Introduction

This document describes the software environment recommendations required to build an application using the STM32F334 discovery kit (32F3348DISCOVERY).

The document provides guidelines to user how to build and run a sample example and how to create and build his own application. It has the following structure:

The first chapter presents software and hardware requirements (some toolchains supporting the STM32 families, ST-LINK/V2-1 installation and firmware package presentation).

The second chapter provides step by step guideline on how to execute and debug an application example using some toolchains:

- IAR Embedded Workbench® for ARM® (EWARM) by IAR Systems®
- Microcontroller development kit for ARM® (MDK-ARM) by Keil®
- TrueSTUDIO® by Atollic.

Although this user manual does not cover all the topics relevant to software development environment, it demonstrates the first basic steps necessary to get started with the compilers/debuggers and includes references for complementary information.
Contents

1 System requirements ... 5

2 IDEs supporting STM32 Families 6

3 ST-LINK/V2-1 installation ... 7

4 Firmware package ... 8

5 Executing and debugging firmware using software toolchains 9
 5.1 EWARM toolchain ... 9
 5.2 MDK-ARM toolchain ... 11
 5.3 TrueSTUDIO® toolchain 14

6 SW toolchains helpful references and links 17

7 Revision history ... 18
List of tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Useful links</td>
<td>6</td>
</tr>
<tr>
<td>Table 2</td>
<td>References and links</td>
<td>17</td>
</tr>
<tr>
<td>Table 3</td>
<td>Document revision history</td>
<td>18</td>
</tr>
</tbody>
</table>
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hardware environment</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Package contents</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>IAR embedded workbench IDE</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>EWARM project successfully compiled</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Download and debug button</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>IAR Embedded Workbench® debugger screen</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Go button</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>uVision5 IDE</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>MDK-ARM project successfully compiled</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>Start/Stop Debug Session button</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>MDK-ARM debugger screen</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>Run button</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>TrueSTUDIO® workspace launcher dialog box</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>Atollc TrueSTUDIO® import source select dialog box</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>Atollc TrueSTUDIO® import projects dialog box</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>TrueSTUDIO® project successfully compiled</td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td>TrueSTUDIO® project successfully compiled</td>
<td>16</td>
</tr>
</tbody>
</table>
1 System requirements

Before running your application, you should:

1. Install your preferred Integrated Development Environment (IDE)
2. ST-LINK/V2-1 driver will be installed automatically. In case of problem, you can proceed with manual installation of the driver from toolchains install directory (further details are available in Section 2).
4. Establish the connection with the STM32F334 discovery board as following:

The above steps will be details in the coming sections.

To run and develop any firmware applications on your STM32F334 discovery board, the minimum requirements are as follows:

- Windows PC (XP, Vista, 7, 8)
- 'USB type A to Mini-B' cable, used to power the board (through USB connector CN1) from host PC and connect to the embedded ST-LINK/V2-1 for debugging and programming.
2 IDEs supporting STM32 Families

STM32 families of 32-bit ARM® Cortex®-M core-based microcontrollers are supported by a complete range of software tools. It encompasses traditional integrated development environments IDEs with C/C++ compilers and debuggers from major 3rd-parties (free versions up to 64KB of code, depending on partner), completed with innovative tools from STMicroelectronics.

The following table regroups general information about most used integrated development environments as well as the version supporting officially STM32F334 product.

<table>
<thead>
<tr>
<th>Toolchain</th>
<th>Company</th>
<th>Compiler</th>
<th>Version</th>
<th>Download link(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDK-ARM(2)</td>
<td>Keil®</td>
<td>ARMCC</td>
<td>5.01 and later</td>
<td>www.keil.com:
MDK-Lite (32Ko Code size limitation)</td>
</tr>
<tr>
<td>TrueSTUDIO®</td>
<td>Atollic®</td>
<td>GNUC</td>
<td>5.0.0 and later</td>
<td>www.atollic.com(1)
– 32Ko Limitation (8Ko on Cortex®-M0 and Cortex®-M1)
– 30 day Professional version (Trial)</td>
</tr>
</tbody>
</table>

