
August 2016 DocID14024 Rev 4 1/39

1

UM0470
User manual

STM8 SWIM communication protocol and debug module

Introduction

This manual is addressed to developers who build programming, testing or debugging tools
for the STM8 8-bit MCUs family. This document explains the debug architecture of the
STM8 core.

The STM8 8-bit MCUs debug system includes two modules:

• DM: debug module

• SWIM: single wire interface module

Related documentation:

How to program STM8S and STM8A Flash program memory and data EEPROM (PM0051)

How to program STM8L and STM8AL Flash program memory and data EEPROM
(PM0054).

www.st.com

http://www.st.com

Contents UM0470

2/39 DocID14024 Rev 4

Contents

1 Debug system overview . 6

2 Communication layer . 7

3 Single wire interface module (SWIM) . 8

3.1 Operating modes . 8

3.2 SWIM entry sequence . 9

3.3 Bit format .11

3.3.1 High speed bit format . 11

3.3.2 Low speed bit format . 12

3.4 SWIM communication protocol . 13

3.5 SWIM commands . 14

3.5.1 SRST: system reset . 14

3.5.2 ROTF: read on-the-fly . 14

3.5.3 WOTF: write on-the-fly . 15

3.6 SWIM communication reset . 15

3.7 CPU register access . 16

3.8 SWIM communication in Halt mode . 16

3.9 Physical layer . 17

3.10 STM8 MCUs SWIM registers . 18

3.10.1 SWIM control status register (SWIM_CSR) . 18

3.10.2 SWIM clock control register (CLK_SWIMCCR) 19

4 Debug module (DM) . 20

4.1 Introduction . 20

4.2 Main features . 20

4.3 Debug . 22

4.3.1 Reset . 22

4.3.2 Breakpoints . 22

4.3.3 Abort . 22

4.3.4 Watchdog control . 22

4.3.5 Interaction with SWIM . 22

4.4 Breakpoint decoding table . 23

DocID14024 Rev 4 3/39

UM0470 Contents

3

4.5 Software breakpoint mode . 24

4.6 Timing description . 24

4.7 Abort . 24

4.8 Data breakpoint . 25

4.9 Instruction breakpoint . 25

4.10 Step mode . 25

4.11 Application notes . 27

4.11.1 Illegal memory access . 27

4.11.2 Forbidden stack access . 27

4.11.3 DM break . 27

4.12 DM registers . 28

4.12.1 DM breakpoint register 1 extended byte (DM_BKR1E) 28

4.12.2 DM breakpoint register 1 high byte (DM_BKR1H) 28

4.12.3 DM breakpoint register 1 low byte (DM_BKR1L) 28

4.12.4 DM breakpoint register 2 extended byte (DM_BKR2E) 29

4.12.5 DM breakpoint register 2 high byte (DM_BKR2H) 29

4.12.6 DM breakpoint register 2 low byte (DM_BKR2L) 29

4.12.7 DM control register 1 (DM_CR1) . 30

4.12.8 DM control register 2 (DM_CR2) . 31

4.12.9 DM control/status register 1 (DM_CSR1) . 32

4.12.10 DM control/status register 2 (DM_CSR2) . 33

4.12.11 DM enable function register (DM_ENFCTR) . 34

4.12.12 Summary of SWIM, DM and core register maps 35

Appendix A Description of the DM_ENFCTR register
for each STM8 product . 37

Revision history . 38

List of tables UM0470

4/39 DocID14024 Rev 4

List of tables

Table 1. SWIM command summary . 14
Table 2. CPU register memory mapping in STM8 MCUs . 16
Table 3. SWIM pin characteristics . 17
Table 4. Decoding table for breakpoint interrupt generation. 23
Table 5. STM8 MCU registers . 35
Table 6. Peripherals which are frozen by the bits of the DM_ENFCTR register

for each STM8 product . 37
Table 7. Document revision history . 38

DocID14024 Rev 4 5/39

UM0470 List of figures

5

List of figures

Figure 1. Debug system block diagram . 6
Figure 2. SWIM pin external connections . 7
Figure 3. SWIM activation sequence . 8
Figure 4. SWIM activation timing diagram . 9
Figure 5. SWIM entry sequence . 10
Figure 6. High speed bit format . 11
Figure 7. Low speed bit format . 12
Figure 8. Command format (host -> target) . 13
Figure 9. Data format (target -> host) . 13
Figure 10. Timings on the SWIM pin . 17
Figure 11. Debug module block diagram . 21
Figure 12. STM8 MCU instruction model . 24
Figure 13. STM8 Debug module stall timing . 24
Figure 14. STM8 DM data breaktiming . 25
Figure 15. STM8 DM instruction break timing . 25
Figure 16. STM8 DM step timing . 26

Debug system overview UM0470

6/39 DocID14024 Rev 4

1 Debug system overview

The STM8 MCUs debug system interface allows a debugging or programming tool to be
connected to the MCU through a single wire. This connection results in a bidirectional
communication based on an open-drain line and provides a non-intrusive read/write access
to RAM and peripherals during the program execution.

The block diagram is shown in Figure 1.

Figure 1. Debug system block diagram

The debug module uses the two internal clock sources present in the device:

• the low speed internal clock (LSI clock): usually in the range of 30 kHz to 200 kHz
depending on the product

• the high speed internal clock (HSI clock): usually in the range of 10 MHz to 25 MHz
depending on the device.

The clocks are automatically started when necessary.

DocID14024 Rev 4 7/39

UM0470 Communication layer

38

2 Communication layer

The SWIM is a single wire interface based on asynchronous, high sink (8 mA), open-drain,
bidirectional communication. While the CPU is running, the SWIM allows a non-intrusive
read/write accesses to be performed on-the-fly to the RAM and peripheral registers, for
debug purposes.

In addition, while the CPU is stalled, the SWIM allows read/write accesses to be performed
to any other part of the MCU’s memory space (data EEPROM and program memory).

The CPU registers (A, X, Y, CC, SP) can also be accessed. These registers are mapped in
the memory and can be accessed in the same way as any other memory addresses. It is
important to note that:

• Register, peripherals and memory can be accessed only when the SWIM_DM bit is set.

• When the system is in HALT, WFI or readout protection mode, the NO_ACCESS flag in
the SWIM_CSR register is set. In this case, it is forbidden to perform any accesses
because parts of the device may not be clocked and a read access could return
garbage or a write access might not succeed.

The SWIM can perform a MCU device software reset. The SWIM pin can also be used by
the MCU target application as a standard I/O port with some restrictions if the user also want
to use it for debug. The safest way is to provide a strap option on the application PCB.

