Silicon identification

This errata sheet applies to the following STMicroelectronics BlueNRG-2 devices:

Table 1. Device identification

<table>
<thead>
<tr>
<th>Order code</th>
<th>Package</th>
<th>Identification information of the device(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlueNRG-232</td>
<td>QFN32 (5x5 mm)</td>
<td>0x00000100</td>
</tr>
<tr>
<td>BlueNRG-234</td>
<td>WLCSP34</td>
<td>0x00000112</td>
</tr>
<tr>
<td>BlueNRG-248</td>
<td>QFN48 (6x6 mm)</td>
<td>0x00000112</td>
</tr>
</tbody>
</table>

1. Value as read from register CKGEN_SOC - DIE_ID register (0x4090001C)
1. Limitations

1.1 Reduced operating voltage range when brown-out reset (BOR) is enabled

- **Part number affected:** the BlueNRG-232.
- **Description:** when brown-out reset (BOR) is enabled the operating voltage of the device is reduced to 2.1-3.6 V.
- **Impact:** brown-out reset (BOR) threshold prevents the device from being safely used below 2.1 V.
- **Workaround:** the application using brown-out reset (BOR) must restrict operating range to 2.1 V.

1.2 Brown-out reset (BOR) is not enabled by default

- **Part numbers affected:** the BlueNRG-232.
- **Description:** the device brown-out reset (BOR) is not enabled by default.
- **Impact:** brown-out reset (BOR) activation requires a software action.
- **Workaround:** brown-out reset (BOR) can be enabled by the software by setting the BOR_CONFIG=BOR_ON preprocessor option in STSW-BLUENRG1-DK (BlueNRG-1, BlueNRG-2 DK SW package).

1.3 Bit pattern could cause SWD interface not to work

- **Part numbers affected:** the BlueNRG-232.
- **Description:** During debug connection via serial wire debugger (SWD) port, if a specific bit pattern is sent/received to/from the SWDIO pin, the chip could not answer anymore subsequent SWD requests, thus breaking the connection. The bit pattern represented as 32 bit word is 0x39E6xxxx.
- **Impact:** using serial wire debugger (SWD) during development and/or production to program the Flash memory can cause some issues if the Flash memory image contains a particular pattern.
- **Workaround:** none.

1.4 Extended packet length limitation

- **Part numbers affected:** the BlueNRG-232.
- **Description:** the extended packet length for test mode packets does not work. User mode packets are not impacted.
- **Impact:** the certification can be only performed with the extended data length capability disabled.
- **Workaround:** none.

1.5 Aux ADC end of calibration interrupt flag cannot be cleared

- **Part numbers affected:** the BlueNRG-232.
- **Description:** the ADC end of calibration interrupt flag cannot be cleared, so it cannot be used. STATUS register includes end of calibration information in bit 2.
- **Impact:** no specific issue, since the interrupt of end of calibration does not have a practical use in the real application scenario.
- **Workaround:** since the end of calibration bit cannot be used, keep the interrupt mask bit associated disabled. There is no interest in such bit.

1.6 ADC WDOG status flag / interrupt cannot be cleared

- **Part numbers affected:** the BlueNRG-232.
- **Description:** Aux ADC WDOG status flag / interrupt cannot be cleared in a simple manner and makes the meaning almost not usable.
Impact: Aux ADC WDOG IRQ is not usable.
Workaround: none.

1.7 ADC does not work properly when a 32 MHz system clock is being used
Description: ADC IP does not run correctly with a system clock at 32 MHz.
Impact: ADC cannot be used reliably at 32 MHz system clock.
Workaround: the application, using a 32 MHz quartz and accessing ADC, should configure system clock to 16 MHz.

1.8 ADC SNR degradation
Description: ADC SNR may be randomly degraded depending on ADC clock generator start-up. Given the clock ratio, the occurrence of the degradation is statistically of ¼ on average.
Impact: SNR degradation is in the range of 6 dB, therefore the effective number of bit of the ADC is reduced by 1 bit.
Workaround: in case of static signal, multiple acquisitions and averaging allow ADC accuracy to be recovered.

1.9 ADC unwanted aliased signal after decimation filter
Description: the bandwidth of the anti-aliasing filter is slightly broader with respect to the signal bandwidth, potentially thus generating unwanted aliased signal after the decimation filter.
Impact: When a pure sine wave, generated in the [Fs/2; 1.25*Fs/2] range, is being sampled, user can notice an attenuated aliased sine wave in the [0.75*Fs/2; Fs/2] range.

Figure 1. Interpolation filter frequency response
In case of waveform acquisition, especially when audio speech and music is caught, no further degradation has been identified.

F_s is the sampling frequency on the output of the downsampling filter, described as ADC data rate in the datasheet.

Workaround: by choosing an appropriate oversampling factor (OSR), so that maximum frequency of the sampled signal is lower than $F_s/2$, aliasing may be avoided.

1.10 Incorrect system ROM table detected by debug connection

Part numbers affected: the BlueNRG-232.

Description: system ROM table address is incorrect and prevents a proper recognition as an ST device when connecting to a debugger.

Impact: the debug connection may work incorrectly and the part is not recognized as an ST device.

Workaround: none.
Revision history

Table 2. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-Jun-2018</td>
<td>1</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
1 Limitations .. 2

1.1 Reduced operating voltage range when brown-out reset (BOR) is enabled 2
1.2 Brown-out reset (BOR) is not enabled by default 2
1.3 Bit pattern could cause SWD interface not to work............................... 2
1.4 Extended packet length limitation .. 2
1.5 Aux ADC end of calibration interrupt flag cannot be cleared 2
1.6 ADC WDOG status flag / interrupt cannot be cleared......................... 2
1.7 ADC does not work properly when a 32 MHz system clock is being used 3
1.8 ADC SNR degradation .. 3
1.9 ADC unwanted aliased signal after decimation filter 3
1.10 Incorrect system ROM table detected by debug connection 4

Revision history .. 5