Introduction

The SPC58 family integrates a dedicated safety module to configure, control and execute self-test operations. This module is called Self-Test Control Unit (STCU2).

The user can configure the STCU2 in two ways. The first way uses the standard register access from user application. The second way exploits the Device Configuration Format (DCF) records.

This document explains the correct procedure to update a STCU configuration which has been already set by the specific DCF records in UTest memory. It focuses only on the second way to configure the STCU.

As a prerequisite the reader should be familiar with the functionality of STCU2, DCF, SSCM and UTest flash. For any details on these topics, refer to the reference manual.
Contents

1 Programming of STCU2 ... 3
2 How STCU2 configuration can be updated 4
3 Limitation and prerequisites 6
4 Conclusion .. 7
5 Reference documents 8
6 Acronyms ... 9
7 Revision history .. 10
1 Programming of STCU2

The normal flow to program STCU2 starts by providing the unlock keys and afterwards the rest of the configuration (left side of Figure 1).

Unlock keys are static keys. The user can find their values in the STCU chapter of the reference manual.

The STCU loads the configuration only if the user provides the correct unlock keys. If the unlock keys are not correct, the STCU ignores the following configuration.

The user passes these values to the STCU by writing them into the UTest sector of the Flash as DCF records as shown on the left side of Figure 1.

A problem occurs in case the user needs to change the STCU configuration. It means that the user has programmed at least a pair of unlock keys into UTest.

Given that the STCU2 considers only the first valid unlock keys and the following configuration, after the first acceptance of a configuration, STCU2 does not accept any other settings even if the provided unlock keys are correct. The SSCM reads the DCF incrementally from lower to higher addresses.

The right side of Figure 1 shows two different configurations of the STCU. Both configurations start with the correct unlock keys:
1. First configuration starts at address X
2. Second configuration starts at address Y

Even if the second configuration starts with the correct unlock keys, the STCU ignores it. As a result, the STCU runs the L/MBIST accordingly with the configuration that starts at address X.

Next section explains how to instruct the STCU to load the second configuration and discard the first one.

Figure 1. STCU unlock keys organization
2 How STCU2 configuration can be updated

As explained in the previous chapter, simply writing a second STCU configuration at different location does not cause any change in the configuration that the STCU loads, such as the first one.

Since the UTest sector is not erasable, if the user wants to change the STCU configuration he must invalidate the first configuration. It means invalidating the first instance of the unlock keys.

As a consequence, STCU2 reads unlock keys that are not correct and ignores the following configuration.

With reference to Figure 2, if the user invalidates the unlock keys at address X the STCU ignores the first configuration and loads the second one.

If needed, the user can repeat the process by adding a third configuration and invalidating the unlock keys at address Y and so forth.

Figure 2. Make STCU unlock key invalid

Invalidating means overwriting the unlock keys with incorrect keys. The user, however, does this operation carefully due to the ECC/EDC.

The ECC/EDC protects the UTest content. It means that the UTest contains not only the data, but also some redundant bits. The hardware can correct or detect some errors by comparing the data and the redundant bits. This process is transparent from the standpoint of the user who cannot access the redundant bits.

For this reason, if the user overwrites the unlock keys with random data, there is a risk that the ECC/EDC logic detects one or more not correctable errors. In case of this event the sample does not start.

Under those circumstances, the user must adopt specific values that do not cause the ECC/EDC errors. These values are visible in Table 1.
Table 1. Physical values of unlock and invalidation keys

<table>
<thead>
<tr>
<th></th>
<th>Key 1</th>
<th>Key 2</th>
<th>Complete DCF key 1</th>
<th>Complete DCF key 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unlock</td>
<td>0xD3FEA98B</td>
<td>0x2C015674</td>
<td>0xD3FEA98B00080008</td>
<td>0x2C01567400080008</td>
</tr>
<tr>
<td>Invalidation</td>
<td>0xD3BCA98B</td>
<td>0x28011674</td>
<td>0xD3BCA98B00080008</td>
<td>0x2801167400080008</td>
</tr>
</tbody>
</table>
3 Limitation and prerequisites

These invalidation keys are effective only if unlock keys are aligned at 128 bits, otherwise the ECC must be computed explicitly for given data.

The user adopts the invalidation keys only in case valid unlock keys are saved in UTest and a new configuration is applied.

Invalidation keys must be written at exact positions of unlock keys which means overwrite the unlock keys.
4 Conclusion

The update of STCU2 configuration is possible even if there are strict rules which the user must consider.

If the user follows these rules this is no a risky operation. In addition, change of STCU2 configuration is an exceptional state which occurs mainly during developing phase and not in final application.
5 Reference documents

SPC58NE84C3, SPC58NE84E7, SPC58EG84C3 reference manuals, Rev2, Feb 2016
6 Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>STCU2</td>
<td>Self-test control unit</td>
</tr>
<tr>
<td>DCF</td>
<td>Device configuration format</td>
</tr>
<tr>
<td>SSCM</td>
<td>System status and configuration module</td>
</tr>
</tbody>
</table>
7 Revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-Sept-2016</td>
<td>1</td>
<td>Initial release</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved