	0.12	
\(t_{\text{h(STA)}}\)	Start condition hold time	4	-	0.6	-	0.26	-	
\(t_{\text{su(STA)}}\)	Repeated Start condition setup time	4.7	-	0.6	-	0.26	-	
\(t_{\text{su(STO)}}\)	Stop condition setup time	4	-	0.6	-	0.26	-	
\(t_{\text{w(STO:STA)}}\)	Stop to Start condition time (bus free)	4.7	-	1.3	-	0.5	-	
\(t_{\text{SP}}\)	Pulse width of the spikes that are suppressed by the analog filter for standard and fast mode	-	-	0.05	0.09	0.05	0.09	
\(C_{\text{b}}\)	Capacitive load for each bus Line	-	400	-	400	-	550\(^{(3)}\)	pF

1. Guaranteed based on test during characterization.
2. When \(t_{\text{r(SDA,SCL)}}\)\(<=110\text{ns}\).
3. Can be limited. Maximum supported value can be retrieved by referring to the following formulas:
 \[t_{\text{r(SDA/SCL)}} = 0.8473 \times R_{\text{P}} \times C_{\text{load}} \]
 \[R_{\text{P(min)}} = (V_{\text{DD}} - V_{\text{OL(max)}}) / I_{\text{OL(max)}} \]
Figure 35. FMI2C timing diagram and measurement circuit
SPI interface characteristics

Unless otherwise specified, the parameters given in Table 63 for SPI are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 16, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C=30pF
- Measurement points are done at CMOS levels: 0.5VDD

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{SCK})</td>
<td>SPI clock frequency</td>
<td>Master full duplex/receiver mode, 2.7 V≤VDD≤3.6 V SPI1/4</td>
<td>-</td>
<td>-</td>
<td>45</td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Master transmitter 1.71V <VDD< 3.6V SPI1/4</td>
<td>45</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Master 1.71V <VDD< 3.6V SPI1/2/3/4</td>
<td>22.5</td>
<td>22.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slave transmitter/ full duplex mode SPI1/4 2.7V <VDD< 3.6V</td>
<td>-</td>
<td>-</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slave receiver mode SPI1/4 1.71V <VDD< 3.6V</td>
<td>45</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slave mode SPI1/2/3/4 1.71V <VDD< 3.6V</td>
<td>-</td>
<td>-</td>
<td>22.5(2)</td>
<td></td>
</tr>
<tr>
<td>Duty(SCK)</td>
<td>Duty cycle of SPI clock frequency</td>
<td>Slave mode</td>
<td>30</td>
<td>50</td>
<td>70</td>
<td>%</td>
</tr>
</tbody>
</table>
Table 63. SPI dynamic characteristics*(1) (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>tw(SCKH)</td>
<td>SCK high and low time</td>
<td>Master mode, SPI presc = 2</td>
<td>T_PCLK - 1.5</td>
<td>T_PCLK</td>
<td>T_PCLK + 1.5</td>
<td>ns</td>
</tr>
<tr>
<td>tw(SCKL)</td>
<td></td>
<td>Master mode, SPI presc = 2</td>
<td>T_PCLK - 1.5</td>
<td>T_PCLK</td>
<td>T_PCLK + 1.5</td>
<td>ns</td>
</tr>
<tr>
<td>tu(NSS)</td>
<td>NSS setup time</td>
<td>Slave mode, SPI presc = 2</td>
<td>4T_PCLK</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>th(NSS)</td>
<td>NSS hold time</td>
<td>Slave mode, SPI presc = 2</td>
<td>2T_PCLK</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>tsu(MI)</td>
<td>Data input setup time</td>
<td>Slave mode</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>tsu(SI)</td>
<td>Data input hold time</td>
<td>Slave mode</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>th(MI)</td>
<td>Data output access time</td>
<td>Slave mode</td>
<td>7</td>
<td>-</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>tsr(SO)</td>
<td>Data output disable time</td>
<td>Slave mode</td>
<td>5</td>
<td>-</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>tv(SO)</td>
<td>Data output valid/hold time</td>
<td>Slave mode (after enable edge), 2.7V ≤ V_DD ≤ 3.6V</td>
<td>-</td>
<td>7.5</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>tv(SO)</td>
<td>Data output valid/hold time</td>
<td>Slave mode (after enable edge), 1.7V ≤ V_DD ≤ 3.6V</td>
<td>-</td>
<td>7.5</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>th(MO)</td>
<td>Data output hold time</td>
<td>Master mode (after enable edge)</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>th(MO)</td>
<td>Data output hold time</td>
<td>Master mode (after enable edge)</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1. Guaranteed based on test during characterization.
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsr(MI), which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50%.

Figure 36. SPI timing diagram - slave mode and CPHA = 0
Figure 37. SPI timing diagram - slave mode and CPHA = 1

Figure 38. SPI timing diagram - master mode
QSPI interface characteristics

Unless otherwise specified, the parameters given in Table 64 for QSPI are derived from tests performed under the ambient temperature, f_{AHB} frequency and V_{DD} supply voltage conditions summarized in Table 16, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 11
- Capacitive load $C=20\text{pF}$
- Measurement points are done at CMOS levels: $0.5VDD$

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics.

| Table 64. QSPI dynamic characteristics in SDR Mode(1) |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| f_{SCK} | QSPI clock frequency | Write mode | 1.71 V ≤ V_{DD} ≤ 3.6 V | - | - | 90 | MHz |
| | | Read mode | 2.7 V < V_{DD} < 3.6 V | - | - | 90 | |
| | | | 1.71 V ≤ V_{DD} ≤ 3.6 V | - | - | 48 | |
| $t_{w(CKH)}$ | QSPI clock high and low | - | $(T_{(CK)/2}) - 2$ | - | $T_{(CK)/2}$ | | |
| $t_{w(CKL)}$ | | | $T_{(CK)/2}$ | - | $(T_{(CK)/2}) + 2$ | | |
| $t_{s(IN)}$ | Data input setup time | - | 2 | - | - | | |
| $t_{h(IN)}$ | Data input hold time | - | 4.5 | - | - | | |
| $t_{v(OUT)}$ | Data output valid time | - | 1.5 | 3 | | | |
| $t_{h(OUT)}$ | Data output hold time | - | 0 | - | - | | |

1. Guaranteed based on test during characterization.

| Table 65. QSPI dynamic characteristics in DDR Mode(1) |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| f_{SCK} | QSPI clock frequency | Write mode | 1.71 V ≤ V_{DD} ≤ 3.6 V | - | - | 60 | MHz |
| | | Read mode | 2.7 V < V_{DD} < 3.6 V | - | - | 60 | |
| | | | 1.71 V ≤ V_{DD} ≤ 3.6 V | - | - | 48 | |
Table 65. QSPI dynamic characteristics in DDR Mode\(^{(1)}\) (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>QSPI clock high and low</td>
<td>-</td>
<td>(\left(T_{\text{CK}}\right) / 2 - 2)</td>
<td>(-)</td>
<td>(T_{\text{CK}} / 2)</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>QSPI clock low and low</td>
<td></td>
<td>(T_{\text{CK}} / 2)</td>
<td>(-)</td>
<td>(\left(T_{\text{CK}}\right) / 2 + 2)</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>Data input setup time</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data input hold time</td>
<td>-</td>
<td>5.5</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data output valid time</td>
<td>2.7V <VDD< 3.6V</td>
<td>-</td>
<td>5.5</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data output hold time</td>
<td>1.71V <VDD< 3.6V</td>
<td>-</td>
<td>8</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1. Guaranteed based on test during characterization.

I²S interface characteristics

Unless otherwise specified, the parameters given in Table 66 for the I²S interface are derived from tests performed under the ambient temperature, \(f_{\text{PCLKx}}\) frequency and \(V_{\text{DD}}\) supply voltage conditions summarized in Table 16, with the following configuration:

- Output speed is set to \(\text{OSPEEDRy[1:0]} = 10\)
- Capacitive load \(C = 30\) pF
- Measurement points are done at CMOS levels: 0.5\(V_{\text{DD}}\)

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS).

Table 66. I²S dynamic characteristics\(^{(1)}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I²S Main clock output</td>
<td>-</td>
<td>256 x 8K</td>
<td>256 x Fs(^{(2)})</td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td>I²S clock frequency</td>
<td>Master data</td>
<td>-</td>
<td>64 x Fs</td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slave data</td>
<td>-</td>
<td>64 x Fs</td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td>I²S clock frequency duty cycle</td>
<td>Slave receiver</td>
<td>30</td>
<td>70</td>
<td>%</td>
</tr>
</tbody>
</table>
Electrical characteristics

Table 66. I²S dynamic characteristics (1) (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(WS)</td>
<td>WS valid time</td>
<td>Master mode</td>
<td></td>
<td>-</td>
<td>5.5</td>
<td>ns</td>
</tr>
<tr>
<td>t(WS)</td>
<td>WS hold time</td>
<td>Master mode</td>
<td></td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>t(WS)</td>
<td>WS setup time</td>
<td>Slave mode</td>
<td>PCM short pulse Slave mode (3)</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>t(WS)</td>
<td>WS hold time</td>
<td>Slave mode</td>
<td>PCM short pulse Slave mode (3)</td>
<td>3</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>t(MR)</td>
<td>Data input setup time</td>
<td>Master receiver</td>
<td></td>
<td>3</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>t(MR)</td>
<td>Data input hold time</td>
<td>Master receiver</td>
<td></td>
<td>4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>t(MR)</td>
<td>Data input hold time</td>
<td>Slave receiver</td>
<td></td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>t(MR)</td>
<td>Data output valid time</td>
<td>Slave transmitter (after enable edge)</td>
<td></td>
<td>-</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>t(MT)</td>
<td>Data output hold time</td>
<td>Master transmitter (after enable edge)</td>
<td></td>
<td>-</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>t(MT)</td>
<td>Data output hold time</td>
<td>Slave transmitter (after enable edge)</td>
<td></td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>t(MT)</td>
<td>Data output hold time</td>
<td>Master transmitter (after enable edge)</td>
<td></td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1. Guaranteed based on test during characterization.
2. The maximum value of 256xFs is 45 MHz (APB1 maximum frequency).
3. Measurement done with respect to I2S_CK rising edge.

Note: Refer to the I2S section of RM0390 reference manual for more details on the sampling frequency (F_S).

f_{MCK}, f_{CK}, and D_{CK} values reflect only the digital peripheral behavior. The values of these parameters might be slightly impacted by the source clock precision. D_{CK} depends mainly on the value of ODD bit. The digital contribution leads to a minimum value of (I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). F_S maximum value is supported for each mode/condition.
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 39. I²S slave timing diagram (Philips protocol)\(^{(1)}\)

Figure 40. I²S master timing diagram (Philips protocol)\(^{(1)}\)

1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.
SAI characteristics

Unless otherwise specified, the parameters given in Table 67 for SAI are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and VDD supply voltage conditions summarized in Table 16, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C=30 pF
- Measurement points are performed at CMOS levels: 0.5VDD

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (SCK,SD,WS).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{MCK}</td>
<td>SAI Main clock output</td>
<td>-</td>
<td>256 x 8K</td>
<td>256 x Fs</td>
<td>MHz</td>
</tr>
<tr>
<td>f_{CK}</td>
<td>SAI clock frequency(^{(2)})</td>
<td>Master data: 32 bits</td>
<td>-</td>
<td>128 x Fs(^{(3)})</td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slave data: 32 bits</td>
<td>-</td>
<td>128 x Fs(^{(3)})</td>
<td>MHz</td>
</tr>
<tr>
<td>$t_{(FS)}$</td>
<td>FS valid time</td>
<td>Master mode 2.7 V ≤ VDD ≤ 3.6 V</td>
<td>-</td>
<td>14</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Master mode 1.71 V ≤ VDD ≤ 3.6 V</td>
<td>-</td>
<td>17.5</td>
<td></td>
</tr>
<tr>
<td>$t_{(HS)}$</td>
<td>FS hold time</td>
<td>Master mode</td>
<td>7</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>$t_{su(FS)}$</td>
<td>FS setup time</td>
<td>Slave mode</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>$t_{h(FS)}$</td>
<td>FS hold time</td>
<td>Slave mode</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>$t_{su(SD_A_MR)}$</td>
<td>Data input setup time</td>
<td>Master receiver</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>$t_{su(SD_B_SR)}$</td>
<td>Slave receiver</td>
<td>1</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{h(SD_A_MR)}$</td>
<td>Data input hold time</td>
<td>Master receiver</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>$t_{h(SD_B_SR)}$</td>
<td>Slave receiver</td>
<td>1</td>
<td>-</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>$t_{(SD_B_ST)}$</td>
<td>Data output valid time</td>
<td>Slave transmitter (after enable edge 2.7 V ≤ VDD ≤ 3.6 V)</td>
<td>-</td>
<td>9.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slave transmitter (after enable edge 1.71 V ≤ VDD ≤ 3.6 V)</td>
<td>-</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>$t_{h(SD_B_ST)}$</td>
<td>Data output hold time</td>
<td>Slave transmitter (after enable edge 2.7 V ≤ VDD ≤ 3.6 V)</td>
<td>6</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>$t_{(SD_B_ST)}$</td>
<td>Master transmitter (after enable edge 1.71 V ≤ VDD ≤ 3.6 V)</td>
<td>-</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{h(SD_B_ST)}$</td>
<td>Master transmitter (after enable edge 2.7 V ≤ VDD ≤ 3.6 V)</td>
<td>-</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Guaranteed based on test during characterization.
2. 256xFs maximum corresponds to 45 MHz (APB2 maximum frequency)
3. With Fs = 192 KHz
USB OTG full speed (FS) characteristics

This interface is present in both the USB OTG HS and USB OTG FS controllers.

Table 68. USB OTG full speed startup time

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{STARTUP}<sup>(1)</sup></td>
<td>USB OTG full speed transceiver startup time</td>
<td>1</td>
<td>µs</td>
</tr>
</tbody>
</table>

1. Guaranteed by design.
Electrical characteristics

Table 69. USB OTG full speed DC electrical characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.(^{(1)})</th>
<th>Typ.</th>
<th>Max.(^{(1)})</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{DDUSB})</td>
<td>USB OTG full speed transceiver operating voltage</td>
<td></td>
<td>3.0(^{(2)})</td>
<td>-</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>(V_{DI})</td>
<td>Differential input sensitivity</td>
<td>((USB_FS_DP/DM,)(USB_HS_DP/DM))</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>(V_{CM})</td>
<td>Differential common mode range</td>
<td>Includes (V_{DI}) range</td>
<td>0.8</td>
<td>-</td>
<td>2.5</td>
<td>V</td>
</tr>
<tr>
<td>(V_{SE})</td>
<td>Single ended receiver threshold</td>
<td></td>
<td>1.3</td>
<td>-</td>
<td>2.0</td>
<td>V</td>
</tr>
<tr>
<td>Output levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Static output level low</td>
<td>(R_L) of 1.5 kΩ to 3.6 V(^{(4)})</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>Static output level high</td>
<td>(R_L) of 15 kΩ to (V_{SS})(^{(4)})</td>
<td>2.8</td>
<td>-</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>(R_{PD})</td>
<td></td>
<td>(V_{IN} = V_{DDUSB})</td>
<td>17</td>
<td>21</td>
<td>24</td>
<td>kΩ</td>
</tr>
<tr>
<td>PA11, PA12, PB14, PB15 ((USB_FS_DP/DM,) (USB_HS_DP/DM))</td>
<td>(V_{IN} = V_{DDUSB})</td>
<td>0.65</td>
<td>1.1</td>
<td>2.0</td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>PA9, PB13 ((OTG_FS_VBUS, OTG_HS_VBUS))</td>
<td>(V_{IN} = V_{DDUSB})</td>
<td>1.5</td>
<td>1.8</td>
<td>2.1</td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>(R_{PU})</td>
<td></td>
<td>(V_{IN} = V_{SS})</td>
<td>0.25</td>
<td>0.37</td>
<td>0.55</td>
<td>kΩ</td>
</tr>
<tr>
<td>PA12, PB15 ((USB_FS_DP,) (USB_HS_DP))</td>
<td>(V_{IN} = V_{SS})</td>
<td>0.25</td>
<td>0.37</td>
<td>0.55</td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>PA9, PB13 ((OTG_FS_VBUS, OTG_HS_VBUS))</td>
<td>(V_{IN} = V_{SS})</td>
<td>0.25</td>
<td>0.37</td>
<td>0.55</td>
<td></td>
<td>kΩ</td>
</tr>
</tbody>
</table>

1. All the voltages are measured from the local ground potential.
2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed electrical characteristics which are degraded in the 2.7-to-3.0 V \(V_{DD}\) voltage range.
3. Guaranteed by design.
4. \(R_L\) is the load connected on the USB OTG full speed drivers.

Note:

When \(V_{BUS}\) sensing feature is enabled, PA9 and PB13 should be left at their default state (floating input), not as alternate function. A typical 200 μA current consumption of the sensing block (current to voltage conversion to determine the different sessions) can be observed on PA9 and PB13 when the feature is enabled.

Figure 43. USB OTG full speed timings: definition of data signal rise and fall time
USB high speed (HS) characteristics

Unless otherwise specified, the parameters given in Table 73 for ULPI are derived from tests performed under the ambient temperature, \(f_{\text{HCLK}} \) frequency summarized in Table 72 and \(V_{\text{DD}} \) supply voltage conditions summarized in Table 71, with the following configuration:

- Output speed is set to \(\text{OSPEEDR}[1:0] = 10 \), unless otherwise specified
- Capacitive load \(C = 30 \) pF, unless otherwise specified
- Measurement points are done at CMOS levels: \(0.5V_{\text{DD}} \).

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_r)</td>
<td>Rise time(^{(2)})</td>
<td>(C_L = 50) pF</td>
<td>4</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td>(t_f)</td>
<td>Fall time(^{(2)})</td>
<td>(C_L = 50) pF</td>
<td>4</td>
<td>20</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{tm}})</td>
<td>Rise/ fall time matching</td>
<td>(t_r/t_f)</td>
<td>90</td>
<td>110</td>
<td>%</td>
</tr>
<tr>
<td>(V_{\text{CRS}})</td>
<td>Output signal crossover voltage</td>
<td>-</td>
<td>1.3</td>
<td>2.0</td>
<td>V</td>
</tr>
<tr>
<td>(Z_{\text{DRV}})</td>
<td>Output driver impedance(^{(3)})</td>
<td>Driving high or low</td>
<td>28</td>
<td>44</td>
<td>Ω</td>
</tr>
</tbody>
</table>

1. Guaranteed by design.
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).
3. No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching impedance is included in the embedded driver.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min.(^{(1)})</th>
<th>Max.(^{(1)})</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input level</td>
<td>(V_{\text{DD}})</td>
<td>USB OTG HS operating voltage</td>
<td>1.7</td>
<td>3.6</td>
</tr>
</tbody>
</table>

1. All the voltages are measured from the local ground potential.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max (^{(1)})</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{\text{HCLK}})</td>
<td>Value to guarantee proper operation of USB HS interface</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>MHz</td>
</tr>
<tr>
<td>(f_{\text{START,8BIT}})</td>
<td>Frequency (first transition)</td>
<td>8-bit ±10%</td>
<td>54</td>
<td>60</td>
<td>66 MHz</td>
</tr>
<tr>
<td>(f_{\text{STEADY}})</td>
<td>Frequency (steady state) ±500 ppm</td>
<td>59.97</td>
<td>60</td>
<td>60.03</td>
<td>MHz</td>
</tr>
<tr>
<td>(D_{\text{START,8BIT}})</td>
<td>Duty cycle (first transition)</td>
<td>8-bit ±10%</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>(D_{\text{STEADY}})</td>
<td>Duty cycle (steady state) ±500 ppm</td>
<td>49.975</td>
<td>50</td>
<td>50.025</td>
<td>%</td>
</tr>
<tr>
<td>(t_{\text{STEADY}})</td>
<td>Time to reach the steady state frequency and duty cycle after the first transition</td>
<td>-</td>
<td>-</td>
<td>1.4</td>
<td>ms</td>
</tr>
</tbody>
</table>
Electrical characteristics

Table 72. USB HS clock timing parameters(1) (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ.</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{\text{START_DEV}})</td>
<td>Clock startup time after the de-assertion of SuspendM</td>
<td>Peripheral Host</td>
<td>-</td>
<td>-</td>
<td>5.6</td>
<td>ms</td>
</tr>
<tr>
<td>(t_{\text{START_HOST}})</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(t_{\text{PREP}})</td>
<td>PHY preparation time after the first transition of the input clock</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(\mu)s</td>
</tr>
</tbody>
</table>

1. Guaranteed by design.

Figure 44. ULPI timing diagram

Table 73. Dynamic characteristics: USB ULPI(1)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{\text{SC}})</td>
<td>Control in (ULPI_DIR, ULPI_NXT) setup time</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{HC}})</td>
<td>Control in (ULPI_DIR, ULPI_NXT) hold time</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{SD}})</td>
<td>Data in setup time</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{HD}})</td>
<td>Data in hold time</td>
<td>-</td>
<td>1.5</td>
<td>-</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{DC}}/t_{\text{DD}})</td>
<td>Data/control output delay</td>
<td>2.7 V < (V_{\text{DD}}) < 3.6 V, (C_{\text{L}} = 20) pF</td>
<td>6</td>
<td>8.5</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.71 V < (V_{\text{DD}}) < 3.6 V, (C_{\text{L}} = 15) pF</td>
<td>6</td>
<td>11.5</td>
<td>-</td>
<td>ns</td>
</tr>
</tbody>
</table>

1. Guaranteed based on test during characterization.

CAN (controller area network) interface

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (CANx_TX and CANx_RX).
6.3.21 12-bit ADC characteristics

Unless otherwise specified, the parameters given in Table 74 are derived from tests performed under the ambient temperature, \(f_{PCLK2} \) frequency and \(V_{DDA} \) supply voltage conditions summarized in Table 16.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DDA})</td>
<td>Power supply</td>
<td>(V_{DDA} - V_{REF}^+ < 1.2 \text{ V})</td>
<td>1.7(1)</td>
<td>-</td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td>(V_{REF}^+)</td>
<td>Positive reference voltage</td>
<td>(V_{DDA} = 1.7(1) \text{ to } 2.4 \text{ V})</td>
<td>0.6</td>
<td>15</td>
<td>18</td>
<td>MHz</td>
</tr>
<tr>
<td>(V_{REF}^-)</td>
<td>Negative reference voltage</td>
<td>(V_{DDA} = 2.4 \text{ to } 3.6 \text{ V})</td>
<td>0.6</td>
<td>30</td>
<td>36</td>
<td>MHz</td>
</tr>
<tr>
<td>(f_{ADC})</td>
<td>ADC clock frequency</td>
<td>(f_{ADC} = 30 \text{ MHz}, 12-bit resolution)</td>
<td>-</td>
<td>-</td>
<td>1764</td>
<td>kHz</td>
</tr>
<tr>
<td>(f_{TRIG})</td>
<td>External trigger frequency</td>
<td>(f_{ADC} = 30 \text{ MHz}, 12-bit resolution)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(V_{AIN})</td>
<td>Conversion voltage range(3)</td>
<td>(V_{SSA} \text{ or } V_{REF}- \text{ tied to ground})</td>
<td>-</td>
<td>17</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>(R_{AIN})</td>
<td>External input impedance</td>
<td>See Equation 1 for details</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>kΩ</td>
</tr>
<tr>
<td>(R_{ADC})</td>
<td>Sampling switch resistance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>kΩ</td>
</tr>
<tr>
<td>(C_{ADC})</td>
<td>Internal sample and hold capacitor</td>
<td>-</td>
<td>-</td>
<td>4</td>
<td>7</td>
<td>pF</td>
</tr>
<tr>
<td>(t_{lat})</td>
<td>Injection trigger conversion latency</td>
<td>(f_{ADC} = 30 \text{ MHz})</td>
<td>-</td>
<td>-</td>
<td>0.100</td>
<td>µs</td>
</tr>
<tr>
<td>(t_{lat})</td>
<td>Regular trigger conversion latency</td>
<td>(f_{ADC} = 30 \text{ MHz})</td>
<td>-</td>
<td>-</td>
<td>0.067</td>
<td>µs</td>
</tr>
<tr>
<td>(t_{S})</td>
<td>Sampling time</td>
<td>(f_{ADC} = 30 \text{ MHz})</td>
<td>0.100</td>
<td>-</td>
<td>16</td>
<td>µs</td>
</tr>
<tr>
<td>(t_{STAB})</td>
<td>Power-up time</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>480</td>
<td>1/(f_{ADC})</td>
</tr>
<tr>
<td>(t_{CONV})</td>
<td>Total conversion time (including sampling time)</td>
<td>(f_{ADC} = 30 \text{ MHz}), 12-bit resolution</td>
<td>0.50</td>
<td>-</td>
<td>16.40</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(f_{ADC} = 30 \text{ MHz}), 10-bit resolution</td>
<td>0.43</td>
<td>-</td>
<td>16.34</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(f_{ADC} = 30 \text{ MHz}), 8-bit resolution</td>
<td>0.37</td>
<td>-</td>
<td>16.27</td>
<td>µs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(f_{ADC} = 30 \text{ MHz}), 6-bit resolution</td>
<td>0.30</td>
<td>-</td>
<td>16.20</td>
<td>µs</td>
</tr>
</tbody>
</table>

9 to 492 (\(t_{S} \) for sampling +n-bit resolution for successive approximation) 1/\(f_{ADC} \)
Equation 1: \(R_{AIN} \) max formula

\[
R_{AIN} = \frac{(k - 0.5)}{f_{ADC} \times C_{ADC} \times \ln(2^N + 2)} - R_{ADC}
\]

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. \(N = 12 \) (from 12-bit resolution) and \(k \) is the number of sampling periods defined in the ADC_SMPR1 register.

