VNN7NV04, VNS7NV04, VND7NV04, VND7NV04-1

OMNIFET II
fully autoprotected Power MOSFET

Features

<table>
<thead>
<tr>
<th>Type</th>
<th>$R_{DS(on)}$</th>
<th>I_{lim}</th>
<th>V_{clamp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>VNN7NV04</td>
<td>60 mΩ</td>
<td>6 A</td>
<td>40 V</td>
</tr>
<tr>
<td>VNS7NV04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VND7NV04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VND7NV04-1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Linear current limitation
- Thermal shutdown
- Short circuit protection
- Integrated clamp
- Low current drawn from input pin
- Diagnostic feedback through input pin
- ESD protection
- Direct access to the gate of the Power MOSFET (analog driving)
- Compatible with standard Power MOSFET in compliance with the 2002/95/EC European Directive

Description

The VNN7NV04, VNS7NV04, VND7NV04, VND7NV04-1, are monolithic devices designed in STMicroelectronics VIPower M0-3 Technology, intended for replacement of standard Power MOSFETs from DC up to 50 kHz applications. Built in thermal shutdown, linear current limitation and overvoltage clamp protect the chip in harsh environments.

Fault feedback can be detected by monitoring the voltage at the input pin.

Table 1. Device summary

<table>
<thead>
<tr>
<th>Package</th>
<th>Type</th>
<th>VNN7NV04</th>
<th>VNS7NV04</th>
<th>VND7NV04</th>
<th>VND7NV04-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube</td>
<td>Tube (lead-free)</td>
<td>Tape and reel</td>
<td>Tape and reel (lead-free)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOT-223</td>
<td>VNN7NV04</td>
<td>-</td>
<td>VNN7NV0413TR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>SO-8</td>
<td>VNS7NV04</td>
<td>-</td>
<td>VNS7NV0413TR</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>TO-252</td>
<td>VND7NV04</td>
<td>VND7NV04-E</td>
<td>VND7NV0413TR</td>
<td>VND7NV04TR-E</td>
<td></td>
</tr>
<tr>
<td>TO-251</td>
<td>VND7NV04-1</td>
<td>VND7NV04-1-E</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
List of tables

Table 1. Device summary ... 1
Table 2. Absolute maximum ratings .. 7
Table 3. Thermal data ... 8
Table 4. Electrical characteristics ... 8
Table 5. SO-8 thermal parameter .. 21
Table 6. SOT-223 thermal parameter ... 23
Table 7. DPAK thermal parameter ... 25
Table 8. TO-251 (IPAK) mechanical data .. 27
Table 9. TO-252 (DPAK) mechanical data 28
Table 10. SOT-223 mechanical data .. 29
Table 11. SO-8 mechanical data ... 30
Table 12. Document revision history ... 36
List of figures

Figure 1. Block diagram ... 6
Figure 2. Configuration diagram (top view) .. 6
Figure 3. Current and voltage conventions .. 7
Figure 4. Switching time test circuit for resistive load 11
Figure 5. Test circuit for diode recovery times 11
Figure 6. Unclamped inductive load test circuits 12
Figure 7. Input charge test circuit .. 12
Figure 8. Unclamped inductive waveforms 12
Figure 9. Derating curve ... 13
Figure 10. Transconductance .. 13
Figure 11. Static drain-source on resistance vs input voltage (part 1/2) ... 13
Figure 12. Static drain-source on resistance vs input voltage (part 2/2) ... 13
Figure 13. Source-drain diode forward characteristics 13
Figure 14. Static drain source on resistance 13
Figure 15. Turn-on current slope (part 1/2) 14
Figure 16. Turn-on current slope (part 2/2) 14
Figure 17. Transfer characteristics ... 14
Figure 18. Static drain-source on resistance vs Id 14
Figure 19. Input voltage vs input charge .. 14
Figure 20. Turn-off drain source voltage slope (part 1/2) 14
Figure 21. Turn-off drain source voltage slope (part 2/2) 15
Figure 22. Capacitance variations .. 15
Figure 23. Output characteristics .. 15
Figure 24. Normalized on resistance vs temperature 15
Figure 25. Switching time resistive load (part 1/2) 15
Figure 26. Switching time resistive load (part 2/2) 15
Figure 27. Normalized input threshold voltage vs temperature 16
Figure 28. Normalized current limit vs junction temperature 16
Figure 29. Step response current limit ... 16
Figure 30. SO-8 maximum turn-off current versus load inductance 17
Figure 31. SO-8 demagnetization .. 17
Figure 32. DPAK maximum turn-off current versus load inductance 18
Figure 33. DPAK demagnetization ... 18
Figure 34. SOT-223 maximum turn-off current versus load inductance 19
Figure 35. SOT-223 demagnetization .. 19
Figure 36. SO-8 PC board .. 20
Figure 37. Rthj-amb vs PCB copper area in open box free air condition 20
Figure 38. SO-8 thermal impedance junction ambient single pulse 21
Figure 39. Thermal fitting model of an OMNIFET II in SO-8 21
Figure 40. SOT-223 PC board .. 22
Figure 41. Rthj-amb vs PCB copper area in open box free air condition 22
Figure 42. SOT-223 thermal impedance junction ambient single pulse 23
Figure 43. Thermal fitting model of an OMNIFET II in SOT-223 23
Figure 44. DPAK PC board .. 24
Figure 45. Rthj-amb vs PCB copper area in open box free air condition 24
Figure 46. DPAK thermal impedance junction ambient single pulse 25
Figure 47. Thermal fitting model of an OMNIFET II in DPAK 25
Figure 48. TO-251 (IPAK) package dimensions 28
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>TO-252 (DPAK) package dimensions</td>
<td>29</td>
</tr>
<tr>
<td>50</td>
<td>SOT-223 package dimensions</td>
<td>30</td>
</tr>
<tr>
<td>51</td>
<td>SO-8 package dimensions</td>
<td>31</td>
</tr>
<tr>
<td>52</td>
<td>SOT-223 tape and reel shipment (suffix “TR”)</td>
<td>32</td>
</tr>
<tr>
<td>53</td>
<td>SO-8 tube shipment (no suffix)</td>
<td>33</td>
</tr>
<tr>
<td>54</td>
<td>SO-8 tape and reel shipment (suffix “TR”)</td>
<td>33</td>
</tr>
<tr>
<td>55</td>
<td>DPAK footprint and tube shipment (no suffix)</td>
<td>34</td>
</tr>
<tr>
<td>56</td>
<td>DPAK tape and reel shipment (suffix “TR”)</td>
<td>34</td>
</tr>
<tr>
<td>57</td>
<td>IPAK tube shipment (no suffix)</td>
<td>35</td>
</tr>
</tbody>
</table>
1 Block diagram and pin description

Figure 1. Block diagram

Figure 2. Configuration diagram (top view)

1. For the pins configuration related to SOT-223, DPAK, IPAK see outlines at page 1.
2 Electrical specifications

Figure 3. Current and voltage conventions

2.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value (L=0.7 mH; R_L=0 Ω; V_{bat}=13.5 V; T_{start}=150 °C; I_L=9 A)</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DS}</td>
<td>Drain-source voltage (V_{IN}=0 V)</td>
<td>Internally clamped</td>
<td>V</td>
</tr>
<tr>
<td>V_{IN}</td>
<td>Input voltage</td>
<td>Internally clamped</td>
<td>V</td>
</tr>
<tr>
<td>I_{IN}</td>
<td>Input current</td>
<td>+/-20 mA</td>
<td>mA</td>
</tr>
<tr>
<td>R_{IN_MIN}</td>
<td>Minimum input series impedance</td>
<td>150 Ω</td>
<td></td>
</tr>
<tr>
<td>I_{D}</td>
<td>Drain current</td>
<td>Internally limited</td>
<td>A</td>
</tr>
<tr>
<td>I_{R}</td>
<td>Reverse DC output current</td>
<td>-10.5 A</td>
<td></td>
</tr>
<tr>
<td>V_{ESD1}</td>
<td>Electrostatic discharge (R=1.5 KΩ; C=100 pF)</td>
<td>4000 V</td>
<td></td>
</tr>
<tr>
<td>V_{ESD2}</td>
<td>Electrostatic discharge on output pin only (R=330 Ω; C=150 pF)</td>
<td>16500 V</td>
<td></td>
</tr>
<tr>
<td>P_{tot}</td>
<td>Total dissipation at T_c=25 °C</td>
<td>7 4.6 60 W</td>
<td></td>
</tr>
<tr>
<td>E_{MAX}</td>
<td>Maximum switching energy</td>
<td>40 40 mJ</td>
<td></td>
</tr>
<tr>
<td>T_{j}</td>
<td>Operating junction temperature</td>
<td>Internally limited</td>
<td>°C</td>
</tr>
<tr>
<td>T_{c}</td>
<td>Case operating temperature</td>
<td>Internally limited</td>
<td>°C</td>
</tr>
<tr>
<td>T_{stg}</td>
<td>Storage temperature</td>
<td>-55 to 150 °C</td>
<td></td>
</tr>
</tbody>
</table>
2.2 Thermal data