Figure 2. SWIM pin external connections

Single wire interface module (SWIM) UM0470

8/39 DocID14024 Rev 4

3 Single wire interface module (SWIM)

3.1 Operating modes

After a power-on reset (powering of the device) the SWIM is reset and enters in its OFF
mode.

1. OFF: in this mode the SWIM pin must not be used as an I/O by the application. It is
waiting for the SWIM entry sequence or to be switched to I/O mode by the software
application.

2. I/O: this state is entered by the software application by setting the SWIM disable bit
(SWD) in the core configuration register (CFG_GCR). In this state, the user application
can use the SWIM pin as a standard I/O pin, the only drawback is that there is no way
to debug the functionality of this pin with the built-in debug capabilities.
In case of a reset, the SWIM goes back to OFF mode.

3. ACTIVE: this mode is entered when a specific sequence is detected on the SWIM pin
while it is in the OFF state. In this state, the SWIM pin is used by the host tool to control
the STM8 device with three commands: SRST (system reset), ROTF (read on-the-fly)
and WOTF (write on-the-fly).

Note: Please note that the SWIM can be set as ACTIVE and communicate while the device is in
RESET state (NRST pin forced low).

Figure 3. SWIM activation sequence

DocID14024 Rev 4 9/39

UM0470 Single wire interface module (SWIM)

38

3.2 SWIM entry sequence

After a POR (power on reset), and as long as the SWIM is in OFF mode, the SWIM pin is
sampled for entry sequence detection. In order to do this, the internal LSI (low speed RC -
resistor/capacitor) clock is automatically turned ON after the POR and remains forced ON
as long as the SWIM is in OFF mode.

If the register that forces the SWIM in I/O mode is written before the entry sequence is
finalized, the SWIM enters in I/O mode. Once the SWIM is ACTIVE, writing this bit has no
influence on communication and the SWIM interface remains in ACTIVE mode.

If an application uses the SWIM pin as standard I/O, it puts the SWIM interface in I/O mode
in the initialization section of the software code (typically, this is performed just after the
reset). However, even in this case, it is still possible to put the SWIM interface in ACTIVE
mode by forcing the RESET pin to 0 and keep it low for the duration of the SWIM entry
sequence.

As long as the SWIM is in OFF mode, the SWIM entry sequence is detected at any moment,
during reset or when the application is running.

If both the SWIM pin and the reset pin are multiplexed with I/Os, the way to enter the SWIM
in ACTIVE state is to power down the MCU device, power up and to maintain the reset until
the end of the SWIM entry sequence.

Figure 4. SWIM activation timing diagram

The SWIM activation is shown in Figure 4 and each segment of the diagram is described
below:

1. To make the SWIM active, the SWIM pin must be forced low during a period of 16 µs.

2. After this first pulse at 0, the SWIM detects a specific sequence to guarantee the
robustness in the SWIM active state entry. The SWIM entry sequence is: four pulses at
1 kHz followed by four pulses at 2 kHz. The frequency ratio is detected and allows the
SWIM entry. The ratio can be easily detected regardless of the internal LSI frequency
value. The waveform of the entry sequence is shown in Figure 5. Note that the
sequence starts and ends with the SWIM pin at 1.

3. After the entry sequence, the SWIM enters in SWIM active state, and the HSI oscillator
is automatically turned ON.

Single wire interface module (SWIM) UM0470

10/39 DocID14024 Rev 4

4. After this delay, the SWIM sends a synchronization frame to the host.

Synchronization frame description: a synchronization frame of 128 x SWIM clocks
periods with the SWIM line at 0 is sent out by the MCU device to allow the
measurement of the HSI by the debug host. An advanced debug host can re-calibrate
its clock to adapt to the frequency of the internal HSI RC oscillator.

5. Before starting a SWIM communication, the SWIM line must be released at 1 to
guarantee that the SWIM is ready for communication (at least 300 ns).

6. Write 0A0h in the SWIM_CSR:

- setting the bit 5 allows the whole memory range and the SRST command to be
accessed.

- setting the bit 7 masks the internal reset sources

7. Release the reset which starts the option byte loading sequence. Wait 1 ms for
stabilization.

8. Once the option byte loading has occurred and that the stabilization time is reached,
the CPU is in phase 8:

- STM8 is stalled and HSI = 16 Mhz (see STM8 datasheets for HSI clock accuracy)

- SWIM clock is at HSI/2 = 8 Mhz

- SWIM is active in low speed bit format (see Section 3.3.2)

9. After the HSI is calibrated internally, a copy of the factory calibration value is uploaded
from the option bytes and stored into the HSI calibration register at the RAM, then a
SWIM communication reset command can be generated to get the synchronization
frame again but with greater reliability than in step 4. Depending on the target context
since power on, the HSI clock could be not well calibrated in step 4, because at that
moment the HSI calibration register in the RAM is not yet initialized with the proper
value.

Figure 5. SWIM entry sequence

DocID14024 Rev 4 11/39

UM0470 Single wire interface module (SWIM)

38

3.3 Bit format

The bit format is a return-to-zero format, which allows a synchronization of every bit. Two
communication speeds are available. At SWIM activation, the low speed is selected, while
the high speed is selected by setting the HS bit in the SWIM_CSR register with the SWIM
protocol.

When entering the SWIM mode during the RESET phase, it is possible that the option bytes
have not yet been loaded from non volatile memory to their respective registers. The option
byte loading is triggered by any internal or external reset.

In order to ensure proper system behavior, the HS bit should not be set until the option byte
loading is finished. At the end of the option byte loading, the HSIT bit in the SWIM_CSR is
set by hardware.

3.3.1 High speed bit format

One bit is generated with ten SWIM clock pulses.

The bit format is:

• 2 pulses at ‘0’ followed by 8 pulses at ‘1’ for ‘1’ value.

• 8 pulses at ‘0’ followed by 2 pulses at ‘1’ for ‘0’ value.

When the SWIM receives a data packet, it will decode:

• ‘1’ when the number of consecutive samples at ‘0’ is less or equal to 4.

• ‘0’ when the number of consecutive samples at ‘0’ is greater or equal to 5.

Figure 6. High speed bit format

Single wire interface module (SWIM) UM0470

12/39 DocID14024 Rev 4

3.3.2 Low speed bit format

1 bit is generated with twenty-two SWIM clock pulses.

The bit format is:

• 2 pulses at ‘0’ followed by 20 pulses at ‘1’ for ‘1’ value.

• 20 pulses at ‘0’ followed by 2 pulses at ‘1’ for ‘0’ value.

When the SWIM receives a data packet, it will decode:

• ‘1’ when the number of consecutive samples at ‘0’ is less or equal to 8.

• ‘0’ when the number of consecutive samples at ‘0’ is greater or equal to 9.

Figure 7. Low speed bit format

DocID14024 Rev 4 13/39

UM0470 Single wire interface module (SWIM)

38

3.4 SWIM communication protocol

When in SWIM is in ACTIVE mode, the communication can be initiated either by the host or
by the device. Each byte or command is preceded by a 1-bit header in order to arbitrate if
both host and device initiate the communication at the same time.

The host header is ‘0’ in order to have the priority over the device in case of arbitration, due
to open-drain capability. The host can start the transfer only if there is no transfer ongoing.

Figure 8. Command format (host -> target)

Each command sent by the host is made of:

• 1 command (ROTF, WOTF or SWRST) made of:

Header: 1 bit at ‘0’

b2-b0: 3-bit command

pb: parity bit: XOR between all b(i)

ack:acknowledge (1 bit at ‘1’). The receiver must send the not-acknowledge
value if it has detected a parity error (NACK: not acknowledge = 1 bit at ‘0’),
or it is not yet ready.

• optionally several data packets (in case of WOTF) made of:

Header: 1 bit at ‘0’

b7-b0: 8-bit data

pb: parity bit sent after data. XOR between all b(i)

ack: acknowledge

Figure 9. Data format (target -> host)

Each data frame is made of:

Header: 1 bit at ‘1’

b7-b0: 8-bit data

pb: parity bit sent after data

ack: acknowledge

Single wire interface module (SWIM) UM0470

14/39 DocID14024 Rev 4

3.5 SWIM commands

The host can send a command when the line is idle or after each data byte from the device.
After sending the command, the host releases the line. When the SWIM is ready to answer
to the command, it initiates the transfer. If a new command from the host occurs while a
command is pending in SWIM, the pending command is canceled and the new command is
decoded, except in the case of WOTF.

Three commands are available. They are listed in Table 1.

3.5.1 SRST: system reset

Format: 1 command from host to target

Parameters:

None.

The SRST command generates a system reset only if the SWIM_CSR/SWIM_DM bit is set.

3.5.2 ROTF: read on-the-fly

Format: 1 command followed by the number of bytes to be read followed by the address on
three bytes.

Parameters:

N The 8 bits are the number of bytes to read (from 1 to 255)

@E/H/L: This is the 24-bit address to be accessed.

D[...]: These are the data bytes read from the memory space

If the host sends a NACK to a data byte, the device will send the same byte again.

If the SWIM_DM bit is cleared, the ROTF can only be done on the SWIM internal registers.

Table 1. SWIM command summary

Command Binary code

SRST 000

ROTF 001

WOTF 010

Reserved for future use
011

1xx

SRST

ROTF N @E @H @L D[@] D[@+N]

DocID14024 Rev 4 15/39

UM0470 Single wire interface module (SWIM)

38

3.5.3 WOTF: write on-the-fly

1 command followed by the number of bytes to be written followed by the address on three
bytes.

Parameters:

N The 8 bits are the number of bytes to write (from 1 to 255)

@E/H/L: This is the 24-bit address to be accessed.

D[...]: These are the data bytes to write in the memory space

If a byte D [i] has not been written when the following byte D [i+1] arrives, D [i+1] will be
followed by a NACK. In this case the host must send D [i+1] again until it is acknowledged.

For the last byte, if it is not yet written when a new command occurs, the new command will
receive a NACK and will not be taken into account.

If the SWIM_DM bit is cleared, the WOTF can only be done on the SWIM internal registers.

3.6 SWIM communication reset

In case of a problem during the communication, the host can reset the communication and
the ongoing command by sending 128 x SWIM clocks periods low on the SWIM pin. If the
SWIM logic detects that the SWIM pin is low for more than 64 x SWIM clocks periods, it will
reset the communication state machine and will switch the SWIM to low-speed mode
(SWIM_CSR.HS <- 0). This is done to allow a variation in the frequency of the internal RC
oscillator.

In response to this communication reset, the SWIM sends the synchronization frame which
is 128 x SWIM clock periods low on the DBG pin.

WOTF N @E @H @L D[@] D[@+N]

Single wire interface module (SWIM) UM0470

16/39 DocID14024 Rev 4

3.7 CPU register access

The CPU registers are mapped in the STM8 memory, and they can be read or written
directly using the ROTF and the WOTF SWIM commands. the write operations to the CPU
registers are committed only when the CPU is stalled.

To flush the instruction decode phase, the user must set the FLUSH bit in the DM
control/status register 2 (named DM_CSR2) after writing a new value in the program
counter (PCE, PCH, PCL) Refer to Section 4.12.10 on page 33) for more details.

3.8 SWIM communication in Halt mode

To maintain the communication link with the debug host, the HSI oscillator remains ON
when the MCU enters the Halt mode. This means that Halt mode power-consumption
measurements have no meaning when the SWIM is active.

In Halt mode, the user can access the SWIM module but not the DEBUG module. The
NO_ACCESS bit in the SWIM_CSR register is set when the system is in HALT, WFI or
readout protection mode. It means that in this case, no connection is accessible between
the SWIM module and the DEBUG module nor between the rest of the STM8 systems.

The OSCOFF bit in the SWIM_CSR register is used to switch off the HSI oscillator. In this
case, any access to the SWIM module is lost as long as the device is in Halt mode and that
the SWIM pin is high. The only way to recover the debug control is to induce a falling edge
on the SWIM pin: this will re-enable the HSI oscillator.

Table 2. CPU register memory mapping in STM8 MCUs

CPU register Memory location

A 7F00h

PCE 7F01h

PCH 7F02h

PCL 7F03h

XH 7F04h

XL 7F05h

YH 7F06h

YL 7F07h

SPH 7F08h

SPL 7F09h

CC 7F0Ah

DocID14024 Rev 4 17/39

UM0470 Single wire interface module (SWIM)

38

3.9 Physical layer

During the communication, the SWIM pin will be in pseudo-open drain configuration. The
SWIM pin in the device is capable of sinking 8 mA when it drives the line to 0. The external
pull-up on the SWIM line should be sized in a way that the maximum rise time tr of the
SWIM line is less than 1 sampling period of the bit (which is 100 ns +/- 4 %).