Table 74. ADC characteristics (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_s) (^{(2)})</td>
<td>Sampling rate ((f_{ADC} = 30) MHz, and (t_s = 3) ADC cycles)</td>
<td>12-bit resolution Single ADC</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>Msps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12-bit resolution Interleave Dual ADC mode</td>
<td>-</td>
<td>-</td>
<td>3.75</td>
<td>Msps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12-bit resolution Interleave Triple ADC mode</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>Msps</td>
</tr>
<tr>
<td>(I_{VREF}) (^{(2)})</td>
<td>ADC (V_{REF}) DC current consumption in conversion mode</td>
<td>-</td>
<td>-</td>
<td>300</td>
<td>500</td>
<td>(\mu)A</td>
</tr>
<tr>
<td>(I_{VDDA}) (^{(2)})</td>
<td>ADC (V_{DDA}) DC current consumption in conversion mode</td>
<td>-</td>
<td>-</td>
<td>1.6</td>
<td>1.8</td>
<td>mA</td>
</tr>
</tbody>
</table>

1. \(V_{DDA} \) minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF).
2. Guaranteed based on test during characterization.
3. \(V_{REF+} \) is internally connected to \(V_{DDA} \) and \(V_{REF-} \) is internally connected to \(V_{SSA} \).
4. \(R_{ADC} \) maximum value is given for \(V_{DD} = 1.7 \) V, and minimum value for \(V_{DD} = 3.3 \) V.
5. For external triggers, a delay of \(1/f_{PCLK2} \) must be added to the latency specified in Table 74.

Table 75. ADC static accuracy at \(f_{ADC} = 18 \) MHz\(^{(1)}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Typ</th>
<th>Max(^{(2)})</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET</td>
<td>Total unadjusted error</td>
<td>(f_{ADC} = 18) MHz</td>
<td>(\pm 3)</td>
<td>(\pm 4)</td>
<td>LSB</td>
</tr>
<tr>
<td>EO</td>
<td>Offset error</td>
<td>(V_{DDA} = 1.7) to (3.6) V</td>
<td>(\pm 2)</td>
<td>(\pm 3)</td>
<td></td>
</tr>
<tr>
<td>EG</td>
<td>Gain error</td>
<td>(V_{REF} = 1.7) to (3.6) V</td>
<td>(\pm 1)</td>
<td>(\pm 3)</td>
<td></td>
</tr>
<tr>
<td>ED</td>
<td>Differential linearity error</td>
<td>(V_{DDA} - V_{REF} < 1.2) V</td>
<td>(\pm 1)</td>
<td>(\pm 2)</td>
<td></td>
</tr>
<tr>
<td>EL</td>
<td>Integral linearity error</td>
<td></td>
<td>(\pm 2)</td>
<td>(\pm 3)</td>
<td></td>
</tr>
</tbody>
</table>

1. Better performance could be achieved in restricted \(V_{DD} \), frequency and temperature ranges.
2. Guaranteed based on test during characterization.
Table 76. ADC static accuracy at $f_{ADC} = 30 \text{ MHz}^{(1)}$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Typ</th>
<th>Max$^{(2)}$</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET</td>
<td>Total unadjusted error</td>
<td>$f_{ADC} = 30 \text{ MHz}$, $R_{AIN} < 10 \text{ k}\Omega$</td>
<td>±2</td>
<td>±5</td>
<td></td>
</tr>
<tr>
<td>EO</td>
<td>Offset error</td>
<td>$V_{DDA} = 2.4 \text{ to } 3.6 \text{ V}$, $V_{REF} = 1.7 \text{ to } 3.6 \text{ V}$</td>
<td>±1.5</td>
<td>±2.5</td>
<td></td>
</tr>
<tr>
<td>EG</td>
<td>Gain error</td>
<td>$V_{DDA} - V_{REF} < 1.2 \text{ V}$</td>
<td>±1.5</td>
<td>±3</td>
<td></td>
</tr>
<tr>
<td>ED</td>
<td>Differential linearity error</td>
<td>$V_{DDA} - V_{REF} < 1.2 \text{ V}$</td>
<td>±1</td>
<td>±2</td>
<td></td>
</tr>
<tr>
<td>EL</td>
<td>Integral linearity error</td>
<td>$V_{DDA} - V_{REF} < 1.2 \text{ V}$</td>
<td>±1.5</td>
<td>±3</td>
<td></td>
</tr>
</tbody>
</table>

1. Better performance could be achieved in restricted V_{DD}, frequency and temperature ranges.
2. Guaranteed based on test during characterization.

Table 77. ADC static accuracy at $f_{ADC} = 36 \text{ MHz}^{(1)}$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Typ</th>
<th>Max$^{(2)}$</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET</td>
<td>Total unadjusted error</td>
<td>$f_{ADC} = 36 \text{ MHz}$</td>
<td>±4</td>
<td>±7</td>
<td></td>
</tr>
<tr>
<td>EO</td>
<td>Offset error</td>
<td>$V_{DDA} = 2.4 \text{ to } 3.6 \text{ V}$, $V_{REF} = 1.7 \text{ to } 3.6 \text{ V}$</td>
<td>±2</td>
<td>±3</td>
<td></td>
</tr>
<tr>
<td>EG</td>
<td>Gain error</td>
<td>$V_{DDA} - V_{REF} < 1.2 \text{ V}$</td>
<td>±3</td>
<td>±6</td>
<td></td>
</tr>
<tr>
<td>ED</td>
<td>Differential linearity error</td>
<td>$V_{DDA} - V_{REF} < 1.2 \text{ V}$</td>
<td>±2</td>
<td>±3</td>
<td></td>
</tr>
<tr>
<td>EL</td>
<td>Integral linearity error</td>
<td>$V_{DDA} - V_{REF} < 1.2 \text{ V}$</td>
<td>±3</td>
<td>±6</td>
<td></td>
</tr>
</tbody>
</table>

1. Better performance could be achieved in restricted V_{DD}, frequency and temperature ranges.
2. Guaranteed based on test during characterization.

Table 78. ADC dynamic accuracy at $f_{ADC} = 18 \text{ MHz} - \text{ limited test conditions}^{(1)}$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENOB</td>
<td>Effective number of bits</td>
<td>$f_{ADC} = 18 \text{ MHz}$, $V_{DDA} = V_{REF+} = 1.7 \text{ V}$, Input Frequency = 20 KHz, Temperature = 25 °C</td>
<td>10.3</td>
<td>10.4</td>
<td>-</td>
<td>bits</td>
</tr>
<tr>
<td>SINAD</td>
<td>Signal-to-noise and distortion ratio</td>
<td>$V_{DDA} = V_{REF+} = 1.7 \text{ V}$, Input Frequency = 20 KHz, Temperature = 25 °C</td>
<td>64</td>
<td>64.2</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-noise ratio</td>
<td>$V_{DDA} = V_{REF+} = 1.7 \text{ V}$, Input Frequency = 20 KHz, Temperature = 25 °C</td>
<td>64</td>
<td>65</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>THD</td>
<td>Total harmonic distortion</td>
<td>$V_{DDA} = V_{REF+} = 1.7 \text{ V}$, Input Frequency = 20 KHz, Temperature = 25 °C</td>
<td>-67</td>
<td>-72</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1. Guaranteed based on test during characterization.

Table 79. ADC dynamic accuracy at $f_{ADC} = 36 \text{ MHz} - \text{ limited test conditions}^{(1)}$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENOB</td>
<td>Effective number of bits</td>
<td>$f_{ADC} = 36 \text{ MHz}$, $V_{DDA} = V_{REF+} = 3.3 \text{ V}$, Input Frequency = 20 KHz, Temperature = 25 °C</td>
<td>10.6</td>
<td>10.8</td>
<td>-</td>
<td>bits</td>
</tr>
<tr>
<td>SINAD</td>
<td>Signal-to noise and distortion ratio</td>
<td>$V_{DDA} = V_{REF+} = 3.3 \text{ V}$, Input Frequency = 20 KHz, Temperature = 25 °C</td>
<td>66</td>
<td>67</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-noise ratio</td>
<td>$V_{DDA} = V_{REF+} = 3.3 \text{ V}$, Input Frequency = 20 KHz, Temperature = 25 °C</td>
<td>64</td>
<td>68</td>
<td>-</td>
<td>dB</td>
</tr>
<tr>
<td>THD</td>
<td>Total harmonic distortion</td>
<td>$V_{DDA} = V_{REF+} = 3.3 \text{ V}$, Input Frequency = 20 KHz, Temperature = 25 °C</td>
<td>-70</td>
<td>-72</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1. Guaranteed based on test during characterization.

Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion.
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for $I_{\text{INJ}(\text{PIN})}$ and $\Sigma I_{\text{INJ}(\text{PIN})}$ in Section 6.3.17 does not affect the ADC accuracy.

Figure 45. ADC accuracy characteristics

1. See also Table 76.
2. Example of an actual transfer curve.
3. Ideal transfer curve.
4. End point correlation line.
5. $E_T =$ Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
 $E_O =$ Offset Error: deviation between the first actual transition and the first ideal one.
 $E_G =$ Gain Error: deviation between the last ideal transition and the last actual one.
 $E_D =$ Differential Linearity Error: maximum deviation between actual steps and the ideal one.
 $E_L =$ Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line.
1. Refer to Table 74 for the values of R_{AIN}, R_{ADC} and C_{ADC}.
2. $C_{\text{parasitic}}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 5 pF). A high $C_{\text{parasitic}}$ value downgrades conversion accuracy. To remedy this, f_{ADC} should be reduced.
General PCB design guidelines

Power supply decoupling should be performed as shown in Figure 47 or Figure 48, depending on whether $V_{\text{REF+}}$ is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed as close as possible to the chip.

Figure 47. Power supply and reference decoupling ($V_{\text{REF+}}$ not connected to V_{DDA})

1. $V_{\text{REF+}}$ and $V_{\text{REF-}}$ inputs are both available on UFBGA144. $V_{\text{REF+}}$ is also available on LQFP100, LQFP144, and WLCSP81. When $V_{\text{REF+}}$ and $V_{\text{REF-}}$ are not available, they are internally connected to V_{DDA} and V_{SSA}.
6.3.22 Temperature sensor characteristics

Table 80. Temperature sensor characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_L(1)</td>
<td>VSENSE linearity with temperature</td>
<td>-</td>
<td>±1</td>
<td>±2</td>
<td>°C</td>
</tr>
<tr>
<td>Avg_Slope(1)</td>
<td>Average slope</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
<td>mV/°C</td>
</tr>
<tr>
<td>V_25(1)</td>
<td>Voltage at 25 °C</td>
<td>-</td>
<td>0.76</td>
<td>-</td>
<td>V</td>
</tr>
<tr>
<td>t_START(2)</td>
<td>Startup time</td>
<td>-</td>
<td>6</td>
<td>10</td>
<td>µs</td>
</tr>
<tr>
<td>T_S_temp(2)</td>
<td>ADC sampling time</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>µs</td>
</tr>
</tbody>
</table>

1. Guaranteed based on test during characterization.
2. Guaranteed by design.

Table 81. Temperature sensor calibration values

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Memory address</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS_CAL1</td>
<td>TS ADC raw data acquired at temperature of 30 °C, V_DDA= 3.3 V</td>
<td>0x1FFF 7A2C - 0x1FFF 7A2D</td>
</tr>
<tr>
<td>TS_CAL2</td>
<td>TS ADC raw data acquired at temperature of 110 °C, V_DDA= 3.3 V</td>
<td>0x1FFF 7A2E - 0x1FFF 7A2F</td>
</tr>
</tbody>
</table>
6.3.23 \(V_{\text{BAT}} \) monitoring characteristics

Table 82. \(V_{\text{BAT}} \) monitoring characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Resistor bridge for (V_{\text{BAT}})</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>K(\Omega)</td>
</tr>
<tr>
<td>Q</td>
<td>Ratio on (V_{\text{BAT}}) measurement</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(E_r(1))</td>
<td>Error on (Q)</td>
<td>-1</td>
<td>-</td>
<td>+1</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>(T_{S_vbat}^{(2)(2)})</td>
<td>ADC sampling time when reading the (V_{\text{BAT}}) 1 mV accuracy</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(\mu)s</td>
</tr>
</tbody>
</table>

1. Guaranteed by design.
2. Shortest sampling time can be determined in the application by multiple iterations.

6.3.24 Reference voltage

The parameters given in Table 83 are derived from tests performed under ambient temperature and \(V_{\text{DD}} \) supply voltage conditions summarized in Table 16.