Table 3. Thermal data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{\text{thj-case}}$</td>
<td>Thermal resistance junction-case max</td>
<td>18</td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{\text{thj-lead}}$</td>
<td>Thermal resistance junction-lead max</td>
<td>27</td>
<td>°C/W</td>
</tr>
<tr>
<td>$R_{\text{thj-amb}}$</td>
<td>Thermal resistance junction-ambient max</td>
<td>96(1)</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

1. When mounted on a standard single-sided FR4 board with 0.5 mm² of Cu (at least 35 µm thick) connected to all DRAIN pins.

2.3 Electrical characteristics

-40 °C < T_j < 150 °C, unless otherwise specified.

Table 4. Electrical characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CLAMP}</td>
<td>Drain-source clamp voltage</td>
<td>$V_{\text{IN}}=0$ V; $I_D=3.5$ A</td>
<td>40</td>
<td>45</td>
<td>55</td>
<td>V</td>
</tr>
<tr>
<td>V_{CLTH}</td>
<td>Drain-source clamp threshold voltage</td>
<td>$V_{\text{IN}}=0$ V; $I_D=2$ mA</td>
<td>36</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{INTH}</td>
<td>Input threshold voltage</td>
<td>$V_{\text{DS}}=V_{\text{IN}}$; $I_D=1$ mA</td>
<td>0.5</td>
<td>2.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{ISS}</td>
<td>Supply current from input pin</td>
<td>$V_{\text{DS}}=0$ V; $V_{\text{IN}}=5$ V</td>
<td>100</td>
<td>150</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>V_{INCL}</td>
<td>Input-source clamp voltage</td>
<td>$I_{\text{IN}}=1$ mA</td>
<td>6</td>
<td>6.8</td>
<td>8</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$I_{\text{IN}}=-1$ mA</td>
<td>-1.0</td>
<td>-0.3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{DSS}</td>
<td>Zero input voltage drain current ($V_{\text{IN}}=0$ V)</td>
<td>$V_{\text{DS}}=13$ V; $V_{\text{IN}}=0$ V; $T_j=25$ °C</td>
<td>30</td>
<td>75</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{\text{DS}}=25$ V; $V_{\text{IN}}=0$ V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

On

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Static drain-source on resistance</th>
<th>$V_{\text{IN}}=5$ V; $I_D=3.5$ A; $T_j=25$ °C</th>
<th>60</th>
<th>120</th>
<th></th>
<th>mΩ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{\text{DS(on)}}$</td>
<td>Static drain-source on resistance</td>
<td>$V_{\text{IN}}=5$ V; $I_D=3.5$ A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dynamic (T = 25 °C, unless otherwise specified)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>$V_{\text{DD}}=13$ V; $I_D=3.5$ A</th>
<th>9</th>
<th></th>
<th></th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_{fs} (1)</td>
<td>Forward transconductance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{OSS}</td>
<td>Output capacitance</td>
<td>$V_{\text{DS}}=13$ V; $f=1$ MHz; $V_{\text{IN}}=0$ V</td>
<td>220</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
</tbody>
</table>
Table 4. Electrical characteristics (continued)

![Table 4. Electrical characteristics (continued)](image)

1. Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %
3 Protection features

During normal operation, the input pin is electrically connected to the gate of the internal Power MOSFET through a low impedance path. The device then behaves like a standard Power MOSFET and can be used as a switch from DC up to 50 kHz. The only difference from the user’s standpoint is that a small DC current I_{ISS} (typ. 100µA) flows into the input pin in order to supply the internal circuitry.

The device integrates:

- Overvoltage clamp protection: internally set at 45 V, along with the rugged avalanche characteristics of the Power MOSFET stage give this device unrivalled ruggedness and energy handling capability. This feature is mainly important when driving inductive loads.
- Linear current limiter circuit: limits the drain current I_D to I_{lim} whatever the input pin voltages. When the current limiter is active, the device operates in the linear region, so power dissipation may exceed the capability of the heatsink. Both case and junction temperatures increase, and if this phase lasts long enough, junction temperature may reach the over temperature threshold T_{jsh}.
- Over temperature and short circuit protection: these are based on sensing the chip temperature and are not dependent on the input voltage. The location of the sensing element on the chip in the power stage area ensures fast, accurate detection of the junction temperature. Over temperature cutout occurs in the range 150 to 190 °C, a typical value being 170 °C. The device is automatically restarted when the chip temperature falls of about 15 °C below shutdown temperature.
- Status feedback: in the case of an over temperature fault condition ($T_j > T_{jsh}$), the device tries to sink a diagnostic current I_{gf} through the input pin in order to indicate fault condition. If driven from a low impedance source, this current may be used in order to warn the control circuit of a device shutdown. If the drive impedance is high enough so that the input pin driver is not able to supply the current I_{gf}, the input pin will fall to 0 V. This will not however affect the device operation: no requirement is put on the current capability of the input pin driver except to be able to supply the normal operation drive current I_{ISS}.

Additional features of this device are ESD protection according to the Human Body model and the ability to be driven from a TTL logic circuit.
Figure 4. Switching time test circuit for resistive load

![Switching time test circuit for resistive load](image)

Figure 5. Test circuit for diode recovery times

![Test circuit for diode recovery times](image)
Figure 6. Unclamped inductive load test circuits

Figure 7. Input charge test circuit

Figure 8. Unclamped inductive waveforms
3.1 Electrical characteristics curves

Figure 9. Derating curve

![Derating curve](image)

Figure 10. Transconductance

![Transconductance](image)

Figure 11. Static drain-source on resistance vs input voltage (part 1/2)

![Static drain-source on resistance vs input voltage](image)

Figure 12. Static drain-source on resistance vs input voltage (part 2/2)

![Static drain-source on resistance vs input voltage](image)

Figure 13. Source-drain diode forward characteristics

![Source-drain diode forward characteristics](image)

Figure 14. Static drain source on resistance

![Static drain source on resistance](image)
Figure 15. Turn-on current slope (part 1/2)

![Turn-on current slope (part 1/2)](image1.png)

Figure 16. Turn-on current slope (part 2/2)

![Turn-on current slope (part 2/2)](image2.png)

Figure 17. Transfer characteristics

![Transfer characteristics](image3.png)

Figure 18. Static drain-source on resistance vs Id

![Static drain-source on resistance vs Id](image4.png)

Figure 19. Input voltage vs input charge

![Input voltage vs input charge](image5.png)

Figure 20. Turn-off drain source voltage slope (part 1/2)

![Turn-off drain source voltage slope (part 1/2)](image6.png)
Protection features

Figure 21. Turn-off drain source voltage slope

Figure 22. Capacitance variations (part 2/2)

Figure 23. Output characteristics

Figure 24. Normalized on resistance vs temperature

Figure 25. Switching time resistive load (part 1/2)

Figure 26. Switching time resistive load (part 2/2)
Figure 27. Normalized input threshold voltage vs temperature

Figure 28. Normalized current limit vs junction temperature

Figure 29. Step response current limit
3.2 SO-8 maximum demagnetization energy

Figure 30. SO-8 maximum turn-off current versus load inductance

Legend
A = Single Pulse at $T_{J_{\text{start}}}=150 \, ^\circ\text{C}$
B = Repetitive pulse at $T_{J_{\text{start}}}=100 \, ^\circ\text{C}$
C = Repetitive Pulse at $T_{J_{\text{start}}}=125 \, ^\circ\text{C}$

Conditions:
$V_{CC}=13.5 \, \text{V}$
Values are generated with $R_L=0 \, \Omega$. In case of repetitive pulses, $T_{J_{\text{start}}}$ (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.

Figure 31. SO-8 demagnetization
3.3 DPAK maximum demagnetization energy

Figure 32. DPAK maximum turn-off current versus load inductance

Legend
A = Single Pulse at $T_{J\text{start}}=150$ °C
B = Repetitive pulse at $T_{J\text{start}}=100$ °C
C = Repetitive Pulse at $T_{J\text{start}}=125$ °C

Conditions:
$V_{CC}=13.5$ V
Values are generated with $R_L=0$ Ω. In case of repetitive pulses, $T_{J\text{start}}$ (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.