Figure 10. Timings on the SWIM pin

Table 3. SWIM pin characteristics

Parameter Symbol
Generic
formula

Timings for HSI = 10 MHz

LSI = 32 to 64 kHz

Min Max

Fall time on SWIM pin tf TBD - 50 ns

Rise time on SWIM pin tr TBD - 96 ns

Inter-bit time

(The time which SWIM pin
stays high between 2 bits)

tib TBD >0 -

Inter-frame time

(Time between end of a
frame and the next one)

tif TBD 0 -

Low time for a bit at 0
High speed: tb0 TBD 768 ns 832 ns

Low speed: tb0 TBD 1.6 µs 2.4 µs

Low time for a bit at 1

(high speed)

High speed: Tb1 TBD 192 ns 208 ns

Low speed: Tb1 TBD 150 ns 250 ns

Injected current on SWIM
pin

- TBD - 8 mA

Single wire interface module (SWIM) UM0470

18/39 DocID14024 Rev 4

3.10 STM8 MCUs SWIM registers

3.10.1 SWIM control status register (SWIM_CSR)

Address: 7F80h

Reset value: 00h

This register is reset only by a power on reset or by a SWIM SRST command if the RST
bit =1 in the SWIM_CSR register.

7 6 5 4 3 2 1 0

SAFE_MASK NO_ACCESS SWIM_DM HS OSCOFF RST HSIT PRI

rw r rw rw rw rw r rw

Bit 7

SAFE_MASK: Mask internal RESET sources

This bit can be read or written through the SWIM only. It cannot be accessed through
the STM8 bus. It includes the watchdog reset.
0: Internal reset sources are not masked
1: Internal reset sources are masked.

Bit 6

NO_ACCESS: Bus not accessible

This bit can be read through the SWIM only, to determine if the bus is accessible or
not. It is set automatically if the device is in HALT, WFI or readout protection mode.
0: Bus is accessible
1: Bus is not accessible
Caution: Depending on the SWIM revision, in some devices, the NO_ACCESS bit
indicates only that the device is in HALT mode.

Bit 5

SWIM_DM: SWIM for debug module

This bit can be read or written to 1 through the SWIM only. It cannot be accessed
through the STM8 bus.
0: The SWIM can access only the SWIM_CSR register. The SWIM reset command
has no effect
1: The whole memory range can be accessed with the ROTF and WOTF commands.
The SRST command generates a reset.

Bit 4

HS: High speed

This bit can be read or written through the SWIM only. It cannot be accessed through
the STM8 bus.
0: Low speed bit format
1: High speed bit format
The speed change occurs when the communication is IDLE. It is reset by the SWIM
communication reset condition as described in Section 3.6.

Bit 3

OSCOFF: Oscillators off control bit

This bit can be read or written through the SWIM only. It cannot be accessed through
the STM8 bus.
0: HSI oscillator remains ON in Halt mode
1: HSI oscillator is not requested ON in Halt mode

DocID14024 Rev 4 19/39

UM0470 Single wire interface module (SWIM)

38

3.10.2 SWIM clock control register (CLK_SWIMCCR)

Address Offset: 50CDh (product dependent)

Reset value: xxxx 0000 (x0h)

Bit 2

RST: SWIM reset control bit

This bit can be read or written through the SWIM only. It cannot be accessed through
the STM8 bus.
0: SWIM is not reset when a SRST command occurs.
1: SWIM is reset when a SRST command occurs. The SWIM will re-enter OFF mode.

Bit 1

HSIT: High speed internal clock is trimmed
This bit is read only through SWIM only. It cannot be accessed through STM8 bus. It is
set when the HSIT bit is set in the core configuration register and reset by an external
reset.
0: High speed internal clock is not trimmed, the SWIM must remain in low speed
mode.
1: High speed internal clock is trimmed, the SWIM high speed mode is allowed.

Bit 0

PRI: SWIM access priority

This bit can be read or written through the SWIM only. Usually the SWIM accesses to
system resources are non-intrusive, the SWIM having the lowest priority. This can be
overridden by setting this bit.
0: Non-intrusive access by the SWIM to system resources (low priority)
1: Intrusive access by the SWIM to system resources (SWIM has the priority, the CPU
is stalled).
Note: The SWD bit is located in the STM8 core configuration register. Refer to the
corresponding datasheet for information on this register

7 6 5 4 3 2 1 0

Reserved SWIMCLK

- rw

Bits 7:1 Reserved, must be kept cleared.

Bit 0

SWIMCLK SWIM clock divider

This bit is set and cleared by software.

0: SWIM clock is divided by 2 (recommended)

1: SWIM clock is not divided by 2 (not recommended as communication is less
reliable)

Note: this register is not present in some STM8 devices.

Debug module (DM) UM0470

20/39 DocID14024 Rev 4

4 Debug module (DM)

4.1 Introduction

The debug module (DM) allows the developer to perform certain debugging tasks without
using an emulator. For example, the DM can interrupt the MCU to break infinite loops or to
output the core context (stack) at a given point. The DM is mainly used for in-circuit
debugging.

4.2 Main features

• Two conditional breakpoints (such as break on instruction fetch, data read or write,
stack access)

• Software breakpoint control

• Step mode

• External stall capability on the WOTF command in the SWIM mode

• Watchdog and peripherals control

• DM version identification capability

• Interrupt vector table selection

DocID14024 Rev 4 21/39

UM0470 Debug module (DM)

38

Figure 11. Debug module block diagram

Debug module (DM) UM0470

22/39 DocID14024 Rev 4

4.3 Debug

The DM registers can be read and written only through the SWIM interface. The STM8 core
has no access to these registers.

4.3.1 Reset

Once the SWIM is active and that the SWIM_DM bit is set in the SWIM_CSR register, a
‘data read’ breakpoint at the reset vector address is automatically set, due to the reset
values of the debug module registers. This breakpoint can be used to initialize the debug
session.

4.3.2 Breakpoints

The DM generates a stall to the core when a breakpoint is reached. When the processor is
stalled, the host can read or modify any address in memory. Access to the processor
registers is explained in Table 3.7: CPU register access on page 16.

To restart the program execution, the STALL bit in the DM_CSR2 must be cleared using the
WOTF command of the SWIM protocol.

4.3.3 Abort

To use the abort function, the host must write the STALL bit in the DM_CSR2 using the
SWIM WOTF command.

No interrupt is generated. The core is stalled in the current state. Using the SWIM
commands, the host can read and modify the status of the MCU. Use the procedure
described inSection 3.7: CPU register access if the CPU registers must be modified.

The host can restart the program execution by resetting the STALL bit using the SWIM
commands.

4.3.4 Watchdog control

Using the WDGOFF bit in the DM control register 1 (DM_CR1) (see Section 4.12.7 on page
30) the user can configure the window watchdog and the independent watchdog counters to
be stopped while the CPU is stalled by the debug module. This bit must be set before the
watchdogs are activated. If a watchdog is enabled by the hardware watchdog option bit, the
WDGOFF bit has no effect on it.

4.3.5 Interaction with SWIM

The SWIM sends the status bit which indicates if the SWIM is active or not. When the SWIM
is not active, the DM does not generate any break/stall request to the CPU.

DocID14024 Rev 4 23/39

UM0470 Debug module (DM)

38

4.4 Breakpoint decoding table

Table 4. Decoding table for breakpoint interrupt generation

DM_CR1
BREAK CONDITIONS

DM_CSR1

BC2 BC1 BC0 BIR BIW BK1F BK2F BRW

0 0 0 0 0 Disabled (RESET state) 0 0 x

0 0 0 0 1 Data Write on @=BK1 and Data=BK2L 1 0 0

0 0 0 1 0 Data Read on @=BK1 and Data=BK2L 1 0 1

0 0 0 1 1 Data R/W on @=BK1 and Data=BK2L 1 0 0/1

0 0 1 0 0 Instruction fetch BK1<=@<=BK2 1 0 x

0 0 1 0 1 Data Write on BK1<=@<=BK2 1 0 0

0 0 1 1 0 Data Read on BK1<=@<=BK2 1 0 1

0 0 1 1 1 Data R/W on BK1<=@<=BK2 1 0 0/1

0 1 0 0 0 Instruction fetch on @<= BK1 or BK2<=@ 1 0 x

0 1 0 0 1 Data Write on @<= BK1 or BK2<=@ 1 0 0

0 1 0 1 0 Data Read on @<= BK1 or BK2<=@ 1 0 1

0 1 0 1 1 Data R/W on @<= BK1 or BK2<=@ 1 0 0/1

0 1 1 X X Disabled 0 0 x

1 0 0 0 0 Instruction fetch on @=BK1 then on @=BK2 0 1 x

1 0 0 0 1 Data Write on @=BK1 or @=BK2 10 or 01 or 11 0

1 0 0 1 0 Data Read on @=BK1 or @=BK2 10 or 01 or 11 1

1 0 0 1 1 Data R/W on @=BK1 or @=BK2 10 or 01 or 11 0/1

1 0 1 0 0 Instruction fetch on @=BK1 or @=BK2 10 or 01 or 11 x

1 0 1 0 1 Instruction fetch on @=BK1 / Data Write on @=BK2 10 or 01 x-0

1 0 1 1 0 Instruction fetch on @=BK1 / Data Read on @=BK2 10 or 01 x-1

1 0 1 1 1 Instruction fetch on @=BK1 / Data R/W on @=BK2 10 or 01 x-0/1

1 1 0 X X Disabled 0 0 x

1 1 1 0 0
Data Write in Stack on @<=BK1 / Instruction fetch on

@=BK2
10 or 01 0-x

1 1 1 0 1 Data Write in Stack on @<=BK1 / Data Write on @=BK2 10 or 01 or 11 0

1 1 1 1 0 Data Write in Stack on @<=BK1 / Data Read on @=BK2 10 or 01 0-1

1 1 1 1 1 Data Write in Stack on @<=BK1 / Data R/W on @=BK2 10 or 01 or 11 0-0/1

Debug module (DM) UM0470

24/39 DocID14024 Rev 4

4.5 Software breakpoint mode

The software breakpoint mode is reserved for the debugging tools to insert breakpoints into
the user code by substituting a user instruction with a software break (reserved BKPT
instruction #8b).

The software breakpoint mode is enabled using the SWBKPE bit in the DM control/status
register 2 (DM_CSR2) (see Section 4.12.10 on page 33).

When a BKPT instruction is decoded, the CPU is stalled and the STALL and SWBKF bits
are set by hardware to indicate that a software breakpoint has occurred. To resume the
execution, the debugger must restore the user's instruction, then set the FLUSH bit and
clear the STALL bit.

4.6 Timing description

This paragraph defines when the debug module stalls the CPU when using the different
breakpoint sources.

• The STM8 MCU instruction can be modeled in time with an op-code/operand with a
FETCH, DECODE and EXECUTION phases as shown in Figure 12.

The timing information is based on these models.

Figure 12. STM8 MCU instruction model

4.7 Abort

The stall is generated immediately when writing the STALL bit in the DM_CSR2 register.

Figure 13. STM8 Debug module stall timing

DocID14024 Rev 4 25/39

UM0470 Debug module (DM)

38

4.8 Data breakpoint

A stall is generated when the SWIM is active, and after the end of the current instruction
execution.

Figure 14. STM8 DM data breaktiming

4.9 Instruction breakpoint

In the STM8 devices, with an instruction break, DM stalls the CPU before the selected
instruction execution (while the instruction is in the decode stage). See Figure 15.

Note: When the specified address does not correspond to a valid instruction address, no stall is
generated.

Figure 15. STM8 DM instruction break timing

4.10 Step mode

The STM8 CPU stall is activated before the instruction execution, in the first decode cycle of
the instruction. See Figure 16.

Debug module (DM) UM0470

26/39 DocID14024 Rev 4

Figure 16. STM8 DM step timing

Note: When the Step mode and the instruction break on the next instruction mode are both
enabled, both the STF and the BKxF flags are set. When the user clears the STALL bit, the
step function continues its normal operation.

DocID14024 Rev 4 27/39

UM0470 Debug module (DM)

38

4.11 Application notes

4.11.1 Illegal memory access

To verify if the program attempts to write or read in an illegal part of the memory (a reserved
area), select the “Data R/W on BK1<=@<=BK2” condition, where BK1 and BK2 are the
lower and upper addresses of the reserved memory.

4.11.2 Forbidden stack access

If part of the stack contains specific data or instructions that should not be overwritten, the
DM can be used to prevent the access to these locations. Select one of the “Data Write in
Stack on @<=BK1” conditions and set BK1 to the upper value where the specific data is
located in the stack. If the STM8 device tries to overwrite these values (after an interrupt or
a CALL), the DM will generate a break. The four possible associated conditions allow to
manage another breakpoint capability at the same time.

4.11.3 DM break

After a DM break, the CPU is stalled (through the EMU_Stall signal). While the CPU is
stalled, the SWIM can read/write any memory location or any memory mapped register. The
program can be continued from the breakpoint, by resetting the stall bit.

If a change of PC is needed, the SWIM must write the new PC value using the method
described in Section 3.7: CPU register access on page 16. In order to fetch the code from
the new PC address, the SWIM must set the FLUSH bit in the DM control/status register 2
(DM_CSR2) (refer to Section 4.12.10 on page 33) before resetting the STALL bit.

Debug module (DM) UM0470

28/39 DocID14024 Rev 4

4.12 DM registers

These registers are read/write only through the SWIM interface.