1. Registration before download is required.
2. Device database is updated separately from MDK-ARM release.
3 ST-LINK/V2-1 installation

STM32F334 discovery board includes an ST-LINK/V2-1 embedded debug tool interface. The interface needs an ST-LINK/V2-1 dedicated USB driver to be installed. This driver is available at www.st.com searching for ST-LINK/V2-1 and is supported within software toolchains:

- IAR Embedded Workbench® for ARM® (EWARM)
 The toolchain is installed by default in the C:\Program Files\IAR Systems\Embedded Workbench x.x directory on the PC’s local hard disk.
 After installing EWARM, install the ST-LINK/V2-1 driver by running the ST-LINK_V2_USB.exe from [IAR_INSTALL_DIRECTORY]\Embedded Workbench x.x\arm\drivers\ST-LINK\ST-LINK_V2_USBdriver.exe

- Keil® Microcontroller Development Kit (MDK-ARM) toolchain
 The toolchain is installed by default in the C:\Keil directory on the PC’s local hard disk; the installer creates a start menu µVision4 shortcut.
 When connecting the ST-LINK/V2-1 tool, the PC detects new hardware and asks to install the ST-LINK_V2_USB driver. The “found new hardware wizard” appears and guides you through the steps needed to install the driver from the recommended location.

- Atollic TrueSTUDIO® STM32
 The toolchain is installed by default in the C:\Program Files\Atollic directory on the PC’s local hard disk.
 The ST-LINK_V2_USB.exe is installed automatically when installing the software toolchain.

Complementary information on the firmware package content and the STM32F334 discovery requirements are available on the Getting started with STM32Firmware.

Note: The embedded ST-LINK/V2-1 supports only SWD interface for STM32 devices.
4 Firmware package

The STM32F334 discovery kit firmware applications, demonstration and IPs examples are provided in one single package and supplied in one single zip file. The extraction of the zip file generates one folder, STM32F3348-Discovery_FW_VX.Y.Z, which contains the following subfolders:

Figure 2. Package contents

![Package contents diagram]

Template project: pre-configured project with empty main function to be customized. This is helpful to get start creating your own application based on the peripherals drivers.

Master workspace: assembly of all project available with this firmware package.

Peripheral examples: including set of examples for each peripheral ready to be run.
5 Executing and debugging firmware using software toolchains

5.1 EWARM toolchain

The following is the procedure for compiling/linking and executing an existing EWARM project.

Steps below can be applied to an already existing example, demonstration or template project included in STM32F334 discovery package that is available at www.st.com web site.

First of all, you need to go through firmware/readme.txt file which contains the firmware description and hardware/software requirements.

1. Open the IAR Embedded Workbench® for ARM (EWARM). Figure 3 shows the basic names of the windows referred to this document.

2. In the File menu, select Open and click Workspace to display the Open Workspace dialog box. Browse to select either an example or demonstration or template workspace file and click Open to launch it in the Project window.

3. In the Project menu, select Rebuild All to compile your project.

4. If your project is successfully compiled, the following window in Figure 4 is displayed.

![Figure 3. IAR embedded workbench IDE]

![Figure 4. EWARM project successfully compiled]
If you need to change his project settings (Include and preprocessor defines), he has just to go through project options:

- For include directories:
 Project>Options…>C/C++ compiler>
- For pre-processor defines:
 Project>Options…C/C++ compiler>pre-processor>

5. In the IAR Embedded Workbench IDE, from the Project menu, select Download and Debug or, alternatively, click the Download and Debug button the in toolbar, to program the flash memory and begin debugging.

![Figure 5. Download and debug button](image)

6. The debugger in the IAR embedded workbench can be used to debug source code at C and assembly levels, set breakpoints, monitor individual variables and watch events during the code execution.

![Figure 6. IAR Embedded Workbench® debugger screen](image)
To run your application, from the **Debug** menu, select **Go**. Alternatively, click the **Go** button in the toolbar to run your application.