Figure 33. DPAK demagnetization
3.4 **SOT-223 maximum demagnetization energy**

Figure 34. SOT-223 maximum turn-off current versus load inductance

Legend

A = Single Pulse at TJstart=150 °C
B = Repetitive pulse at TJstart=100 °C
C = Repetitive Pulse at TJstart=125 °C

Conditions:

VCC=13.5 V

Values are generated with RL=0 Ω. In case of repetitive pulses, TJstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.

Figure 35. SOT-223 demagnetization
4 Package and PCB thermal data

4.1 SO-8 thermal data

Figure 36. SO-8 PC board

Note: Layout condition of R_{th} and Z_{th} measurements (PCB FR4 area=58 mm x 58 mm, PCB thickness=2 mm, Cu thickness=35 µm, Copper areas: 0.14 cm2, 0.8 cm2, 2 cm2).

Figure 37. $R_{th\text{-amb}}$ vs PCB copper area in open box free air condition

![SO-8 PC board diagram]

![R_{th\text{-amb}} vs PCB copper area graph]
Figure 38. SO-8 thermal impedance junction ambient single pulse

![SO-8 thermal impedance junction ambient single pulse graph]

Figure 39. Thermal fitting model of an OMNIFET II in SO-8

![Thermal fitting model of an OMNIFET II in SO-8]

Equation 1 Pulse calculation formula

\[Z_{\text{TH}}} = R_{\text{TH}} \cdot \delta + Z_{\text{THlp}} (1 - \delta) \]

where \(\delta = \frac{t_p}{T} \)

Table 5. SO-8 thermal parameter

<table>
<thead>
<tr>
<th>Area/island (cm²)</th>
<th>Footprint</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 (°C/W)</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>R2 (°C/W)</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>R3 (°C/W)</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>R4 (°C/W)</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>R5 (°C/W)</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>R6 (°C/W)</td>
<td>58</td>
<td>28</td>
</tr>
<tr>
<td>C1 (W.s/°C)</td>
<td>3.00E-04</td>
<td></td>
</tr>
</tbody>
</table>
Table 5. SO-8 thermal parameter (continued)

<table>
<thead>
<tr>
<th>Area/island (cm²)</th>
<th>Footprint</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2 (W.s/°C)</td>
<td>9.00E-04</td>
<td></td>
</tr>
<tr>
<td>C3 (W.s/°C)</td>
<td>7.50E-03</td>
<td></td>
</tr>
<tr>
<td>C4 (W.s/°C)</td>
<td>0.045</td>
<td></td>
</tr>
<tr>
<td>C5 (W.s/°C)</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>C6 (W.s/°C)</td>
<td>1.05</td>
<td></td>
</tr>
</tbody>
</table>

4.2 SOT-223 thermal data

Figure 40. SOT-223 PC board

Note: Layout condition of R_{th} and Z_{th} measurements (PCB FR4 area=58 mm x 58 mm, PCB thickness=2 mm, Cu thickness=35 µm, Copper areas: 0.11 cm², 1 cm², 2 cm²).

Figure 41. R_{th-amb} vs PCB copper area in open box free air condition
Figure 42. SOT-223 thermal impedance junction ambient single pulse

Figure 43. Thermal fitting model of an OMNIFET II in SOT-223

Equation 2 Pulse calculation formula

\[Z_{TH\delta} = R_{TH} \delta + Z_{THP}(1 - \delta) \]
where \(\delta = \frac{t_p}{T} \)

Table 6. SOT-223 thermal parameter

<table>
<thead>
<tr>
<th>Area/island (cm²)</th>
<th>Footprint</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 (°C/W)</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>R2 (°C/W)</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>R3 (°C/W)</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>R4 (°C/W)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>R5 (°C/W)</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>R6 (°C/W)</td>
<td>100</td>
<td>45</td>
</tr>
<tr>
<td>C1 (W.s/°C)</td>
<td>3.00E-04</td>
<td></td>
</tr>
</tbody>
</table>
4.3 DPAK thermal data

Figure 44. DPAK PC board

![DPAK PC board](image)

Note: Layout condition of R_{th} and Z_{th} measurements (PCB FR4 area=60 mm x 60 mm, PCB thickness=2 mm, Cu thickness=35µm, Copper areas: from minimum pad lay-out to 8 cm²).