In this section, the following abbreviations are used:

4.12.1 DM breakpoint register 1 extended byte (DM_BKR1E)

STM8 Address: 7F90h

Reset value: 1111 1111 (FFh)

4.12.2 DM breakpoint register 1 high byte (DM_BKR1H)

Address: 7F91h

Reset value: 1111 1111 (FFh)

4.12.3 DM breakpoint register 1 low byte (DM_BKR1L)

Address: 7F92h

Reset value: 1111 1111 (FFh)

read/write (rw) The SWIM can read and write to these bits via the ROTF/WOTF commands.

read-only (r) The SWIM can only read these bits via the ROTF command.

7 6 5 4 3 2 1 0

BK1[23:16]

rw rw rw rw rw rw rw rw

Bits 7:0
BK1[23:16]: Breakpoint 1 extended byte value

This register is written by software to define the extended address bits of breakpoint 1.

7 6 5 4 3 2 1 0

BK1[15:8]

rw rw rw rw rw rw rw rw

Bits 7:0
BK1[15:8]: Breakpoint 1 high byte value

This register is written by software to define the higher 8 address bits of breakpoint 1.

7 6 5 4 3 2 1 0

BK1[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0
BK1[7:0]: Breakpoint 1 high byte value

This register is written by software to define the lower 8 address bits of breakpoint 1.

DocID14024 Rev 4 29/39

UM0470 Debug module (DM)

38

4.12.4 DM breakpoint register 2 extended byte (DM_BKR2E)

Address: 7F93h

Reset value: 1111 1111 (FFh)

4.12.5 DM breakpoint register 2 high byte (DM_BKR2H)

Address: 7F94h

Reset value: 1111 1111 (FFh)

4.12.6 DM breakpoint register 2 low byte (DM_BKR2L)

Address: 7F95h

Reset value: 1111 1111 (FFh)

7 6 5 4 3 2 1 0

BK2[23:16]

rw rw rw rw rw rw rw rw

Bits 7:0
BK2[23:16]: Breakpoint 2 extended byte value

This register is written by software to define the extended 8 address bits of breakpoint
2.

7 6 5 4 3 2 1 0

BK2[15:8]

rw rw rw rw rw rw rw rw

Bits 7:0
BK2[15:8]: Breakpoint 2 high byte value

This register is written by software to define the higher 8 address bits of Breakpoint 2.

7 6 5 4 3 2 1 0

BK2[7:0]

rw rw rw rw rw rw rw rw

Bits 7:0
BK2[7:0]: Breakpoint 2 high byte value

This register is written by software to define the lower 8 address bits of breakpoint 2.

Debug module (DM) UM0470

30/39 DocID14024 Rev 4

4.12.7 DM control register 1 (DM_CR1)

Address: 7F96h

Reset value: 0000 0000 (00h)

WDGOFF Reserved BC[2:0] BIR BIW Reserved

7 6 5 4 3 2 1 0

rw - rw rw rw rw rw -

Bit 7

WDGOFF Watchdog control enable.

This bit must be set or cleared by software before the watchdogs (WWDG and/or
IWDG) are activated. This bit has no effect if the hardware watchdog option is
selected.
0: Watchdog counters are not stopped while the CPU is stalled by DM
1: Watchdog counters are stopped while the CPU is stalled by DM

Bit 6 Reserved.

Bits 5:3
BC[2:0] Breakpoint control

These bits are set and cleared by software, they are used to configure the breakpoints
as shown in Table 4.

Bit 2

BIR Break on read control

This bit enables a breakpoint on a data read operation. It is set and cleared by
software.
0: No break on data read
1: Break on data read

Bit 1

BIW Break on write control

This bit enables a breakpoint on a data write operation. It is set and cleared by
software.
0: No break on data write
1: Break on data write

Bit 0 Reserved.

DocID14024 Rev 4 31/39

UM0470 Debug module (DM)

38

4.12.8 DM control register 2 (DM_CR2)

Address: 7F97h

Reset value: 0000 0000 (00h)

Reserved FV_ROM Reserved FV_RAM

7 6 5 4 3 2 1 0

rw rw

Bit 7:3 These bits are reserved and must be kept at 0.

Bit 2

FV_ROM Remap vector table in ROM.

This bit is set or cleared by software. It remaps the vector table to a ROM location
(product dependent) instead of program memory (usually 8000h).
0: Vector table is in the program memory area (8000h)
1: Vector table is in the ROM memory area (depends on the product).

Bit 1 Reserved, must be kept at 0.

Bit 0

FV_RAM Remap vector table in RAM

This bit is set or cleared by software. It remaps the interrupt vector table to a RAM
location instead of program memory (usually 8000h).
0: Vector table is in Program Memory area (8000h)
1: Vector table is in RAM memory area (address depends on the product).

Debug module (DM) UM0470

32/39 DocID14024 Rev 4

4.12.9 DM control/status register 1 (DM_CSR1)

Address: 7F98h

Reset value: 0001 0000 (10h)

7 6 5 4 3 2 1 0

Reserved STE STF RST BRW BK2F BK1F Reserved

rw rw r r r r

Bit 7 Reserved.

Bit 6

STE Step mode enable (read / write)

This bit is set and cleared by software. It enables the Step mode.
0: Step mode disabled
1: Step mode enabled

Bit 5

STF Step flag (read only)

This bit indicates that the stall was generated by the Step mode. It is set and cleared
by hardware. Writing to this bit does not change the bit value.
0: Step mode stall did not occur
1: Step mode stall occurred

Bit 4

RST Reset flag (read only)

This bit is set by hardware when the CPU was stalled by the debug module (DM), just
after reset. It is cleared by hardware when the STALL bit is cleared. Writing to this bit
does not change the bit value.
0: No reset occurred
1: A reset occurred

Bit 3

BRW Break on read/write flag (read only).

This bit gives the value of the read/write signal when a break occurs. Its value is not
significant for the instruction fetch breaks. It is set by hardware depending on the
breakpoint conditions (see Table 4: Decoding table for breakpoint interrupt generation
on page 23) and is cleared by hardware depending on the next breakpoint conditions.
Writing to this bit does not change the bit value.
0: Breakpoint on write
1: Breakpoint on read

Bit 2

BK2F Breakpoint 2 flag (read only).

This bit indicates that the DM stall was generated by breakpoint 2. It is set by
hardware depending on the control conditions (see Table 4: Decoding table for
breakpoint interrupt generation on page 23) and it is cleared by hardware when the
STALL bit is cleared. Writing to this bit does not change the bit value.
0: Breakpoint 2 did not occur
1: Breakpoint 2 occurred

Bit 1

BK1F Breakpoint 1 flag (read only).