Table 83. Internal reference voltage

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{REFINT}})</td>
<td>Internal reference voltage</td>
<td>(-40 \degree C < T_A < +105 \degree C)</td>
<td>1.18</td>
<td>1.21</td>
<td>1.24</td>
<td>V</td>
</tr>
<tr>
<td>(T_{S_vrefint}^{(1)})</td>
<td>ADC sampling time when reading the internal reference voltage</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>(\mu)s</td>
</tr>
<tr>
<td>(V_{\text{REFINT}_s}^{(2)})</td>
<td>Internal reference voltage spread over the temperature range</td>
<td>(V_{\text{DD}} = 3V \pm 10mV)</td>
<td>-</td>
<td>3</td>
<td>5</td>
<td>mV</td>
</tr>
<tr>
<td>(T_{\text{Coeff}}^{(2)})</td>
<td>Temperature coefficient</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>50</td>
<td>ppm/(\degree)C</td>
</tr>
<tr>
<td>(t_{\text{START}}^{(2)})</td>
<td>Startup time</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>10</td>
<td>(\mu)s</td>
</tr>
</tbody>
</table>

1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.

Table 84. Internal reference voltage calibration values

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Memory address</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{REFIN_CAL}})</td>
<td>Raw data acquired at temperature of 30 \degree C (V_{\text{VDDA}} = 3.3) V</td>
<td>0x1FFF 7A2A - 0x1FFF 7A2B</td>
</tr>
</tbody>
</table>

6.3.25 DAC electrical characteristics

Table 85. DAC characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{\text{DDA}})</td>
<td>Analog supply voltage</td>
<td>-</td>
<td>1.7(^{(1)})</td>
<td>-</td>
<td>3.6</td>
<td>V</td>
<td>-</td>
</tr>
<tr>
<td>(V_{\text{REF}})</td>
<td>Reference supply voltage</td>
<td>-</td>
<td>1.7(^{(1)})</td>
<td>-</td>
<td>3.6</td>
<td>V</td>
<td>(V_{\text{REF}} \geq V_{\text{DD}})</td>
</tr>
</tbody>
</table>
STM32F446xC/E Electrical characteristics

Table 85. DAC characteristics (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{SSA})</td>
<td>Ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{LOAD}^{(2)})</td>
<td>Resistive load</td>
<td>DAC output buffer ON</td>
<td>Connected to (V_{SSA})</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>kΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Connected to (V_{DDA})</td>
<td>25</td>
<td>-</td>
<td>-</td>
<td>kΩ</td>
</tr>
<tr>
<td>(R_O^{(2)})</td>
<td>Impedance output with buffer OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>When the buffer is OFF, the Minimum resistive load between DAC_OUT and (V_{SS}) to have a 1% accuracy is 1.5 MΩ</td>
</tr>
<tr>
<td>(C_{LOAD}^{(2)})</td>
<td>Capacitive load</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maximum capacitive load at DAC_OUT pin (when the buffer is ON)</td>
</tr>
<tr>
<td>(DAC_{OUT_{min}}^{(2)})</td>
<td>Lower DAC_OUT voltage with buffer ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at (V_{REF_{+}} = 3.6) V and (0x1C7) to (0xE38) at (V_{REF_{+}} = 1.7) V</td>
</tr>
<tr>
<td>(DAC_{OUT_{max}}^{(2)})</td>
<td>Higher DAC_OUT voltage with buffer ON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(DAC_{OUT_{min}}^{(2)})</td>
<td>Lower DAC_OUT voltage with buffer OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>It gives the maximum output excursion of the DAC.</td>
</tr>
<tr>
<td>(DAC_{OUT_{max}}^{(2)})</td>
<td>Higher DAC_OUT voltage with buffer OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_{VREF}^{(4)})</td>
<td>DAC DC (V_{REF}) current consumption in quiescent mode (Standby mode)</td>
<td></td>
<td></td>
<td>170</td>
<td>240</td>
<td>µA</td>
<td>With no load, worst code (0x800) at (V_{REF_{+}} = 3.6) V in terms of DC consumption on the inputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td>75</td>
<td></td>
<td></td>
<td>With no load, worst code (0xF1C) at (V_{REF_{+}} = 3.6) V in terms of DC consumption on the inputs</td>
</tr>
<tr>
<td>(I_{DDA}^{(4)})</td>
<td>DAC DC (V_{DDA}) current consumption in quiescent mode(3)</td>
<td></td>
<td></td>
<td>280</td>
<td>380</td>
<td>µA</td>
<td>With no load, middle code (0x800) on the inputs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>475</td>
<td>625</td>
<td></td>
<td></td>
<td>With no load, worst code (0xF1C) at (V_{REF_{+}} = 3.6) V in terms of DC consumption on the inputs</td>
</tr>
<tr>
<td>(DNL^{(4)})</td>
<td>Differential non linearity Difference between two consecutive code-1LSB)</td>
<td></td>
<td></td>
<td>±0.5</td>
<td>±2</td>
<td>LSB</td>
<td>Given for the DAC in 10-bit configuration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Given for the DAC in 12-bit configuration.</td>
</tr>
</tbody>
</table>
Table 85. DAC characteristics (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>INL(4)</td>
<td>Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±1</td>
<td>LSB</td>
<td>Given for the DAC in 10-bit configuration.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±4</td>
<td>LSB</td>
<td>Given for the DAC in 12-bit configuration.</td>
</tr>
<tr>
<td>Offset(4)</td>
<td>Offset error (difference between measured value at Code (0x800) and the ideal value = VREF+/2)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±10</td>
<td>mV</td>
<td>Given for the DAC in 12-bit configuration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±3</td>
<td>LSB</td>
<td>Given for the DAC in 10-bit at VREF+ = 3.6 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±12</td>
<td>LSB</td>
<td>Given for the DAC in 12-bit at VREF+ = 3.6 V</td>
</tr>
<tr>
<td>Gain error(4)</td>
<td>Gain error</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±0.5</td>
<td>%</td>
<td>Given for the DAC in 12-bit configuration</td>
</tr>
<tr>
<td>THD(4)</td>
<td>Total Harmonic Distortion Buffer ON</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>6</td>
<td>µs</td>
<td>CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ</td>
</tr>
<tr>
<td>Update rate(2)</td>
<td>Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>MS/ s</td>
<td>CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ</td>
</tr>
<tr>
<td>tWAKEUP(4)</td>
<td>Wakeup time from off state (Setting the ENx bit in the DAC Control register)</td>
<td>-</td>
<td>-</td>
<td>6.5</td>
<td>10</td>
<td>µs</td>
<td>CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ input code between lowest and highest possible ones.</td>
</tr>
<tr>
<td>PSRR+ (2)</td>
<td>Power supply rejection ratio (to VDDA) (static DC measurement)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-67</td>
<td>-40</td>
<td>No RLOAD, CLOAD = 50 pF</td>
</tr>
</tbody>
</table>

1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF).
2. Guaranteed by design.
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic consumption occurs.
4. Guaranteed based on test during characterization.
The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.
6.3.26 FMC characteristics

Unless otherwise specified, the parameters given in Table 86 to Table 93 for the FMC interface are derived from tests performed under the ambient temperature, f_{HCLK} frequency and V_{DD} supply voltage conditions summarized in Table 15, with the following configuration:
- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitance load $C = 30$ pF
- Measurement points are done at CMOS levels: $0.5V_{\text{DD}}$

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics.

Asynchronous waveforms and timings

Figure 50 through Figure 53 represent asynchronous waveforms and Table 86 through Table 93 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:
- AddressSetupTime = 0x1
- AddressHoldTime = 0x1
- DataSetupTime = 0x1 (except for asynchronous NWAIT mode, DataSetupTime = 0x5)
- BusTurnAroundDuration = 0x0

In all timing tables, the T_{HCLK} is the HCLK clock period.
Figure 50. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms

1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.
Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR - read timings\(^{(1)}\)(\(^{(2)}\))

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{\text{w(NE)}})</td>
<td>FMC_NE low time</td>
<td>(2T_{	ext{HCLK}} - 2)</td>
<td>(2T_{	ext{HCLK}} + 0.5)</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{w(NOE)}})</td>
<td>FMC_NEx low to FMC_NOE low</td>
<td>0</td>
<td>1</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{w(NOE)}})</td>
<td>FMC_NOE low time</td>
<td>(2T_{	ext{HCLK}} - 1)</td>
<td>(2T_{	ext{HCLK}} + 0.5)</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{h(NE_NOE)}})</td>
<td>FMC_NOE high to FMC_NE high hold time</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{v(A_NE)}})</td>
<td>FMC_NEx low to FMC_A valid</td>
<td>-</td>
<td>0.5</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{h(A_NOE)}})</td>
<td>Address hold time after FMC_NOE high</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{v(BL_NE)}})</td>
<td>FMC_NEx low to FMC_BL valid</td>
<td>-</td>
<td>2</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{h(BL_NOE)}})</td>
<td>FMC_BL hold time after FMC_NOE high</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{su(Data_NE)}})</td>
<td>Data to FMC_NEx high setup time</td>
<td>(T_{	ext{HCLK}} - 2)</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{su(Data_NOE)}})</td>
<td>Data to FMC_NOEx high setup time</td>
<td>(T_{	ext{HCLK}} - 2)</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{h(Data_NE)}})</td>
<td>Data hold time after FMC_NOE high</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{h(Data_NOE)}})</td>
<td>Data hold time after FMC_NEx high</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{v(NADV_NE)}})</td>
<td>FMC_NEx low to FMC_NADV low</td>
<td>-</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{w(NADV)}})</td>
<td>FMC_NADV low time</td>
<td>-</td>
<td>(T_{	ext{HCLK}} + 1)</td>
<td>ns</td>
</tr>
</tbody>
</table>

1. \(C_L = 30\) pF.
2. Guaranteed based on test during characterization.

Table 87. Asynchronous non-multiplexed SRAM/PSRAM/NOR read - NWAIT timings\(^{(1)}\)(\(^{(2)}\))

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{\text{w(NE)}})</td>
<td>FMC_NE low time</td>
<td>(7T_{	ext{HCLK}} + 1)</td>
<td>(7T_{	ext{HCLK}})</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{w(NOE)}})</td>
<td>FMC_NWE low time</td>
<td>(5T_{	ext{HCLK}} - 1)</td>
<td>(5T_{	ext{HCLK}} + 1)</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{w(NWAIT)}})</td>
<td>FMC_NWAIT low time</td>
<td>(T_{	ext{HCLK}} - 0.5)</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{su(NWAIT_NE)}})</td>
<td>FMC_NWAIT valid before FMC_NEx high</td>
<td>(5T_{	ext{HCLK}} + 1.5)</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{h(NE_NWAIT)}})</td>
<td>FMC_NEx hold time after FMC_NWAIT invalid</td>
<td>(4T_{	ext{HCLK}} + 1)</td>
<td>-</td>
<td>ns</td>
</tr>
</tbody>
</table>

1. \(C_L = 30\) pF.
2. Guaranteed based on test during characterization.
Figure 51. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms

Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings\(^{(1)}\)(\(^{(2)}\))

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{W(NE)})</td>
<td>FMC_NEx low time</td>
<td>(3 \cdot T_{HCLK} - 2)</td>
<td>(3 \cdot T_{HCLK} + 0.5)</td>
<td></td>
</tr>
<tr>
<td>(t_{V(NWE,NE)})</td>
<td>FMC_NEx low to FMC_NWE low</td>
<td>(T_{HCLK} - 0.5)</td>
<td>(T_{HCLK} + 0.5)</td>
<td></td>
</tr>
<tr>
<td>(t_{W(NWE)})</td>
<td>FMC_NWE low time</td>
<td>(T_{HCLK})</td>
<td>(T_{HCLK} + 0.5)</td>
<td></td>
</tr>
<tr>
<td>(t_{H(NE,NWE)})</td>
<td>FMC_NWE high to FMC_NEx high hold time</td>
<td>(T_{HCLK} + 0.5)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{V(A,NE)})</td>
<td>FMC_NEx low to FMC_A valid</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(t_{H(A,NWE)})</td>
<td>Address hold time after FMC_NWE high</td>
<td>(T_{HCLK} - 0.5)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{V(BL,NE)})</td>
<td>FMC_NEx low to FMC_BL valid</td>
<td>-</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>(t_{H(BL,NWE)})</td>
<td>FMC_BL hold time after FMC_NWE high</td>
<td>(T_{HCLK} + 0.5)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{V(Data,NE)})</td>
<td>Data to FMC_NEx low to Data valid</td>
<td>-</td>
<td>(T_{HCLK} + 2)</td>
<td></td>
</tr>
<tr>
<td>(t_{H(Data,NE)})</td>
<td>Data hold time after FMC_NWE high</td>
<td>(T_{HCLK} + 0.5)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{V(NADV,NE)})</td>
<td>FMC_NEx low to FMC_NADV low</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(t_{W(NADV)})</td>
<td>FMC_NADV low time</td>
<td>-</td>
<td>(T_{HCLK} + 0.5)</td>
<td></td>
</tr>
</tbody>
</table>

1. \(C_L = 30\) pF.
2. Guaranteed based on test during characterization.
Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR write - NWAIT timings\(^{(1)}\)(\(^{(2)}\))

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{\text{w(NE)}})</td>
<td>FMC_NE low time</td>
<td>8T(_{\text{HCLK}}) - 0.5</td>
<td>8T(_{\text{HCLK}}) + 1</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{w(NWE)}})</td>
<td>FMC_NWE low time</td>
<td>6T(_{\text{HCLK}}) - 0.5</td>
<td>6T(_{\text{HCLK}}) + 1</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{\text{su(NWAIT,NE)}})</td>
<td>FMC_NWAIT valid before FMC_NEx high</td>
<td>6T(_{\text{HCLK}}) - 0.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{\text{h(NE,NWAIT)}})</td>
<td>FMC_NEx hold time after FMC_NWAIT invalid</td>
<td>4T(_{\text{HCLK}}) + 2</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1. \(C_L = 30 \text{ pF} \).
2. Guaranteed based on test during characterization.

Figure 52. Asynchronous multiplexed PSRAM/NOR read waveforms
STM32F446xC/E Electrical characteristics

Table 90. Asynchronous multiplexed PSRAM/NOR read timings\(^{(1)(2)}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{w(NE)})</td>
<td>FMC_NE low time</td>
<td>(3T_{HCLK} - 2)</td>
<td>(3T_{HCLK} + 0.5)</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{v(NOE_NE)})</td>
<td>FMC_NE low to FMC_NOE low</td>
<td>(2T_{HCLK} - 0.5)</td>
<td>(2T_{HCLK})</td>
<td></td>
</tr>
<tr>
<td>(t_{w(NOE)})</td>
<td>FMC_NOE low time</td>
<td>(T_{HCLK} - 1)</td>
<td>(T_{HCLK} + 0.5)</td>
<td></td>
</tr>
<tr>
<td>(t_{h(NOE,NE)})</td>
<td>FMC_NOE high to FMC_NE high hold time</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{v(A,NE)})</td>
<td>FMC_NE low to FMC_A valid</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(t_{v(NADV_NE)})</td>
<td>FMC_NE low to FMC_NADV low</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(t_{w(NADV)})</td>
<td>FMC_NADV low time</td>
<td>(T_{HCLK} - 0.5)</td>
<td>(T_{HCLK} + 0.5)</td>
<td></td>
</tr>
<tr>
<td>(t_{h(AD_NADV)})</td>
<td>FMC_AD(address) valid hold time after FMC_NADV high</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{h(A_NOE)})</td>
<td>Address hold time after FMC_NOE high</td>
<td>(T_{HCLK} - 0.5)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{h(BL_NOE)})</td>
<td>FMC_BL time after FMC_NOE high</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{w(BL_NE)})</td>
<td>FMC_NE low to FMC_BL valid</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(t_{su(Data_NE)})</td>
<td>Data to FMC_NE high setup time</td>
<td>(T_{HCLK} + 1.5)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{su(Data_NOE)})</td>
<td>Data to FMC_NOE high setup time</td>
<td>(T_{HCLK} + 1)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{h(Data_NE)})</td>
<td>Data hold time after FMC_NE high</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{h(Data_NOE)})</td>
<td>Data hold time after FMC_NOE high</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1. \(C_L = 30\) pF.
2. Guaranteed based on test during characterization.

Table 91. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings\(^{(1)(2)}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{w(NE)})</td>
<td>FMC_NE low time</td>
<td>(8T_{HCLK} - 1)</td>
<td>(8T_{HCLK} + 2)</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{w(NOE)})</td>
<td>FMC_NWE low time</td>
<td>(5T_{HCLK} - 1)</td>
<td>(5T_{HCLK} + 1)</td>
<td></td>
</tr>
<tr>
<td>(t_{su(NWAIT_NE)})</td>
<td>FMC_NWAIT valid before FMC_NEhigh</td>
<td>(5T_{HCLK} + 1.5)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{h(NE_NWAIT)})</td>
<td>FMC_NE hold time after FMC_NWAIT invalid</td>
<td>(4T_{HCLK} + 1)</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1. \(C_L = 30\) pF.
2. Guaranteed based on test during characterization.
Figure 53. Asynchronous multiplexed PSRAM/NOR write waveforms
Synchronous waveforms and timings

Figure 54 through Figure 57 represent synchronous waveforms and Table 94 through Table 97 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration:
- BurstAccessMode = FMC_BurstAccessMode_Enable;
- MemoryType = FMC_MemoryType_CRAM;
- WriteBurst = FMC_WriteBurst_Enable;
- CLKDivision = 1; (0 is not supported, see the STM32F446 reference manual: RM0390)
- DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM

Table 92. Asynchronous multiplexed PSRAM/NOR write timings\(^{(1)}\)(\(^{(2)}\))

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{w(NE)})</td>
<td>FMC_NE low time</td>
<td>(4T_{HCLK} - 2)</td>
<td>(4T_{HCLK} + 0.5)</td>
<td></td>
</tr>
<tr>
<td>(t_{w(NWE)})</td>
<td>FMC_NWE low time</td>
<td>(T_{HCLK})</td>
<td>(T_{HCLK} + 0.5)</td>
<td></td>
</tr>
<tr>
<td>(t_{w(NWE)})</td>
<td>FMC_NWE high to FMC_NE high hold time</td>
<td>(T_{HCLK})</td>
<td>(-)</td>
<td></td>
</tr>
<tr>
<td>(t_{v(A,NE)})</td>
<td>FMC_NE low to FMC_A valid</td>
<td>(-)</td>
<td>(0)</td>
<td></td>
</tr>
<tr>
<td>(t_{v(NADV,NE)})</td>
<td>FMC_NE low to FMC_NADV low</td>
<td>(0.5)</td>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>(t_{w(NADV)})</td>
<td>FMC_NADV low time</td>
<td>(T_{HCLK} - 0.5)</td>
<td>(T_{HCLK} + 0.5)</td>
<td></td>
</tr>
<tr>
<td>(t_{h(AD_NADV)})</td>
<td>FMC_AD(address) valid hold time after FMC_NADV high</td>
<td>(T_{HCLK} - 2)</td>
<td>(-)</td>
<td></td>
</tr>
<tr>
<td>(t_{h(A,NWE)})</td>
<td>Address hold time after FMC_NWE high</td>
<td>(T_{HCLK})</td>
<td>(-)</td>
<td></td>
</tr>
<tr>
<td>(t_{h(BL,NWE)})</td>
<td>FMC_BL hold time after FMC_NWE high</td>
<td>(T_{HCLK} - 2)</td>
<td>(-)</td>
<td></td>
</tr>
<tr>
<td>(t_{v(BL,NE)})</td>
<td>FMC_NE low to FMC_BL valid</td>
<td>(-)</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>(t_{v(Data,NADV)})</td>
<td>FMC_NADV high to Data valid</td>
<td>(-)</td>
<td>(T_{HCLK} + 1.5)</td>
<td></td>
</tr>
<tr>
<td>(t_{h(Data,NWE)})</td>
<td>Data hold time after FMC_NWE high</td>
<td>(T_{HCLK} + 0.5)</td>
<td>(-)</td>
<td></td>
</tr>
</tbody>
</table>

1. \(C_L = 30\) pF.
2. Guaranteed based on test during characterization.

Table 93. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings\(^{(1)}\)(\(^{(2)}\))

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{w(NE)})</td>
<td>FMC_NE low time</td>
<td>(9T_{HCLK})</td>
<td>(9T_{HCLK} + 0.5)</td>
<td></td>
</tr>
<tr>
<td>(t_{w(NWE)})</td>
<td>FMC_NWE low time</td>
<td>(7T_{HCLK})</td>
<td>(7T_{HCLK} + 2)</td>
<td></td>
</tr>
<tr>
<td>(t_{h(NWAIT,NE)})</td>
<td>FMC_NWAIT valid before FMC_NEx high</td>
<td>(6T_{HCLK} + 1.5)</td>
<td>(-)</td>
<td></td>
</tr>
<tr>
<td>(t_{h(NWE,NWAIT)})</td>
<td>FMC_NEx hold time after FMC_NWAIT invalid</td>
<td>(4T_{HCLK} - 1)</td>
<td>(-)</td>
<td></td>
</tr>
</tbody>
</table>

1. \(C_L = 30\) pF.
2. Guaranteed based on test during characterization.
In all timing tables, the T_{HCLK} is the HCLK clock period (with maximum FMC_CLK = 90 MHz).

Figure 54. Synchronous multiplexed NOR/PSRAM read timings
Table 94. Synchronous multiplexed NOR/PSRAM read timings\(^{(1)}\)\(^{(2)}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{W}(CLK))</td>
<td>FMC_CLK period</td>
<td>(2T_{HCLK})</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{d}(CLKL-NExL))</td>
<td>FMC_CLK low to FMC_NEx low (x=0..2)</td>
<td>-</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>(t_{d}(CLKH_NExH))</td>
<td>FMC_CLK high to FMC_NEx high (x= 0…2)</td>
<td>(T_{HCLK} - 0.5)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{d}(CLKL-NADVL))</td>
<td>FMC_CLK low to FMC_NADV low</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(t_{d}(CLKL-NADVH))</td>
<td>FMC_CLK low to FMC_NADV high</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{d}(CLKL-AV))</td>
<td>FMC_CLK low to FMC_Ax valid (x=16…25)</td>
<td>-</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>(t_{d}(CLKH-AIV))</td>
<td>FMC_CLK high to FMC_Ax invalid (x=16…25)</td>
<td>(T_{HCLK})</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{d}(CLKL-NOEL))</td>
<td>FMC_CLK low to FMC_NOE low</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(t_{d}(CLKH-NOEH))</td>
<td>FMC_CLK high to FMC_NOE high</td>
<td>(T_{HCLK} - 0.5)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{d}(CLKL-ADV))</td>
<td>FMC_CLK low to FMC_AD[15:0] valid</td>
<td>-</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>(t_{d}(CLKL-ADIV))</td>
<td>FMC_CLK low to FMC_AD[15:0] invalid</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{su}(ADV-CLKH))</td>
<td>FMC_A/D[15:0] valid data before FMC_CLK high</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{H}(CLKH-ADV))</td>
<td>FMC_A/D[15:0] valid data after FMC_CLK high</td>
<td>3.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{su}(NWAIT-CLKH))</td>
<td>FMC_NWAIT valid before FMC_CLK high</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{H}(CLKH-NWAIT))</td>
<td>FMC_NWAIT valid after FMC_CLK high</td>
<td>3.5</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1. \(C_{L} = 30\) pF.
2. Guaranteed based on test during characterization.
Figure 55. Synchronous multiplexed PSRAM write timings
Table 95. Synchronous multiplexed PSRAM write timings\(^{(1)(2)}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_w(C_{L}))</td>
<td>FMC_CLK period, (VDD) range= 2.7 to 3.6 V</td>
<td>2(T_{HCLK}) - 1</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_d(CLK-NExL))</td>
<td>FMC_CLK low to FMC_NEx low ((x=0..2))</td>
<td>-</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>(t_d(CLK-NExH))</td>
<td>FMC_CLK high to FMC_NEx high ((x=0…2))</td>
<td>(T_{HCLK} + 0.5)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_d(CLK-NADV))</td>
<td>FMC_CLK low to FMC_NADV low</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(t_d(CLK-NADVH))</td>
<td>FMC_CLK low to FMC_NADV high</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_d(CLK-AV))</td>
<td>FMC_CLK low to FMC_Ax valid ((x=16…25))</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(t_d(CLK-AIV))</td>
<td>FMC_CLK high to FMC_Ax invalid ((x=16…25))</td>
<td>(T_{HCLK})</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_d(CLK-NWEL))</td>
<td>FMC_CLK low to FMC_NWE low</td>
<td>-</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>(t_d(CLK-NWEH))</td>
<td>FMC_CLK high to FMC_NWE high</td>
<td>(T_{HCLK} - 0.5)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_d(CLK-ADV))</td>
<td>FMC_CLK low to FMC_AD[15:0] valid</td>
<td>-</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>(t_d(CLK-ADV))</td>
<td>FMC_CLK low to FMC_AD[15:0] invalid</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_d(CLK-NADIV))</td>
<td>FMC_CLK low to FMC_NBL low</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_d(CLK-NBLH))</td>
<td>FMC_CLK high to FMC_NBL high</td>
<td>(T_{HCLK} - 0.5)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{su}(NWAIT-CLKH))</td>
<td>FMC_NWAIT valid before FMC_CLK high</td>
<td>4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{ln}(CLKH-NWAIT))</td>
<td>FMC_NWAIT valid after FMC_CLK high</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1. \(C_L = 30\) pF.
2. Guaranteed based on test during characterization.
Figure 56. Synchronous non-multiplexed NOR/PSRAM read timings