Figure 45. $R_{thj-amb}$ vs PCB copper area in open box free air condition

![Graph](image)

<table>
<thead>
<tr>
<th>Area/island (cm²)</th>
<th>Footprint</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2 (W.s/°C)</td>
<td>9.00E-04</td>
<td></td>
</tr>
<tr>
<td>C3 (W.s/°C)</td>
<td>3.00E-02</td>
<td></td>
</tr>
<tr>
<td>C4 (W.s/°C)</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>C5 (W.s/°C)</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>C6 (W.s/°C)</td>
<td>0.5</td>
<td>2</td>
</tr>
</tbody>
</table>
Figure 46. DPAK thermal impedance junction ambient single pulse

![Diagram showing thermal impedance junction ambient single pulse]

Figure 47. Thermal fitting model of an OMNIFET II in DPAK

![Diagram showing thermal fitting model]

Equation 3 Pulse calculation formula

\[Z_{TH\delta} = R_{TH} \cdot \delta + Z_{TH\ell p}(1 - \delta) \]

where \(\delta = \frac{t_p}{T} \)

Table 7. DPAK thermal parameter

<table>
<thead>
<tr>
<th>Area/island (cm²)</th>
<th>Footprint</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 (°C/W)</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>R2 (°C/W)</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>R3 (°C/W)</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>R4 (°C/W)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>R5 (°C/W)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>R6 (°C/W)</td>
<td>61</td>
<td>24</td>
</tr>
</tbody>
</table>
Table 7. DPAK thermal parameter (continued)

<table>
<thead>
<tr>
<th>Area/island (cm²)</th>
<th>Footprint</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 (W.s/°C)</td>
<td>0.0006</td>
<td></td>
</tr>
<tr>
<td>C2 (W.s/°C)</td>
<td>0.0021</td>
<td></td>
</tr>
<tr>
<td>C3 (W.s/°C)</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>C4 (W.s/°C)</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>C5 (W.s/°C)</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>C6 (W.s/°C)</td>
<td>0.8</td>
<td>5</td>
</tr>
</tbody>
</table>
5 Package and packing information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com.

ECOPACK® is an ST trademark.

5.1 TO-251 (IPAK) mechanical data

Table 8. TO-251 (IPAK) mechanical data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
</tr>
<tr>
<td>A</td>
<td>2.2</td>
</tr>
<tr>
<td>A1</td>
<td>0.9</td>
</tr>
<tr>
<td>A3</td>
<td>0.7</td>
</tr>
<tr>
<td>B</td>
<td>0.64</td>
</tr>
<tr>
<td>B2</td>
<td>5.2</td>
</tr>
<tr>
<td>B3</td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td></td>
</tr>
<tr>
<td>B6</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.45</td>
</tr>
<tr>
<td>C2</td>
<td>0.48</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
</tr>
<tr>
<td>E</td>
<td>6.4</td>
</tr>
<tr>
<td>G</td>
<td>4.4</td>
</tr>
<tr>
<td>H</td>
<td>15.9</td>
</tr>
<tr>
<td>L</td>
<td>9</td>
</tr>
<tr>
<td>L1</td>
<td>0.8</td>
</tr>
<tr>
<td>L2</td>
<td></td>
</tr>
</tbody>
</table>
5.2 **TO-252 (DPAK) mechanical data**

Table 9. **TO-252 (DPAK) mechanical data**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
</tr>
<tr>
<td>A</td>
<td>2.20</td>
</tr>
<tr>
<td>A1</td>
<td>0.90</td>
</tr>
<tr>
<td>A2</td>
<td>0.03</td>
</tr>
<tr>
<td>B</td>
<td>0.64</td>
</tr>
<tr>
<td>B2</td>
<td>5.20</td>
</tr>
<tr>
<td>C</td>
<td>0.45</td>
</tr>
<tr>
<td>C2</td>
<td>0.48</td>
</tr>
<tr>
<td>D</td>
<td>6.00</td>
</tr>
<tr>
<td>D1</td>
<td>6.10</td>
</tr>
<tr>
<td>E</td>
<td>6.40</td>
</tr>
<tr>
<td>E1</td>
<td>4.70</td>
</tr>
<tr>
<td>e</td>
<td>2.28</td>
</tr>
<tr>
<td>G</td>
<td>4.40</td>
</tr>
<tr>
<td>H</td>
<td>9.35</td>
</tr>
</tbody>
</table>
Table 9. TO-252 (DPAK) mechanical data (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
</tr>
<tr>
<td>L2</td>
<td>0.8</td>
</tr>
<tr>
<td>L4</td>
<td>0.60</td>
</tr>
<tr>
<td>R</td>
<td>0°</td>
</tr>
<tr>
<td>V2</td>
<td>0°</td>
</tr>
<tr>
<td>Package Weight</td>
<td>Gr. 0.29</td>
</tr>
</tbody>
</table>

Figure 49. TO-252 (DPAK) package dimensions

5.3 SOT-223 mechanical data

Table 10. SOT-223 mechanical data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.6</td>
</tr>
<tr>
<td>B1</td>
<td>2.9</td>
</tr>
<tr>
<td>c</td>
<td>0.24</td>
</tr>
<tr>
<td>D</td>
<td>6.3</td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
</tbody>
</table>
Table 10. SOT-223 mechanical data (continued)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>millimeters</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min.</td>
<td>Typ.</td>
<td>Max.</td>
</tr>
<tr>
<td>e1</td>
<td>4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>3.3</td>
<td>3.5</td>
<td>3.7</td>
</tr>
<tr>
<td>H</td>
<td>6.7</td>
<td>7</td>
<td>7.3</td>
</tr>
<tr>
<td>V</td>
<td>10 (max)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>0.02</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

Figure 50. SOT-223 package dimensions

5.4 SO-8 mechanical data

Table 11. SO-8 mechanical data

<table>
<thead>
<tr>
<th>Symbol</th>
<th>millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>A</td>
<td>1.75</td>
</tr>
<tr>
<td>a1</td>
<td>0.1</td>
</tr>
<tr>
<td>a2</td>
<td></td>
</tr>
<tr>
<td>a3</td>
<td>0.65</td>
</tr>
<tr>
<td>b</td>
<td>0.35</td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Table 11. **SO-8 mechanical data (continued)**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>A2</td>
<td>1.25</td>
</tr>
<tr>
<td>b</td>
<td>0.28</td>
</tr>
<tr>
<td>c</td>
<td>0.17</td>
</tr>
<tr>
<td>D(^{(1)})</td>
<td>4.80</td>
</tr>
<tr>
<td>E</td>
<td>5.80</td>
</tr>
<tr>
<td>E(^{(2)})</td>
<td>3.80</td>
</tr>
<tr>
<td>e</td>
<td></td>
</tr>
<tr>
<td>h</td>
<td>0.25</td>
</tr>
<tr>
<td>L</td>
<td>0.40</td>
</tr>
<tr>
<td>L(^{1})</td>
<td></td>
</tr>
<tr>
<td>k</td>
<td>0°</td>
</tr>
<tr>
<td>ccc</td>
<td></td>
</tr>
</tbody>
</table>

1. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm in total (both side).

2. Dimension “E1” does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per side.

Figure 51. SO-8 package dimensions
5.5 **SOT-223 packing information**

Figure 52. SOT-223 tape and reel shipment (suffix “TR”)

REEL DIMENSIONS

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Qty</td>
<td>1000</td>
</tr>
<tr>
<td>Bulk Qty</td>
<td>1000</td>
</tr>
<tr>
<td>A (max)</td>
<td>30.0</td>
</tr>
<tr>
<td>B (min)</td>
<td>1.5</td>
</tr>
<tr>
<td>C (± 0.2)</td>
<td>13</td>
</tr>
<tr>
<td>F</td>
<td>20.2</td>
</tr>
<tr>
<td>G (± 2 / -0)</td>
<td>12.4</td>
</tr>
<tr>
<td>N (min)</td>
<td>60</td>
</tr>
<tr>
<td>T (max)</td>
<td>18.4</td>
</tr>
</tbody>
</table>

TAPE DIMENSIONS

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape width</td>
<td>12</td>
</tr>
<tr>
<td>Tape Hole Spacing P0 (± 0.1)</td>
<td>4</td>
</tr>
<tr>
<td>Component Spacing P</td>
<td>8</td>
</tr>
<tr>
<td>Hole Diameter D (± 0.1/0)</td>
<td>1.5</td>
</tr>
<tr>
<td>Hole Diameter D1 (min)</td>
<td>1.5</td>
</tr>
<tr>
<td>Hole Position F (± 0.05)</td>
<td>5.5</td>
</tr>
<tr>
<td>Compartment Depth K (max)</td>
<td>4.5</td>
</tr>
<tr>
<td>Hole Spacing P1 (± 0.1)</td>
<td>2</td>
</tr>
</tbody>
</table>