This bit indicates that the DM interrupt was generated by breakpoint 1. It is set by
hardware depending on the control conditions (see Table 4: Decoding table for
breakpoint interrupt generation on page 23) and it is cleared by hardware when the
STALL bit is cleared. Writing to this bit does not change the bit value.
0: Breakpoint 1 did not occur
1: Breakpoint 1 occurred

Bit 0 Reserved

DocID14024 Rev 4 33/39

UM0470 Debug module (DM)

38

4.12.10 DM control/status register 2 (DM_CSR2)

Address: 7F99h

Reset value: 0000 0000 (00h)

Reserved SWBRK SWBKF STALL Reserved FLUSH

Reserved. it must be kept at 0

FLUSH Flush decode

7 6 5 4 3 2 1 0

rw r r rw

Bits 7:6 Reserved. It must be kept at 0

Bit 5

SWBKE Software breakpoint control bit (read/write)

This bit is used to enable/disable the software breakpoint capability with NOP
instruction
0: DM does not generate any event when NOP(SW BRK) instruction is fetched by the
CPU
1: DM generates an event (CPU stalled in SWIM mode) when a software break
instruction is fetched by the CPU.

Bit 4

SWBKF Software breakpoint status bit (read only)

This flag is set when the CPU executes the software break instruction.
0: No software break instruction detected.
1: Software break instruction detected. This bit is cleared when the STALL bit is
cleared.

Bit 3

STALL CPU stall control bit (read/write only in SWIM mode)

This bit is used to stall the CPU. This bit is kept cleared if the device is not in SWIM
mode.
This bit is set by WOTF command to generate an ABORT equivalent command.
It is also set by an DM trap interrupt event.
This bit is cleared by WOTF command to re-start the CPU.
0: CPU runs normally
1: CPU is stalled

Bit: 2:1

Bit: 10
This bit is set by software to flush the instruction decode phase after a PC
modification. It is cleared by hardware when the flush is completed.
0: Default status
1: Flush decode

Debug module (DM) UM0470

34/39 DocID14024 Rev 4

4.12.11 DM enable function register (DM_ENFCTR)

Address: 7F9Ah

Reset Value: 1111 1111 (FFh)

See Appendix A for a full description of the DM_ENFCTR register.

7 0

ENFCT7 ENFCT6 ENFCT5 ENFCT4 ENFCT3 ENFCT2 ENFCT1 ENFCT0

rw rw rw rw rw rw rw rw

Bits 7:0

ENFCTx Enable function

This bit is set and cleared by software. it allows to freeze a particular function of a
peripheral when the core is stalled. The ENFCTx bit definitions are product
dependent.
0: Function is frozen when the CPU is stalled by a DM
1: Function is active

DocID14024 Rev 4 35/39

UM0470 Debug module (DM)

38

4.12.12 Summary of SWIM, DM and core register maps

Table 5. STM8 MCU registers

STM8
address

Register
name

7 6 5 4 3 2 1 0

7F00h
A

Reset value
A7
0

A6
0

A5
0

A4
0

A3
0

A2
0

A1
0

A0
0

7F01h PCE(1) PC23 PC22 PC21 PC20 PC19 PC18 PC17 PC16

7F02h PCH(1) PC15 PC14 PC13 PC12 PC11 PC10 PC9 PC8

7F03h PCL(1) PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

7F04h
XH

Reset value
X15

0
X14

0
X13

0
X12

0
X11

0
X10

0
X9
0

X8
0

7F05h
XL

Reset value
X7
0

X6
0

X5
0

X4
0

X3
0

X2
0

X1
0

X0
0

7F06h
YH

Reset value
Y15

0
Y14

0
Y13

0
Y12

0
Y11

0
Y10

0
Y9
0

Y8
0

7F07h
YL

Reset value
Y7
0

Y6
0

Y5
0

Y4
0

Y3
0

Y2
0

Y1
0

Y0
0

7F08h SPH(1) SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8

7F09h SPL(1) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0

7F0Ah
CC

Reset value
V
0

-
0

I1
1

H
0

I0
1

N
0

Z
0

C
0

7F80h
SWIM_CSR
Reset value

SAFE_MASK
0

NO_ACCES
S
0

SWIM_D
M
0

HS
0

OSCOFF
0

RST
0

HSIT
0

PRI
0

 7F90h
DM_BK1RE
Reset value

BK1R23
1

BK1R22
1

BK1R21
1

BK1R20
1

BK1R19
1

BK1R18
1

BK1R17
1

BK1R16
1

7F91h
DM_BK1RH
Reset value

BK1R15
1

BK1R14
1

BK1R13
1

BK1R12
1

BK1R11
1

BK1R10
1

BK1R9
1

BK1R8
1

7F92h
DM_BK1RL
Reset value

BK1R7
1

BK1R6
1

BK1R5
1

BK1R4
1

BK1R3
1

BK1R2
1

BK1R1
1

BK1R0
1

7F93h
DM_BK2RE
Reset value

BK2R23
1

BK2R22
1

BK2R21
1

BK2R20
1

BK2R19
1

BK2R18
1

BK2R17
1

BK2R16
1

7F94h
DM_BK2RH
Reset value

BK2R15
1

BK2R14
1

BK2R13
1

BK2R12
1

BK2R11
1

BK2R10
1

BK2R9
1

BK2R8
1

7F95h
DM_BK2RL
Reset value

BK2R7
1

BK2R6
1

BK2R5
1

BK2R4
1

BK2R3
1

BK2R2
1

BK2R1
1

BK2R0
1

7F96h
DM_CR1

Reset value
WDGOFF

0
Reserved

0
BC2

0
BC1

0
BC0

0
BIR

0
BIW

0

Reserve
d
0

7F97h
DM_CR2

Reset value
Reserved

FV_ROM
0

Reserved
0

FV_RAM
0

7F98h
DM_CSR1
Reset value

Reserved
0

STE
0

STF
0

RST
0

BRW
0

BK2F
0

BK1F
0

Reserve
d
0

Debug module (DM) UM0470

36/39 DocID14024 Rev 4

7F99h
DM_CSR2
Reset value

Reserved
0

Reserved
0

SWBKE
0

SWBKF
0

STALL
0

Res Reserved
0

FLUSH
0

7F9Ah
DM_ENFCTR
Reset value

ENFCT7
1

ENFCT6
1

ENFCT5
1

ENFCT4
1

ENFCT3
1

ENFCT2
1

ENFCT1
1

ENFCT0
1

1. The reset value for the SP and PC registers is product dependent. Refer to the device datasheet for more details

Table 5. STM8 MCU registers (continued)

STM8
address

Register
name

7 6 5 4 3 2 1 0

DocID14024 Rev 4 37/39

UM0470 Description of the DM_ENFCTR register for each STM8 product

38

Appendix A Description of the DM_ENFCTR register
for each STM8 product

Some peripherals can be frozen through the debug module during the debug and while
using the DM_ENFCTR register (address: 7F9Ah). Table 6 shows the peripherals which are
frozen by the bits (ENFCT0 to ENFCT7) of the DM_ENFCTR register.