Table 96. Synchronous non-multiplexed NOR/PSRAM read timings (1)(2)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{w}(CLK))</td>
<td>FMC_CLK period</td>
<td>(2T_{HCLK})</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{d}(CLKL-NExL))</td>
<td>FMC_CLK low to FMC_NEx low (x=0..2)</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
</tr>
<tr>
<td>(t_{d}(CLKH-NExH))</td>
<td>FMC_CLK high to FMC_NEx high (x=0...2)</td>
<td>(T_{HCLK} - 0.5)</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{d}(CLKL-NADVL))</td>
<td>FMC_CLK low to FMC_NADV low</td>
<td>-</td>
<td>0</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{d}(CLKL-NADVH))</td>
<td>FMC_CLK low to FMC_NADV high</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{d}(CLKL-AV))</td>
<td>FMC_CLK low to FMC_Ax valid (x=16...25)</td>
<td>-</td>
<td>2.5</td>
<td>-</td>
</tr>
<tr>
<td>(t_{d}(CLKL-AIV))</td>
<td>FMC_CLK high to FMC_Ax invalid (x=16...25)</td>
<td>(T_{HCLK})</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{d}(CLKL-NOEL))</td>
<td>FMC_CLK low to FMC_NOE low</td>
<td>-</td>
<td>2</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{d}(CLKL-NOEH))</td>
<td>FMC_CLK high to FMC_NOE high</td>
<td>(T_{HCLK} - 0.5)</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{su}(DV-CLKH))</td>
<td>FMC_CLK low before FMC_CLK high</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(t_{h}(CLKH-DV))</td>
<td>FMC_CLK[15:0] valid before FMC_CLK high</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(t_{su}(NWAIT-CLKH))</td>
<td>FMC_NWAIT valid before FMC_CLK high</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(t_{h}(CLKH-NWAIT))</td>
<td>FMC_NWAIT valid after FMC_CLK high</td>
<td>3.5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
1. $C_L = 30\ \text{pF}$.
2. Guaranteed based on test during characterization.

Figure 57. Synchronous non-multiplexed PSRAM write timings

- $t_w(\text{CLK})$
- $t_{d(\text{CLKL-NExL})}$
- $t_{d(\text{CLKL-NADV})}$
- $t_{d(\text{CLKL-NWE})}$
- $t_{d(\text{CLKL-Data})}$
- $t_{s(\text{NWAITV-CLKH})}$
- $t_{hi(\text{CLKH-NWAITV})}$
NAND controller waveforms and timings

Figure 58 through Figure 61 represent synchronous waveforms, and Table 98 and Table 99 provide the corresponding timings. The results shown in this table are obtained with the following FMC configuration:

- COM.FSMC_SetupTime = 0x01;
- COM.FMC_WaitSetupTime = 0x03;
- COM.FMC_HoldSetupTime = 0x02;
- COM.FMC_HiZSetupTime = 0x01;
- ATT.FSMC_SetupTime = 0x01;
- ATT.FMC_WaitSetupTime = 0x03;
- ATT.FMC_HoldSetupTime = 0x02;
- ATT.FMC_HiZSetupTime = 0x01;
- Bank = FMC_Bank_NAND;
- MemoryDataWidth = FMC_MemoryDataWidth_16b;
- ECC = FMC_ECC_Enable;
- ECCPageSize = FMC_ECCPageSize_512Bytes;
- TCLRSetupTime = 0;
- TARSetupTime = 0.

In all timing tables, the T_{HCLK} is the HCLK clock period.

Table 97. Synchronous non-multiplexed PSRAM write timings$^{(1)(2)}$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_w(\text{CLK})$</td>
<td>FMC_CLK period</td>
<td>$2T_{HCLK} - 1$</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>$t_d(\text{CLKL-NE}_xL)$</td>
<td>FMC_CLK low to FMC_NEx low ($x=0...2$)</td>
<td>-</td>
<td>2.5</td>
<td>ns</td>
</tr>
<tr>
<td>$t_d(\text{CLKH-NE}_xH)$</td>
<td>FMC_CLK high to FMC_NEx high ($x=0...2$)</td>
<td>$T_{HCLK} - 0.5$</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>$t_d(\text{CLKL-NADV}_L)$</td>
<td>FMC_CLK low to FMC_NADV low</td>
<td>-</td>
<td>2</td>
<td>ns</td>
</tr>
<tr>
<td>$t_d(\text{CLKL-NADV}_H)$</td>
<td>FMC_CLK low to FMC_NADV high</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>$t_d(\text{CLKL-AV})$</td>
<td>FMC_CLK high to FMC_Ax invalid ($x=16...25$)</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>$t_d(\text{CLKL-AV})$</td>
<td>FMC_CLK high to FMC_Ax valid ($x=16...25$)</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>$t_d(\text{CLKL-NWEL})$</td>
<td>FMC_CLK low to FMC_NWE low</td>
<td>-</td>
<td>3</td>
<td>ns</td>
</tr>
<tr>
<td>$t_d(\text{CLKL-NWE}_H)$</td>
<td>FMC_CLK high to FMC_NWE high</td>
<td>$T_{HCLK} + 1$</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>$t_d(\text{CLKL-Data})$</td>
<td>FMC_D[15:0] valid data after FMC_CLK low</td>
<td>-</td>
<td>2.5</td>
<td>ns</td>
</tr>
<tr>
<td>$t_d(\text{CLKL-NBLL})$</td>
<td>FMC_CLK low to FMC_NBL low</td>
<td>3</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>$t_d(\text{CLKH-NBL})$</td>
<td>FMC_CLK high to FMC_NBL high</td>
<td>$T_{HCLK} + 1.5$</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>$t_{su}(\text{NWAIT-CLKH})$</td>
<td>FMC_NWAIT valid before FMC_CLK high</td>
<td>1.5</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>$t_{su}(\text{NWAIT-CLKH})$</td>
<td>FMC_NWAIT valid after FMC_CLK high</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
</tbody>
</table>

1. $C_L = 30$ pF.
2. Guaranteed based on test during characterization.
Figure 58. NAND controller waveforms for read access

Figure 59. NAND controller waveforms for write access
Figure 60. NAND controller waveforms for common memory read access

![NAND controller waveforms for common memory read access](image)

Figure 61. NAND controller waveforms for common memory write access

![NAND controller waveforms for common memory write access](image)

Table 98. Switching characteristics for NAND Flash read cycles

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{w(NOE)}$</td>
<td>FMC_NOE low width</td>
<td>$4T_{HCLK} - 0.5$</td>
<td>$4T_{HCLK} + 0.5$</td>
<td>ns</td>
</tr>
<tr>
<td>$t_{su(D-NOE)}$</td>
<td>FMC_D[15-0] valid data before FMC_NOE high</td>
<td>9</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>$t_{h(NOE-D)}$</td>
<td>FMC_D[15-0] valid data after FMC_NOE high</td>
<td>2.5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>$t_{d(ALE-NOE)}$</td>
<td>FMC_ALE valid before FMC_NOE low</td>
<td>-</td>
<td>$3T_{HCLK} - 0.5$</td>
<td></td>
</tr>
<tr>
<td>$t_{h(NOE-ALE)}$</td>
<td>FMC_NWE high to FMC_ALE invalid</td>
<td>$3T_{HCLK} - 2$</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1. $C_L = 30$ pF.
Table 99. Switching characteristics for NAND Flash write cycles\(^{(1)}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{w(NWE)})</td>
<td>FMC_NWE low width</td>
<td>4(T_{HCLK}) - 2</td>
<td>4(T_{HCLK})</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{(NWE-D)})</td>
<td>FMC_NWE low to FMC_D[15-0] valid</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{h(NWE-D)})</td>
<td>FMC_NWE high to FMC_D[15-0] invalid</td>
<td>3(T_{HCLK}) - 1</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{d(D-NWE)})</td>
<td>FMC_D[15-0] valid before FMC_NWE high</td>
<td>5(T_{HCLK}) - 3</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{d(ALE-NWE)})</td>
<td>FMC_ALE valid before FMC_NWE low</td>
<td>-</td>
<td>3(T_{HCLK}) - 0.5</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{h(NWE-ALE)})</td>
<td>FMC_NWE high to FMC_ALE invalid</td>
<td>3(T_{HCLK}) - 2</td>
<td>-</td>
<td>ns</td>
</tr>
</tbody>
</table>

1. \(C_L = 30 \) pF.

SDRAM waveforms and timings

Figure 62. SDRAM read access waveforms (CL = 1)
Table 100. SDRAM read timings\(^{(1)}\)(\(^{(2)}\))

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_w(SDCLK))</td>
<td>FMC_SDCLK period</td>
<td>(2T_{HCLK} - 0.5)</td>
<td>(2T_{HCLK} + 0.5)</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{su}(SDCLKH_Data))</td>
<td>Data input setup time</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{ih}(SDCLKH_Data))</td>
<td>Data input hold time</td>
<td>4</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{ai}(SDCLKL_Add))</td>
<td>Address valid time</td>
<td>-</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>(t_{ql}(SDCLKL_SDNE))</td>
<td>Chip select valid time</td>
<td>-</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>(t_{ih}(SDCLKL_SDNE))</td>
<td>Chip select hold time</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{qi}(SDCLKL_SDNRAS))</td>
<td>SDNRAS valid time</td>
<td>1</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>(t_{ih}(SDCLKL_SDNRAS))</td>
<td>SDNRAS hold time</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{qi}(SDCLKL_SDNCAS))</td>
<td>SDNCAS valid time</td>
<td>-</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>(t_{ih}(SDCLKL_SDNCAS))</td>
<td>SDNCAS hold time</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1. \(CL = 30 \) pF on data and address lines. \(CL = 15 \) pF on FMC_SDCLK.
2. Guaranteed based on test during characterization.

Table 101. LPSDR SDRAM read timings\(^{(1)}\)(\(^{(2)}\))

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_w(SDCLK))</td>
<td>FMC_SDCLK period</td>
<td>(2T_{HCLK} - 0.5)</td>
<td>(2T_{HCLK} + 0.5)</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{su}(SDCLKH_Data))</td>
<td>Data input setup time</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{ih}(SDCLKH_Data))</td>
<td>Data input hold time</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{ai}(SDCLKL_Add))</td>
<td>Address valid time</td>
<td>-</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>(t_{qi}(SDCLKL_SDNE))</td>
<td>Chip select valid time</td>
<td>-</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>(t_{ih}(SDCLKL_SDNE))</td>
<td>Chip select hold time</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{qi}(SDCLKL_SDNRAS))</td>
<td>SDNRAS valid time</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(t_{ih}(SDCLKL_SDNRAS))</td>
<td>SDNRAS hold time</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{qi}(SDCLKL_SDNCAS))</td>
<td>SDNCAS valid time</td>
<td>-</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>(t_{ih}(SDCLKL_SDNCAS))</td>
<td>SDNCAS hold time</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

1. \(CL = 10 \) pF.
2. Guaranteed based on test during characterization.
STM32F446xC/E Electrical characteristics

Figure 63. SDRAM write access waveforms

![Figure 63. SDRAM write access waveforms](MS32752V2)

Table 102. SDRAM write timings\(^{(1)}\)(\(^{(2)}\))

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_{(SDCLK)})</td>
<td>Frequency of operation</td>
<td>-</td>
<td>90</td>
<td>MHz</td>
</tr>
<tr>
<td>(t_{w(SDCLK)})</td>
<td>FMC_SDCLK period</td>
<td>(2T_{HCLK} - 0.5)</td>
<td>(2T_{HCLK} + 0.5)</td>
<td>ns</td>
</tr>
<tr>
<td>(t_d(SDCLK_Data))</td>
<td>Data output valid time</td>
<td>-</td>
<td>2</td>
<td>ns</td>
</tr>
<tr>
<td>(t_h(SDCLK_Data))</td>
<td>Data output hold time</td>
<td>0.5</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_d(SDCLK_Add))</td>
<td>Address valid time</td>
<td>-</td>
<td>3</td>
<td>ns</td>
</tr>
<tr>
<td>(t_d(SDCLK_SNWE))</td>
<td>SDNWE valid time</td>
<td>-</td>
<td>1.5</td>
<td>ns</td>
</tr>
<tr>
<td>(t_h(SDCLK_SNWE))</td>
<td>SDNWE hold time</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_d(SDCLK_SDNE))</td>
<td>Chip select valid time</td>
<td>-</td>
<td>1.5</td>
<td>ns</td>
</tr>
<tr>
<td>(t_h(SDCLK_SDNE))</td>
<td>Chip select hold time</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_d(SDCLK_SDNWE))</td>
<td>SDNWE valid time</td>
<td>-</td>
<td>1</td>
<td>ns</td>
</tr>
<tr>
<td>(t_h(SDCLK_SDNWE))</td>
<td>SDNWE hold time</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_d(SDCLK_SDNRA))</td>
<td>SDNRA valid time</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_h(SDCLK_SDNRA))</td>
<td>SDNRA hold time</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_d(SDCLK_SDNCAS))</td>
<td>SDNCAS valid time</td>
<td>-</td>
<td>1</td>
<td>ns</td>
</tr>
<tr>
<td>(t_h(SDCLK_SDNCAS))</td>
<td>SDNCAS hold time</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
</tbody>
</table>