All dimensions are in mm.
5.6 SO-8 packing information

Figure 53. SO-8 tube shipment (no suffix)

Figure 54. SO-8 tape and reel shipment (suffix “TR”)

Tape dimensions

According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tape width W</td>
<td>12</td>
</tr>
<tr>
<td>Tape hole spacing P₀ (± 0.1)</td>
<td>4</td>
</tr>
<tr>
<td>Component spacing P</td>
<td>0</td>
</tr>
<tr>
<td>Hole diameter D (± 0.1/-0)</td>
<td>1.5</td>
</tr>
<tr>
<td>Hole diameter D₁ (min)</td>
<td>1.5</td>
</tr>
<tr>
<td>Hole position F (± 0.05)</td>
<td>5.5</td>
</tr>
<tr>
<td>Compartment depth K (max)</td>
<td>4.5</td>
</tr>
<tr>
<td>Hole spacing P₁ (± 0.1)</td>
<td>2</td>
</tr>
</tbody>
</table>

All dimensions are in mm.

Reel dimensions

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Q.ty</td>
<td>100</td>
</tr>
<tr>
<td>Bulk Q.ty</td>
<td>2000</td>
</tr>
<tr>
<td>Tube length (± 0.5)</td>
<td>532</td>
</tr>
<tr>
<td>A</td>
<td>3.2</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
</tr>
<tr>
<td>C (± 0.1)</td>
<td>0.6</td>
</tr>
</tbody>
</table>

All dimensions are in mm.

All dimensions are in mm.
5.7 DPAK packing information

Figure 55. DPAK footprint and tube shipment (no suffix)

Table: DPAK Dimensions

<table>
<thead>
<tr>
<th>Base Qty</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk Qty</td>
<td>3000</td>
</tr>
<tr>
<td>Tube length (± 0.5)</td>
<td>532</td>
</tr>
<tr>
<td>A</td>
<td>6</td>
</tr>
<tr>
<td>B</td>
<td>21.3</td>
</tr>
<tr>
<td>C (± 0.1)</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Figure 56. DPAK tape and reel shipment (suffix “TR”)

Table: Tape Dimensions

Tape width	16	
Tape Hole Spacing	P0 (± 0.1)	4
Component Spacing	P	6
Hole Diameter	D (± 0.1-0)	1.5
Hole Diameter	D1 (min)	1.5
Hole Position	F (± 0.05)	7.5
Compartment Depth	K (max)	6.5
Hole Spacing	P1 (± 0.1)	2

All dimensions are in mm.

REEL DIMENSIONS

Base Qty	2500
Bulk Qty	2500
A (max)	330
B (min)	1.5
C (± 0.2)	13
F	20.2
G (+ 2/-0)	16.4
N (min)	60
T (max)	22.3

According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986
5.8 IPAk packing information

Figure 57. IPAk tube shipment (no suffix)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Q.ty</td>
<td>75</td>
</tr>
<tr>
<td>Bulk Q.ty</td>
<td>3000</td>
</tr>
<tr>
<td>Tube length (± 0.5)</td>
<td>532</td>
</tr>
<tr>
<td>A</td>
<td>6</td>
</tr>
<tr>
<td>B</td>
<td>21.3</td>
</tr>
<tr>
<td>C (± 0.1)</td>
<td>0.6</td>
</tr>
</tbody>
</table>

All dimensions are in mm.
6 Revision history

Table 12. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-Feb-2003</td>
<td>1</td>
<td>Initial Release</td>
</tr>
<tr>
<td>28-Apr-2009</td>
<td>2</td>
<td>Added Table 1: Device summary on page 1 and Section 4: Package and PCB thermal data on page 20. Updated Section 5: Package and packing information on page 27.</td>
</tr>
<tr>
<td>10-Sep-2010</td>
<td>3</td>
<td>Updated Table 4: Electrical characteristics</td>
</tr>
<tr>
<td>20-Sep-2013</td>
<td>4</td>
<td>Updated Disclaimer.</td>
</tr>
</tbody>
</table>