Table 6. Peripherals which are frozen by the bits of the DM_ENFCTR register
for each STM8 product

DM_ENFCTR
register

STM8AF51A
STM8S207/208
(128 Kbyte die)

STM8AF616
STM8S105

(32 Kbyte die)

STM8AF51B
(256 Kbyte die)

STM8S103/903
(8 Kbyte die)

STM8L101
(8 Kbyte die)

STM8L15x
(32 Kbyte die)

Bit Peripheral

ENFCT0
Timer4/

System timer
Timer4/

System timer
Timer4/

System timer
Timer4/

System timer
I2C I2C

ENFCT1 Timer2 Timer2 Tmer2 Tmer2 Timer2 Timer2

ENFCT2 Timer3 Timer3 Tmer3 Not used Timer3 Timer3

ENFCT3 Timer1 Timer1 Tmer1 Timer1
-

bit not used
Timer1

ENFCT4
-

bit not used
-

bit not used
-

bit not used
-

bit not used
Timer4 Timer4

ENFCT5
-

bit not used
-

bit not used
Tmer5

-
bit not used

-
bit not used

DMA

ENFCT6
-

bit not used
-

bit not used
I2C2

-
bit not used

-
bit not used

RTC

ENFCT7 I2C I2C I2C I2C
-

bit not used
-

bit not used

Revision history UM0470

38/39 DocID14024 Rev 4

Revision history

Table 7. Document revision history

Date Revision Changes

15-Jan-2008 1 Initial release.

10-Dec-2009 2

Updated documentation references in Introduction.

Section 3.2: SWIM entry sequence: updated Figure 4 and
explanation.

Section 3.3: Bit format: replaced OBL bit with HSIT bit.

Added Appendix A.

06-Jun-2011 3

Introduction: updated titles of reference documents.

Updated name of ‘IOM’ bit to SWIM disable bit (SWD) in Section 3.1:
Operating modes, Figure 3, and SWIM control status register
(SWIM_CSR).

Updated name of ‘MCR’ register to ‘CFG_GCR’ register in
Section 3.1: Operating modes.

24-Aug-2016 4

Updated sections:

Section 3.2: SWIM entry sequence

Section 3.3: Bit format

Section 3.6: SWIM communication reset

Section 3.8: SWIM communication in Halt mode

Updated figures format:

Figure 1: Debug system block diagram

Figure 2: SWIM pin external connections

Figure 3: SWIM activation sequence

Figure 5: SWIM entry sequence

Figure 6: High speed bit format

Figure 7: Low speed bit format

Figure 8: Command format (host -> target)

Figure 9: Data format (target -> host)

Figure 11: Debug module block diagram

Figure 12: STM8 MCU instruction model

Figure 13: STM8 Debug module stall timing

Figure 14: STM8 DM data breaktiming

Figure 15: STM8 DM instruction break timing

Figure 16: STM8 DM step timing

DocID14024 Rev 4 39/39

UM0470

39

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

	1 Debug system overview
	Figure 1. Debug system block diagram

	2 Communication layer
	Figure 2. SWIM pin external connections

	3 Single wire interface module (SWIM)
	3.1 Operating modes
	Figure 3. SWIM activation sequence

	3.2 SWIM entry sequence
	Figure 4. SWIM activation timing diagram
	Figure 5. SWIM entry sequence

	3.3 Bit format
	3.3.1 High speed bit format
	Figure 6. High speed bit format

	3.3.2 Low speed bit format
	Figure 7. Low speed bit format

	3.4 SWIM communication protocol
	Figure 8. Command format (host -> target)
	Figure 9. Data format (target -> host)

	3.5 SWIM commands
	Table 1. SWIM command summary
	3.5.1 SRST: system reset
	3.5.2 ROTF: read on-the-fly
	3.5.3 WOTF: write on-the-fly

	3.6 SWIM communication reset
	3.7 CPU register access
	Table 2. CPU register memory mapping in STM8 MCUs

	3.8 SWIM communication in Halt mode
	3.9 Physical layer
	Figure 10. Timings on the SWIM pin
	Table 3. SWIM pin characteristics

	3.10 STM8 MCUs SWIM registers
	3.10.1 SWIM control status register (SWIM_CSR)
	3.10.2 SWIM clock control register (CLK_SWIMCCR)

	4 Debug module (DM)
	4.1 Introduction
	4.2 Main features
	Figure 11. Debug module block diagram

	4.3 Debug
	4.3.1 Reset
	4.3.2 Breakpoints
	4.3.3 Abort
	4.3.4 Watchdog control
	4.3.5 Interaction with SWIM

	4.4 Breakpoint decoding table
	Table 4. Decoding table for breakpoint interrupt generation

	4.5 Software breakpoint mode
	4.6 Timing description
	Figure 12. STM8 MCU instruction model

	4.7 Abort
	Figure 13. STM8 Debug module stall timing

	4.8 Data breakpoint
	Figure 14. STM8 DM data breaktiming

	4.9 Instruction breakpoint
	Figure 15. STM8 DM instruction break timing

	4.10 Step mode
	Figure 16. STM8 DM step timing

	4.11 Application notes
	4.11.1 Illegal memory access
	4.11.2 Forbidden stack access
	4.11.3 DM break

	4.12 DM registers
	4.12.1 DM breakpoint register 1 extended byte (DM_BKR1E)
	4.12.2 DM breakpoint register 1 high byte (DM_BKR1H)
	4.12.3 DM breakpoint register 1 low byte (DM_BKR1L)
	4.12.4 DM breakpoint register 2 extended byte (DM_BKR2E)
	4.12.5 DM breakpoint register 2 high byte (DM_BKR2H)
	4.12.6 DM breakpoint register 2 low byte (DM_BKR2L)
	4.12.7 DM control register 1 (DM_CR1)
	4.12.8 DM control register 2 (DM_CR2)
	4.12.9 DM control/status register 1 (DM_CSR1)
	4.12.10 DM control/status register 2 (DM_CSR2)
	4.12.11 DM enable function register (DM_ENFCTR)
	4.12.12 Summary of SWIM, DM and core register maps
	Table 5. STM8 MCU registers (continued)

	Appendix A Description of the DM_ENFCTR register for each STM8 product
	Table 6. Peripherals which are frozen by the bits of the DM_ENFCTR register for each STM8 product

	Revision history
	Table 7. Document revision history