1. \(C_L = 10\) pF on data and address line. \(C_L = 15\) pF on FMC_SDCLK.
2. Guaranteed based on test during characterization.
6.3.27 Camera interface (DCMI) timing specifications

Unless otherwise specified, the parameters given in Table 104 for DCMI are derived from tests performed under the ambient temperature, \(f_{HCLK} \) frequency and \(V_{DD} \) supply voltage summarized in Table 16, with the following configuration:

- DCMI_PIXCLK polarity: falling
- DCMI_VSYNC and DCMI_HSYNC polarity: high
- Data formats: 14 bits

Table 103. LPSDR SDRAM write timings\(^{(1)}\)\(^{(2)}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_{SDCLK})</td>
<td>Frequency of operation</td>
<td>-</td>
<td>84</td>
<td>MHz</td>
</tr>
<tr>
<td>(t_{w(SDCLK)})</td>
<td>FMC_SDCLK period</td>
<td>(2T_{HCLK} - 0.5)</td>
<td>(2T_{HCLK} + 0.5)</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{q(SDCLK_Data)})</td>
<td>Data output valid time</td>
<td>-</td>
<td>5</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{h(SDCLK_Data)})</td>
<td>Data output hold time</td>
<td>0.5</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{S(SDCLK_Add)})</td>
<td>Address valid time</td>
<td>-</td>
<td>3</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{q(SDCLK_SDNWE)})</td>
<td>SDNWE valid time</td>
<td>-</td>
<td>3</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{h(SDCLK_SDNWE)})</td>
<td>SDNWE hold time</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{q(SDCLK_SDNE)})</td>
<td>Chip select valid time</td>
<td>-</td>
<td>2.5</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{h(SDCLK_SDNE)})</td>
<td>Chip select hold time</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{q(SDCLK_SDNRA)})</td>
<td>SDNRA valid time</td>
<td>-</td>
<td>2</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{h(SDCLK_SDNRA)})</td>
<td>SDNRA hold time</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{q(SDCLK_SDNC)})</td>
<td>SDNC valid time</td>
<td>-</td>
<td>2</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{h(SDCLK_SDNC)})</td>
<td>SDNC hold time</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
</tbody>
</table>

1. \(CL = 10 \) pF.
2. Guaranteed based on test during characterization.

Table 104. DCMI characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Frequency ratio DCMI_PIXCLK/(f_{HCLK})</td>
<td>-</td>
<td>0.4</td>
<td>-</td>
</tr>
<tr>
<td>DCMI_PIXCLK</td>
<td>Pixel clock input</td>
<td>-</td>
<td>54</td>
<td>MHz</td>
</tr>
<tr>
<td>(D_{Pixel})</td>
<td>Pixel clock input duty cycle</td>
<td>30</td>
<td>70</td>
<td>%</td>
</tr>
<tr>
<td>(t_{su(DATA)})</td>
<td>Data input setup time</td>
<td>1</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{ih(DATA)})</td>
<td>Data input hold time</td>
<td>3.5</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{su(HSYNC)})</td>
<td>DCMI_HSYNC/DCMI_VSYNC input setup time</td>
<td>2</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{su(VSYNC)})</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(t_{h(HSYNC)})</td>
<td>DCMI_HSYNC/DCMI_VSYNC input hold time</td>
<td>0</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{h(VSYNC)})</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
6.3.28 SD/SDIO MMC card host interface (SDIO) characteristics

Unless otherwise specified, the parameters given in Table 105 for the SDIO are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DD} supply voltage conditions summarized in Table 16, with the following configuration:

- Output speed is set to OSPEEDRy[1:0] = 10
- Capacitive load C = 30 pF
- Measurement points are done at CMOS levels: 0.5V_{DD}

Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics.
Figure 66. SD default mode

![SD default mode diagram](image)

Table 105. Dynamic characteristics: SD / MMC characteristics \(^{(1)(2)}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{PP})</td>
<td>Clock frequency in data transfer mode</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>50</td>
<td>MHz</td>
</tr>
<tr>
<td>-</td>
<td>SDIO_CK/IPCLK2 frequency ratio</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8/3</td>
<td>-</td>
</tr>
<tr>
<td>(t_{W(CK)})</td>
<td>Clock low time</td>
<td>(f_{pp} = 50\text{MHz})</td>
<td>9.5</td>
<td>10.5</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{W(CKH)})</td>
<td>Clock high time</td>
<td>(f_{pp} = 50\text{MHz})</td>
<td>8.5</td>
<td>9.5</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{ISU})</td>
<td>Input setup time HS</td>
<td>(f_{pp} = 50\text{MHz})</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{IH})</td>
<td>Input hold time HS</td>
<td>(f_{pp} = 50\text{MHz})</td>
<td>4.5</td>
<td>-</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{OV})</td>
<td>Output valid time HS</td>
<td>(f_{pp} = 50\text{MHz})</td>
<td>-</td>
<td>12.5</td>
<td>13</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{OH})</td>
<td>Output hold time HS</td>
<td>(f_{pp} = 50\text{MHz})</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{ISUD})</td>
<td>Input setup time SD</td>
<td>(f_{pp} = 25\text{MHz})</td>
<td>2.5</td>
<td>-</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{IHD})</td>
<td>Input hold time SD</td>
<td>(f_{pp} = 25\text{MHz})</td>
<td>5.5</td>
<td>-</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{OVD})</td>
<td>Output valid default time SD</td>
<td>(f_{pp} = 24\text{MHz})</td>
<td>-</td>
<td>3.5</td>
<td>4</td>
<td>ns</td>
</tr>
<tr>
<td>(t_{OHD})</td>
<td>Output hold default time SD</td>
<td>(f_{pp} = 24\text{MHz})</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>ns</td>
</tr>
</tbody>
</table>

1. Guaranteed based on test during characterization.
2. \(V_{DD} = 2.7 \text{ to } 3.6\text{ V} \).
STM32F446xC/E Electrical characteristics

Table 106. Dynamic characteristics: eMMC characteristics $V_{DD} = 1.7$ V to 1.9 V$^{(1)}$\(^{(2)}$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>fPP</td>
<td>Clock frequency in data transfer mode</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>50</td>
<td>MHz</td>
</tr>
<tr>
<td>-</td>
<td>SDIO$_\text{CK}$/PCLK2 frequency ratio</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8/3</td>
<td>-</td>
</tr>
<tr>
<td>tW(CKL)</td>
<td>Clock low time</td>
<td>f$\text{pp} = 50$MHz</td>
<td>9.5</td>
<td>10.5</td>
<td>-</td>
<td>ns</td>
</tr>
<tr>
<td>tW(CKH)</td>
<td>Clock high time</td>
<td>f$\text{pp} = 50$MHz</td>
<td>8.5</td>
<td>9.5</td>
<td>-</td>
<td>ns</td>
</tr>
</tbody>
</table>

CMD, D inputs (referenced to CK) in eMMC mode

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>tSU</td>
<td>Input setup time HS</td>
<td>f$\text{pp} = 50$MHz</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>tIH</td>
<td>Input hold time HS</td>
<td>f$\text{pp} = 50$MHz</td>
<td>7.5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

CMD, D outputs (referenced to CK) in eMMC mode

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>tOV</td>
<td>Output valid time HS</td>
<td>f$\text{pp} = 50$MHz</td>
<td>-</td>
<td>13.5</td>
<td>14.5</td>
</tr>
<tr>
<td>tOH</td>
<td>Output hold time HS</td>
<td>f$\text{pp} = 50$MHz</td>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1. Guaranteed based on test during characterization.
2. $V_{DD} = 2.7$ to 3.6 V.

6.3.29 RTC characteristics

Table 107. RTC characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>fPCLK1/RTCLK frequency ratio</td>
<td>Any read/write operation from/to an RTC register</td>
<td>4</td>
<td>-</td>
</tr>
</tbody>
</table>
7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

7.1 LQFP64 package information

Figure 67. LQFP64-10x10 mm 64 pin low-profile quad flat package outline

Table 108. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>millimeters</th>
<th>inches(^{(1)})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A1</td>
<td>0.050</td>
<td>-</td>
</tr>
<tr>
<td>A2</td>
<td>1.350</td>
<td>1.400</td>
</tr>
<tr>
<td>b</td>
<td>0.170</td>
<td>0.220</td>
</tr>
<tr>
<td>c</td>
<td>0.090</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 108. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>millimeters</th>
<th>inches (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>D</td>
<td>11.800</td>
<td>12.000</td>
</tr>
<tr>
<td>D1</td>
<td>9.800</td>
<td>10.000</td>
</tr>
<tr>
<td>D3</td>
<td>-</td>
<td>7.500</td>
</tr>
<tr>
<td>E</td>
<td>11.800</td>
<td>12.000</td>
</tr>
<tr>
<td>E1</td>
<td>9.800</td>
<td>10.000</td>
</tr>
<tr>
<td>E3</td>
<td>-</td>
<td>7.500</td>
</tr>
<tr>
<td>e</td>
<td>-</td>
<td>0.500</td>
</tr>
<tr>
<td>L</td>
<td>0.450</td>
<td>0.600</td>
</tr>
<tr>
<td>L1</td>
<td>-</td>
<td>1.000</td>
</tr>
<tr>
<td>K</td>
<td>0°</td>
<td>3.5°</td>
</tr>
<tr>
<td>ccc</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 68. LQFP64 Recommended footprint

1. Drawing is not to scale.
2. Dimensions are in millimeters.
Device marking for LQFP64

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 69. LQFP64 marking example (package top view)

1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.
7.2 LQFP100 package information

Figure 70. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline

Table 109. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>millimeters</th>
<th>inches(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A1</td>
<td>0.050</td>
<td>-</td>
</tr>
<tr>
<td>A2</td>
<td>1.350</td>
<td>1.400</td>
</tr>
<tr>
<td>b</td>
<td>0.170</td>
<td>0.220</td>
</tr>
<tr>
<td>c</td>
<td>0.090</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>15.800</td>
<td>16.000</td>
</tr>
<tr>
<td>D1</td>
<td>13.800</td>
<td>14.000</td>
</tr>
<tr>
<td>D3</td>
<td>-</td>
<td>12.000</td>
</tr>
<tr>
<td>E</td>
<td>15.800</td>
<td>16.000</td>
</tr>
</tbody>
</table>

1. Drawing is not to scale.
Table 109. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>millimeters</th>
<th>inches(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>E1</td>
<td>13.800</td>
<td>14.000</td>
</tr>
<tr>
<td>E3</td>
<td>-</td>
<td>12.000</td>
</tr>
<tr>
<td>e</td>
<td>-</td>
<td>0.500</td>
</tr>
<tr>
<td>L</td>
<td>0.450</td>
<td>0.600</td>
</tr>
<tr>
<td>L1</td>
<td>-</td>
<td>1.000</td>
</tr>
<tr>
<td>k</td>
<td>0°</td>
<td>3.5°</td>
</tr>
<tr>
<td>ccc</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 71. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.
Device marking for LQFP100 package

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 72. LQFP100 marking example (package top view)

1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.
7.3 LQFP144 package information.