![Go button](image)

Figure 7. Go button

5.2 **MDK-ARM toolchain**

1. Open Keil MDK-ARM Microcontroller development kit. *Figure 8* shows the basic names of the “Keil uVision5” windows referred to in this document.

![uVision5 IDE](image)

Figure 8. uVision5 IDE

2. In the **Project** menu, select **Open Project**... Browse to select either an example or demonstration or template project file and click **Open** to launch it in the Project window.

3. In the **Project** menu, select **Rebuild All target files** to compile your project.

4. If your project is successfully compiled, the following window in *Figure 9* is displayed.
Figure 9. MDK-ARM project successfully compiled

![Build Output](image)

Build target 'SysTick'
linking...
Program Size: Code=852 RO-data=460 RW-data=44 ZI-data=1024
".
SysTick\SysTick.axf" — 0 Error(s), 0 Warning(s).

If you need to change your project settings (Include and preprocessor defines), you need just to go through project options:

- For include directories’
 Project>Options for Target > C/C++ > Include Paths
- For pre-processor defines
 Project>Options for Target > C/C++ > Preprocessor symbols > Define

5. In the MDK-ARM IDE, from the Debug menu, select Start/Stop Debug Session or, alternatively, click the Start/Stop Debug Session button the in toolbar, to program the Flash memory and begin debugging.

Figure 10. Start/Stop Debug Session button
6. The debugger in the MDK-ARM can be used to debug source code at C and assembly levels, set breakpoints, monitor individual variables and watch events during the code execution.

![Figure 11. MDK-ARM debugger screen](image)

To run your application, from the **Debug** menu, select **Run**. Alternatively, click the **Run** button in the toolbar to run your application.

![Figure 12. Run button](image)
5.3 TrueSTUDIO® toolchain

1. Open Atollic TrueSTUDIO® for ARM product. The program launches and asks for the workspace location.

 Figure 13. TrueSTUDIO® workspace launcher dialog box

2. Browse to select a TrueSTUDIO workspace of either an example or demonstration or template workspace file and click OK to load it.

3. To load an existing project in the selected workspace, select Import from the File menu to display the Import dialog box.

4. In the Import window, open General, select existing projects into workspace and click next.

 Figure 14. Atollic TrueSTUDIO® import source select dialog box
5. Click Select root directory, browse to the TrueSTUDIO workspace folder and select

Figure 15. Atollic TrueSTUDIO® import projects dialog box

![Import Projects dialog box]

6. In the Projects panel, select the project and click Finish.

7. In the Project Explorer, select the project, open the Project menu, and click build Project.

8. If your project is successfully compiled, the following messages will be displayed on the Console window.

Figure 16. TrueSTUDIO® project successfully compiled

![Console window with build messages]

If you need to change the project settings (Include directories and preprocessor defines), you need just to go through Project>Properties, select C/C++ Build>Settings from the left panel:

- For Include directories
 C Compiler>Directories>Include path

- For pre-processor defines
 C Compiler>Symbols> Defined symbols
9. To debug and run the application, select the project in the **Project Explorer** and press F11 to start a debug session.

In the **Project Explorer**, select the project and press F11 to start a debug session (see **Figure 17**).

Figure 17. TrueSTUDIO® project successfully compiled

The debugger in the Atollic TrueSTUDIO can be used to debug source code at C and assembly levels, set breakpoints, monitor individual variables and watch events during the code execution.

To run your application, from the run menu, select Resume, or alternatively click the resume button in the toolbar.
6 SW toolchains helpful references and links

The following table regroups useful references about integrated development environments described in this document:

<table>
<thead>
<tr>
<th>Toolchain</th>
<th>Download links</th>
</tr>
</thead>
<tbody>
<tr>
<td>EWARM</td>
<td>www.iar.com</td>
</tr>
<tr>
<td>MDK-ARM</td>
<td>www.keil.com</td>
</tr>
<tr>
<td>TrueSTUDIO®</td>
<td>www.atollic.com</td>
</tr>
</tbody>
</table>
Revision history

Table 3. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-June-2014</td>
<td>1</td>
<td>initial release</td>
</tr>
</tbody>
</table>
Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com