Figure 73. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline

1. Drawing is not to scale.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>millimeters</th>
<th>inches<sup>(1)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A1</td>
<td>0.050</td>
<td>-</td>
</tr>
<tr>
<td>A2</td>
<td>1.350</td>
<td>1.400</td>
</tr>
<tr>
<td>b</td>
<td>0.170</td>
<td>0.220</td>
</tr>
<tr>
<td>c</td>
<td>0.090</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>21.800</td>
<td>22.000</td>
</tr>
<tr>
<td>D1</td>
<td>19.800</td>
<td>20.000</td>
</tr>
<tr>
<td>D3</td>
<td>-</td>
<td>17.500</td>
</tr>
<tr>
<td>E</td>
<td>21.800</td>
<td>22.000</td>
</tr>
<tr>
<td>E1</td>
<td>19.800</td>
<td>20.000</td>
</tr>
<tr>
<td>E3</td>
<td>-</td>
<td>17.500</td>
</tr>
<tr>
<td>e</td>
<td>-</td>
<td>0.500</td>
</tr>
<tr>
<td>L</td>
<td>0.450</td>
<td>0.600</td>
</tr>
<tr>
<td>L1</td>
<td>-</td>
<td>1.000</td>
</tr>
<tr>
<td>k</td>
<td>0°</td>
<td>3.5°</td>
</tr>
<tr>
<td>ccc</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1. Values in inches are converted from mm and rounded to 4 decimal digits.
Figure 74. LQFP144 recommended footprint

1. Dimensions are expressed in millimeters.
Device marking for LQFP144 package

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 75. LQFP144 marking example (package top view)

1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.
7.4 UFBGA144 7 x 7 mm package information

Figure 76. UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline

Table 111. UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>millimeters</th>
<th>inches (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.460</td>
<td>0.530</td>
</tr>
<tr>
<td>A1</td>
<td>0.050</td>
<td>0.080</td>
</tr>
<tr>
<td>A2</td>
<td>0.400</td>
<td>0.450</td>
</tr>
<tr>
<td>A3</td>
<td>-</td>
<td>0.130</td>
</tr>
<tr>
<td>A4</td>
<td>0.270</td>
<td>0.320</td>
</tr>
<tr>
<td>b</td>
<td>0.230</td>
<td>0.280</td>
</tr>
<tr>
<td>D</td>
<td>6.950</td>
<td>7.000</td>
</tr>
<tr>
<td>D1</td>
<td>5.450</td>
<td>5.500</td>
</tr>
<tr>
<td>E</td>
<td>6.950</td>
<td>7.000</td>
</tr>
<tr>
<td>E1</td>
<td>5.450</td>
<td>5.500</td>
</tr>
<tr>
<td>e</td>
<td>-</td>
<td>0.500</td>
</tr>
<tr>
<td>F</td>
<td>0.700</td>
<td>0.750</td>
</tr>
</tbody>
</table>

1. Drawing is not in scale.
Table 111. UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>millimeters</th>
<th>inches⁽¹⁾</th>
</tr>
</thead>
<tbody>
<tr>
<td>ddd</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>eee</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fff</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 77. UFBGA144 - 144-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint

Table 112. UFBGA144 recommended PCB design rules (0.50 mm pitch BGA)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Recommended values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitch</td>
<td>0.50 mm</td>
</tr>
<tr>
<td>Dpad</td>
<td>0.280 mm</td>
</tr>
<tr>
<td>Dsm</td>
<td>0.370 mm typ. (depends on the soldermask registration tolerance)</td>
</tr>
<tr>
<td>Stencil opening</td>
<td>0.280 mm</td>
</tr>
<tr>
<td>Stencil thickness</td>
<td>Between 0.100 mm and 0.125 mm</td>
</tr>
<tr>
<td>Pad trace width</td>
<td>0.120 mm</td>
</tr>
</tbody>
</table>
Device marking for UFBGA144 7 x 7 mm package

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 78. UQFP144 7 x 7 mm marking example (package top view)

1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.
7.5 UFBGA144 10 x 10 mm package information

Figure 79. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package outline

Table 113. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package mechanical data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>millimeters</th>
<th>inches (^{(1)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.460</td>
<td>0.530</td>
</tr>
<tr>
<td>A1</td>
<td>0.050</td>
<td>0.080</td>
</tr>
<tr>
<td>A2</td>
<td>0.400</td>
<td>0.450</td>
</tr>
<tr>
<td>A3</td>
<td>0.050</td>
<td>0.080</td>
</tr>
<tr>
<td>A4</td>
<td>0.270</td>
<td>0.320</td>
</tr>
<tr>
<td>b</td>
<td>0.360</td>
<td>0.400</td>
</tr>
<tr>
<td>D</td>
<td>9.950</td>
<td>10.000</td>
</tr>
<tr>
<td>D1</td>
<td>8.750</td>
<td>8.800</td>
</tr>
<tr>
<td>E</td>
<td>9.950</td>
<td>10.000</td>
</tr>
<tr>
<td>E1</td>
<td>8.750</td>
<td>8.800</td>
</tr>
<tr>
<td>e</td>
<td>0.750</td>
<td>0.800</td>
</tr>
</tbody>
</table>

1. Drawing is not to scale.
Table 113. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package mechanical data (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>millimeters</th>
<th>inches(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>0.550</td>
<td>0.600</td>
</tr>
<tr>
<td>ddd</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>eee</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fff</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 80. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package recommended footprint

Table 114. UFBGA144 recommended PCB design rules (0.80 mm pitch BGA)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Recommended values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitch</td>
<td>0.80 mm</td>
</tr>
<tr>
<td>Dpad</td>
<td>0.400 mm</td>
</tr>
<tr>
<td>Dsm</td>
<td>0.550 mm typ. (depends on the soldermask registration tolerance)</td>
</tr>
<tr>
<td>Stencil opening</td>
<td>0.400 mm</td>
</tr>
<tr>
<td>Stencil thickness</td>
<td>Between 0.100 mm and 0.125 mm</td>
</tr>
<tr>
<td>Pad trace width</td>
<td>0.120 mm</td>
</tr>
</tbody>
</table>
Device marking for UFBGA144 10 x 10 mm package

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 81. UQFP144 10 x 10 mm marking example (package top view)

1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.
7.6 WLCSP81 package information

Figure 82. WLCSP81 - 81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale package outline

Table 115. WLCSP81 - 81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale package mechanical data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>millimeters</th>
<th>inches<sup>(1)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>A</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>A1</td>
<td>-</td>
<td>0.170</td>
</tr>
<tr>
<td>A2</td>
<td>-</td>
<td>0.380</td>
</tr>
<tr>
<td>A3<sup>(2)</sup></td>
<td>-</td>
<td>0.025</td>
</tr>
<tr>
<td>b<sup>(3)</sup></td>
<td>0.220</td>
<td>0.250</td>
</tr>
<tr>
<td>D</td>
<td>3.658</td>
<td>3.693</td>
</tr>
<tr>
<td>E</td>
<td>3.780</td>
<td>3.815</td>
</tr>
<tr>
<td>e</td>
<td>-</td>
<td>0.400</td>
</tr>
<tr>
<td>e1</td>
<td>-</td>
<td>3.200</td>
</tr>
<tr>
<td>e2</td>
<td>-</td>
<td>3.200</td>
</tr>
</tbody>
</table>

1. Drawing is not to scale.

⁽¹⁾ Symbol min and max values are rounded to the nearest value of 0.005 mm.

⁽²⁾ All dimensions are included for reference only.

⁽³⁾ All values are included for reference only.
Table 115. WLCSP81-81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale package mechanical data (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>millimeters</th>
<th>inches⁽¹⁾</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>F</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>G</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>aaa</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>bbb</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ccc</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ddd</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>eee</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Back side coating
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 83. WLCSP81-81-pin, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip scale package recommended footprint

Table 116. WLCSP81 recommended PCB design rules (0.4 mm pitch)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Recommended values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitch</td>
<td>0.4 mm</td>
</tr>
<tr>
<td>Dpad</td>
<td>0.225 mm</td>
</tr>
<tr>
<td>Dsm</td>
<td>0.290 mm typ. (depends on the soldermask registration tolerance)</td>
</tr>
<tr>
<td>Stencil opening</td>
<td>0.250 mm</td>
</tr>
<tr>
<td>Stencil thickness</td>
<td>0.100 mm</td>
</tr>
</tbody>
</table>
Device marking for WLCSP81 package

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 84. WLCSP81 10 x 10 mm marking example (package top view)

1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.
7.7 Thermal characteristics

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

$$T_J \text{ max} = T_A \text{ max} + (P_D \text{ max} \times \Theta_{JA})$$

Where:
- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and $P_{I/O}$ max (P_D max = P_{INT} max + $P_{I/O}$ max).
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

$P_{I/O}$ max represents the maximum power dissipation on output pins where:

$$P_{I/O} \text{ max} = \Sigma (V_{OL} \times I_{OL}) + \Sigma ((V_{DD} - V_{OH}) \times I_{OH})$$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Reference document

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Θ_{JA}</td>
<td>Thermal resistance junction-ambient LQFP64 - 10 × 10 mm</td>
<td>46</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch</td>
<td>42</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>Thermal resistance junction-ambient LQFP144 - 20 × 20 mm / 0.5 mm pitch</td>
<td>33</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>Thermal resistance junction-ambient UFBGA144 - 7 × 7 mm / 0.5 mm pitch</td>
<td>51</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>Thermal resistance junction-ambient UFBGA144 - 10 × 10 mm / 0.8 mm pitch</td>
<td>48</td>
<td>°C/W</td>
</tr>
<tr>
<td></td>
<td>Thermal resistance junction-ambient WLCSP81</td>
<td>48</td>
<td>°C/W</td>
</tr>
</tbody>
</table>
Part numbering

Table 118. Ordering information scheme

<table>
<thead>
<tr>
<th>Example:</th>
<th>STM32</th>
<th>F</th>
<th>446</th>
<th>V</th>
<th>C</th>
<th>T</th>
<th>6</th>
<th>xxx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device family</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STM32 = ARM-based 32-bit microcontroller</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F = general-purpose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device subfamily</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>446= STM32F446xC/E,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pin count</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M = 81 pins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R = 64 pins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V = 100 pins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z = 144 pins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flash memory size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C=256 Kbytes of Flash memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E=512 Kbytes of Flash memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H = UFBGA (7 x 7 mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J = UFBGA (10 x 10 mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T = LQFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y = WLCSP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 = Industrial temperature range, –40 to 85 °C.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 = Industrial temperature range, –40 to 105 °C.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Options</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>xxx = programmed parts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR = tape and reel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.
Appendix A Application block diagrams

A.1 USB OTG full speed (FS) interface solutions

Figure 85. USB controller configured as peripheral-only and used in Full speed mode

1. External voltage regulator only needed when building a V_{BUS} powered device.
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.

Figure 86. USB controller configured as host-only and used in full speed mode

1. The current limiter is required only if the application has to support a V_{BUS} powered device. A basic power switch can be used if 5 V are available on the application board.
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
Figure 87. USB controller configured in dual mode and used in full speed mode

1. External voltage regulator only needed when building a VBUS powered device.
2. The current limiter is required only if the application has to support a VBUS powered device. A basic power switch can be used if 5 V are available on the application board.
3. The ID pin is required in dual role only.
4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
A.2 USB OTG high speed (HS) interface solutions

Figure 88. USB controller configured as peripheral, host, or dual-mode and used in high speed mode

1. It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the STM32F446xx with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example of a possible connection.

2. The ID pin is required in dual role only.
Revision history

Table 119. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>17-Feb-2015</td>
<td>1</td>
<td>Initial release.</td>
</tr>
<tr>
<td>16-Mar-2015</td>
<td>2</td>
<td>Added note 2 inside Table 2. Updated Table 11, Table 23, Table 24, Table 25, Table 26, Table 30, Table 51, Table 52, Table 53, and Table 61. Added condition inside Typical and maximum current consumption and Additional current consumption. Added FMPI2C characteristics. Added Table 62 and Figure 35.</td>
</tr>
<tr>
<td>29-May-2015</td>
<td>3</td>
<td>Updated: – Section 6.3.15: Absolute maximum ratings (electrical sensitivity) – Section 7: Package information – Table 2: STM32F446xC/E features and peripheral counts – Table 13: STM32F446xC/xE WLCSP81 ballout – Figure 53: ESD absolute maximum ratings – Figure 54: Synchronous multiplexed NOR/PSRAM read timings. Added: – Figure 78: UQFP144 7 x 7 mm marking example (package top view). – Figure 81: UQFP144 10 x 10 mm marking example (package top view). – Figure 84: WLCSP81 10 x 10 mm marking example (package top view).</td>
</tr>
<tr>
<td>10-Aug-2015</td>
<td>4</td>
<td>Updated: – Figure 14: STM32F446xC/xE UFBGA144 ballout – Table 10: STM32F446xx pin and ball descriptions – Table 18: VCAP_1/VCAP_2 operating conditions – Section 3.15: Power supply schemes – Section 6.3.2: VCAP_1/VCAP_2 external capacitor. Added: – Figure 5: VDDUSB connected to an external independent power supply – Notes 3 and 4 below Figure 18: Power supply scheme.</td>
</tr>
</tbody>
</table>
Table 119. Document revision history (continued)

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>03-Nov-2015</td>
<td>5</td>
<td>Updated:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Introduction;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Table 2: STM32F446xC/E features and peripheral counts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Table 43: Main PLL characteristics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Title of Table 45: PLLISAI characteristics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Table 109: LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Table 118: Ordering information scheme</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Figure 10: STM32F446xC/xE LQFP64 pinout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Figure 11: STM32F446xC/xE LQFP100 pinout</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Figure 77: UFBGA144 - 144-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Figure 111: UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data</td>
</tr>
<tr>
<td>02-Sep-2016</td>
<td>6</td>
<td>Updated:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Section 7: Package information;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Table 30: Typical current consumption in Run mode, code with data processing running from Flash memory or RAM, regulator ON (ART accelerator enabled except prefetch), VDD=1.7 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Table 74: ADC characteristics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Table 85: DAC characteristics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Added:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Note 3 in Figure 33: Recommended NRST pin protection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Note 4 in Table 41: HSI oscillator characteristics</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved