UM2073
augmented User manual

STM32 LoRa® Expansion Package for STM32Cube

Introduction

This user manual describes the I-CUBE-LRWAN LoRa® Expansion Package
implementation on the STM32L0, STM32L1 and STM32L4 Series. This document also
explains how to interface with the LoRaWAN® to manage the LoRa wireless link.

LoRa is a type of wireless telecommunication network designed to allow long-range
communications at a very low bit-rate and enabling long-life battery-operated sensors.
LoRaWAN defines the communication and security protocol that ensures the interoperabilit
with the LoRa network. The LoRa Expansion Package is compliant with the LoRa Alliance
specification protocol named LoRaWAN.

The I-CUBE-LRWAN main features are the following:
¢ Integration-ready application

e Easy add-on of the low-power LoRa solution

e Extremely-low CPU load

¢ No latency requirements

e Small STM32 memory footprint

e Low-power timing services provided

The I-CUBE-LRWAN Expansion Package is based on the STM32Cube HAL drivers (see
Section 2).

This user manual provides customer application examples on NUCLEO-L0O53RS,
NUCLEO-L0O73RZ, NUCLEO-L152RE and NUCLEO-L476RG using Semtech expansion
boards SX1276MB1MAS, SX1276MB1LAS, SX1272MB2DAS, SX1262DVK1DAS,
SX1262DVK1CAS, and SX1262DVK1BAS.

This document targets the following tools:

e P-NUCLEO-LRWAN1, STM32 Nucleo pack for LoRa technology

e P-NUCLEO-LRWAN2, STM32 Nucleo starter pack (USI®) for LoRa technology

e P-NUCLEO-LRWAN3, STM32 Nucleo starter pack (RisingHF) for LoRa technology

e B-L072Z-LRWAN1, STM32 Discovery kit embedding the CMWX1ZZABZ-091 LoRa
module (Murata)

¢ |-NUCLEO-LRWAN1, LoRa expansion board for STM32 Nucleo, based on the
WM-SG-SM-42 LPWAN module (USI) available in P-NUCLEO-LRWAN2

e LRWAN-NS1, expansion board featuring the RisingHF modem RHFOMOO03 available in P-
NUCLEO-LRWAN3

November 2019 UM2073 Rev 10 1/55

www.st.com

http://www.st.com

Contents uUmM2073

Contents
1 OVeIVIEW .. i 7
1.1 Acronyms and abbreviations o 7
1.2 References e 8
2 LoRa standardoverview¢iiiiiiiiiiii i 9
2.1 OV IV W . . e 9
22 Network architecture 10
221 End-device architecture 10
222 End-deviceclasses 10
223 End-device activation (joining) 12
224 Regional spectrum allocation 12
23 Network layer 13
2.3.1 Physical layer (PHY) 13
232 MAC sublayer 14
2.4 Message flow 14
241 End-device activation details (joining), 14
242 End-device data communication (Class A) 14
243 End-device class B mode establishment 17
2.5 Dataflow 18
3 I-CUBE-LRWAN middleware description 19
3.1 OVEIVIEBW . . 19
3.2 Features e 21
3.3 Architecture 22
3.4 Hardware related components 23
3.41 Radioreset e 23
3.4.2 SP Il 23
3.4.3 RTC . 23
3.4.4 Inputlines 24
4 I-CUBE-LRWAN middleware programming guidelines 25
4.1 Middleware initialization 25
4.2 Middleware MAC layer functions 25

2/55 UM2073 Rev 10 ‘Yl

UM2073 Contents
421 MCPS services 25

422 MLME Services e 26

423 MIB SErVIiCEeS i 26

4.3 Middleware MAC layercallbacks 26
4.3.1 MCPS L 26

4.3.2 MLME . 27

4.3.3 MIB . 27

43.4 Battery level e 27

4.4 Middleware MAC layertimers i . 27
4.41 Delay RXWINdOW 27

442 Delay for Tx frame transmission 27

443 DelayforRxframe i i 28

4.5 Middleware utility functions 28
451 Timer server APIs description 28

452 Low-power functions 28

45.3 Systemtimefunctions 29

454 Trace functions 30

45.5 Queuing functions 31

4.6 Emulated secure-element 32
4.7 Middleware End_Node application function 33
4.7.1 LoRa End_Node initialization 37

4.7.2 LoRa End_Node Join request entry point 38

4.7.3 LoRaEnd-Node start Tx 38

4.7.4 Request End-Node Join Status 38

475 Sendanuplinkframe 38

4.7.6 Request the current network time 38

4.7.7 Request the next beacontiming 39

4.7.8 Switch classrequest 39

4.7.9 Get End-devicecurrentclass 39

4710 Requestbeaconacquisition 39

4.7.11 Send unicast ping slot info periodicity 39

4.8 LIB End_Node application callbacks 40
4.8.1 Current battery level 40

4.8.2 Currenttemperaturelevel 40

4.8.3 Boardunique ID 40

48.4 Boardrandomseed 40

m UM2073 Rev 10 3/55

Contents UM2073
48.5 Make Rx frame 40

4.8.6 Request class mode switching 40

4.8.7 End_Node class mode change confirmation 41

4.8.8 Send adummy uplinkframe 41

5 Example description i e 42
5.1 Single MCU end-device hardware description 42

5.2 Split end-device hardware description (two-MCUs solution) 43

5.3 Package description 45

54 End_Node application 46

5.4.1 Activation methods and keys 46

5.4.2 Debugswitch 46

543 Sensorswitch 47

55 PingPong application description 47

5.6 AT _Slave application description 48

5.7 AT_Master application description 48

58 FUOTA application description 49

6 System performances e e 50
6.1 Memory footprints 50

6.2 Real-time constraints 50

6.3 Power consumption 51

7 Revision history i e, 53
4/55 UM2073 Rev 10 ‘W

UM2073 List of tables
List of tables
Table 1. List of acronyms and abbreviations 7
Table 2. LoRaclassesintended usage. 9
Table 3. LoRaWAN regional spectrum allocation. 12
Table 4. Middleware initialization function 25
Table 5. MCPS services function e 25
Table 6. MLME services function e 26
Table 7. MIB services fUNCHIONS 26
Table 8. MCPS pPrimitiVeS e e 26
Table 9. MLME primitive e 27
Table 10. Battery level function e 27
Table 11. Delay RXfunclions e e e 27
Table 12. Delay for Tx frame transmission function 27
Table 13. Delay for Rx frame function 28
Table 14. Timerserver funCtions e e 28
Table 15. Low-power fUNCtioNs. e e e 28
Table 16. Systemtime functions. e 29
Table 17. Trace funClions 30
Table 18. Middleware queuing functions i 31
Table 19. Secure-element functions. 32
Table 20. LoRa class A initialization function. 37
Table 21. LoRa End_Node Joinrequestentry point. 38
Table 22. LoRa End-Node start TX. e 38
Table 23. End-Node Join status 38
Table 24. Sendanuplink frame. 38
Table 25. Currentnetwork time 38
Table 26. Nextbeacon timing 39
Table 27. Switch class request e 39
Table 28. Get End-Device current class i 39
Table 29. Request beacon acquisition. 39
Table 30. Unicast ping slot periodicity 39
Table 31. Current battery level function 40
Table 32. Current Temperature function. 40
Table 33. Board unique ID function e 40
Table 34. Board random seed function. 40
Table 35. Make Rxframe 40
Table 36. LoRa HasJoined function 40
Table 37. End_Node class mode change confirmation function. 41
Table 38. Sendadummy uplinkframe. e 41
Table 39. Nucleo-based supported hardware. 42
Table 40. LoRa radio expansion board characteristics. 42
Table 41. STM32L0Oxx IRQ priorities.t e e 43
Table 42. Switch options for the application's configuration. 47
Table 43. BSP programming guidelines 49
Table 44. Memory footprint values for End_Node application 50
Table 45. Documentrevision history 53
Kys UM2073 Rev 10 5/55

List of figures UM2073

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.

6/55

Network diagram. 10
TX/Rx time diagram (Class A) e e 11
Tx/Rx time diagram (Class B). e e 11
Tx/Rx time diagram (Class C). i e e e 12
LORaAWAN layers e e e e 13
Message sequence chart for joining (MLME primitives). 14
Message sequence chart for confirmed-data (MCPS primitives) 15
Message sequence chart for unconfirmed-data (MCPS primitives) 16
MSC MCPS class B primitives e e 17
Data flow. 18
Projectfiles structure e 20
Main design of the firmware 22
LoRaMacCrypto module design 32
Operation model 34
LoRa state behavior e 35
LoRa class B system state behavior. 37
Concept for splitend-device solution 44
[FCUBE-LRWAN Structure e e 45
PingPoNg setup 48
Rx/Tx time diagram. e 50
STMB32L0 current consumption againsttime 52

3

UM2073 Rev 10

UM2073

Overview

1.1

3

Overview

The I-CUBE-LRWAN Expansion Package for STM32Cube runs on STM32 32-bit

microcontrollers based on the Arm®®) Cortex®-M processor.

Acronyms and abbreviations

Table 1. List of acronyms and abbreviations

arm

Term Definition
ABP Activation by personalization
APP Application
API Application programming interface
BSP Board support package
FSM Finite state machine
FUOTA Firmware update over the air
HAL Hardware abstraction layer
loT Internet of things
LoRa Long-range radio technology
LoRaWAN LoRa wide-area network
LPWAN Low-power, wide-area network
MAC Media access control
MCPS MAC common part sublayer
MIB MAC information base
MLME MAC sublayer management entity
MPDU MAC protocol data unit
OTAA Over-this-air activation
PLME Physical sublayer management entity
PPDU Physical protocol data unit
SAP Service access point
SBSFU Secure boot, secure firmware update

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

UM2073 Rev 10

7/55

Overview

UM2073

1.2

8/55

References

LoRa Alliance specification protocol named LoRaWAN version V1.0.3 - 2018, March -
Final - Released

IEEE Std 802.15.4TM - 2011. Low-Rate Wireless Personal Area Networks (LR-
WPANS)

LoRaWAN version 1.1 Regional Parameters - RevB - 2018, January - Released

LoRa Alliance Fragmented Data Block Transport over LoRaWAN Specification v1.0.0 —
2018, September — [TS-004]

LoRa Alliance Remote Multicast Setup over LoORaWAN Specification v1.0.0 -2018,
September — [TS-005]

LoRa Alliance Application layer clock synchronization over LoRaWAN Specification
v1.0.0 —2018, September — [TS-003]

Application note Integration Guide for the X-CUBE-SBSFU STM32Cube Expansion
Package — AN5056

Application note FUOTA I-CUBE-LRWAN — AN5411

3

UM2073 Rev 10

UM2073

LoRa standard overview

2

2.1

Note:

3

LoRa standard overview

Overview

This section provides a general overview of the LoRa and LoRaWAN recommendations,
focusing in particular on the LoRa end-device that is the core subject of this user manual.

LoRa is a type of wireless telecommunication network designed to allow long-range
communication at a very low bit-rate and enabling long-life battery-operated sensors.
LoRaWAN defines the communication and security protocol ensuring interoperability with

the LoRa network.

The LoRa Expansion Package is compliant with the LoRa Alliance specification protocol

named LoRaWAN.

The table below shows the LoRa class usage definition. Refer to Section 2.2.2 for further
details on these classes.

Table 2. LoRa classes intended usage

Class name Intended usage
— Battery-powered sensors or actuators with no latency constraint
A-Al — Most energy-efficient communication class
— Must be supported by all devices
— Battery-powered actuators
B - Beacon — Energy-efficient communication class for latency controlled downlink

— Based on slotted communication synchronized with a network beacon

C - Continuous

— Main powered actuators
— Devices that can afford to listen continuously
— No latency for downlink communication

While the physical layer of LoRa is proprietary, the rest of the protocol stack (LoRaWAN) is
kept open and its development is carried out by the LoRa Alliance.

UM2073 Rev 10 9/55

LoRa standard overview

UM2073

2.2

Network architecture

The LoRaWAN network is structured in a star of stars topology, where the end-devices are
connected via a single LoRa link to one gateway as shown in the figure below.

Figure 1. Network diagram

LoRa end-device

Pet

Gateway Network server Application server

tracking

Smoke
alarm

Trash [&
container,

Water meter /_jl..h?
|Vending machin;

Gas
monitoring

1

>~
o
"

0O

MSv43978V1

2.21

2.2.2

10/55

End-device architecture

The end-device is made of an RF transceiver (also known as radio) and a host STM32
MCU. The RF transceiver is composed of a modem and an RF up-converter. The MCU
implements the radio driver, the LoORaWAN stack and optionally the sensor drivers.

End-device classes

The LoRaWAN has several different classes of end-point devices, addressing the different
needs reflected in the wide range of applications.

Bi-directional end-devices - Class A - (all devices)

e Class A operation is the lowest power end-device system.

Each end-device uplink transmission is followed by two short downlink receive
windows.

Downlink communication from the server shortly after the end-device has sent an
uplink transmission (see Figure 2).

Transmission slot is based on the own communication needs of the end-device
(ALOHA-type protocol).

3

UM2073 Rev 10

UM2073

LoRa standard overview

3

Figure 2. TX/Rx time diagram (Class A)

Tx

~

RxDelay1

- -

Rx1

RxDelay2

Rx2

MSv41546V1

Bi-directional end-devices with scheduled receive slots - Class B - (beacon)

Mid power consumption
Class B devices open extra receive windows at scheduled times (see Figure 3).
In order for the end-device to open the receive window at the scheduled time, the

end-device receives a time-synchronized beacon from the gateway.

Figure 3. Tx/Rx time diagram (Class B)

|
| |
|
1
.
‘
‘
|

@

Period Ping

Beacon Period

RxDelay1 |
-

RxDelay2

»

A

T MSv41547v2

UM2073 Rev 10

11/55

LoRa standard overview

UM2073

2.2.3

224

12/55

Bi-directional end-devices with maximal receive slots - Class C - (continuous)

e Large power consumption

e End-devices of class C have nearly continuously open receive windows, only closed
when transmitting (see Figure 4).

Figure 4. Tx/Rx time diagram (Class C)

Tx

N
N

Rx2

\

Rx1

RxDelay1

A

o

RxDelay2

-~

Rx2

~
)

Extends Rx2 until next Tx

MSv41548V1

End-device activation (joining)

Over-the-air activation (OTAA)

The OTAA is a joining procedure for the LoRa end-device to participate in a LoRa network.
Both the LoRa end-device and the application server share the same secret key known as
AppKey. During a joining procedure, the LoRa end-device and the application server

exchange inputs to generate two session keys:

e anetwork session key (NwkSKey) for MAC commands encryption

e an application session key (AppSKey) for application data encryption

Activation by personalization (ABP)

In the case of ABP, the NwkSkey and AppSkey are already stored in the LoRa end-device
that sends the data directly to the LoRa network.

Regional spectrum allocation

The LoRaWAN specification varies slightly from region to region. The European, North
American and Asian markets have different spectrum allocations and regulatory
requirements (see the table below for more details).

Table 3. LoRaWAN regional spectrum allocation

Region Supported Band (MHz) Duty cycle (%) Out;():ér;:lc)mer
EU Y 868 <1 +14
EU Y 433 <1 +10
< 2 (BW < 250 kHz) or
us Y 915 <4 (BW 2250 kHz) +20
Transmission slot < 0.4 s

UM2073 Rev 10

S74

UM2073

LoRa standard overview

2.3

2.3.1

3

Table 3. LoRaWAN regional spectrum allocation (continued)

Region Supported Band (MHz) Duty cycle (%) Outl(a:érl;c))wer
CN N 779 <01 +10
AS Y 923 <1 +16
IN Y 865 No +20
KR Y 920 No +10
RU Y 868 <1 +16

Network layer

The LoRaWAN architecture is defined in terms of blocks, also called “layers”. Each layer is
responsible for one part of the standard and offers services to higher layers.

The end-device is at least made of one physical layer (PHY), that embeds the radio
frequency transceiver, a MAC sublayer providing access to the physical channel, and an
application layer (see the figure below).

Figure 5. LoRaWAN layers

L1
I 1

II

Physical medium (air interface)

MSv41549V1

Physical layer (PHY)

The physical layer provides two services:
e the PHY data service, that enables the Tx/Rx of physical protocol data units (PPDUs)

e the PHY management service, that enables the personal area network information
base (PIB) management

UM2073 Rev 10 13/55

LoRa standard overview UM2073

2.3.2

24

2.4.1

2.4.2

14/55

MAC sublayer

The MAC sublayer provides two services:

e The MAC data service, that enables the transmission and reception of MAC protocol
data units (MPDU) across the physical layer

e The MAC management service, that enables the PIB management

Message flow

This section describes the information flow between the N-user and the N-layer. The
request for service is done through a service primitive.

End-device activation details (joining)

Before communicating on the LoRaWAN network, the end-device must be associated or
activated following one of the two activation methods described in Section 2.2.3.

The message sequence chart (MSC) in the figure below shows the OTAA activation
method.

Figure 6. Message sequence chart for joining (MLME primitives)

End-device End-device Network Network
App layer MAC layer MAC layer App layer
MLME.Req
(join request) > Join request MLME.Ind
77777777777777777 q (join request)
5}
£
=
©
= MLME.Resp
&) -
<§((join accept)

Join response (ask
MLME.Conf [ponse (ask) __ |

(join accept)

A

MLME.Ind
(join accept)

End-device App server
MSv41550V1

End-device data communication (Class A)

The end-device transmits data by one of the following methods: through a confirmed-data
message method (see Figure 7) or through an unconfirmed-data message (see Figure 8).

UM2073 Rev 10 ‘Yl

UM2073

LoRa standard overview

3

In the first method, the end-device requires an ‘Ack’ (acknowledgment) to be done by the
receiver while in the second method, the ‘Ack’ is not required.

When an end-device sends data with an ‘Ackreq’ (acknowledgment request), the end-
device should wait during an acknowledgment duration (‘AckWaitDuration’) to receive the
acknowledgment frame (Refer to Section 4.3.1: MCPS).

If the acknowledgment frame is received, then the transmission is successful, else the

transmission failed.

Figure 7. Message sequence chart for confirmed-data (MCPS primitives)

End-device End-device Network Network App
App layer MAC layer MAC layer layer
MCPS.Req
(data request)
Data (Ackreq=1)
,,,,,,,,,,,,,,,,,,,, >
c
S
®
5
Q
i
=
x
Q
<
Acknowledgment frame
< ,,,,,,,,,,,,,,,,,,,,
MCPS.Ind (data)
MCPS.Conf() o
End-device App Server
MSv41551V1

UM2073 Rev 10

15/55

LoRa standard overview

UM2073

16/55

Figure 8. Message sequence chart for unconfirmed-data (MCPS primitives)

End-device
App layer

End-device
MAC layer

MCPS.Req (data request)

MCPS.Conf()

>

End-device

Data
(Ackreq=0)

Network Network
MAC layer App layer

MCPS.Ind (data)

App server

MSv41552V1

UM2073 Rev 10

3

UM2073 LoRa standard overview

243 End-device class B mode establishment

This section describes the LoRaWAN class B mode establishment. Class B is achieved by
having the GW sending a beacon on a regular basis (128 s) to synchronize all the
end-devices in the network so that the end-device can open a short Rx window called

‘ping slot’. The decision to switch from class A to class B always comes from the application

layer.
Figure 9. MSC MCPS class B primitives
T | T T T | T | mTT T |
: End-device | : End-device : : Network 1 I Network !
1 App layer : | MAC layer I MAC layer : : App layer :
L | L R |
MCPS.Req(Switch Class B)
Data (Switch ClassB) -t
MCPS.Ind(Switch ClassB) € ———————"——————————————+
MLME.Req(DeviceTime.Req)

[y
|

MLME.Conf(DeviceTime.Ans) D

hl

MLME.Req(Beacon_Acquisition)

Beacon Ac

wk beacon Transmission

every 128 s
@)n lock
MLME.Conf(Beacon_Acquisition)
MLME.Req(PingSlot.Req)
d PingSlot.Ans

MLME.conf(PingSlot.Ans) - ———— =S ———

MCPS.Req(Switch Class B)

>

,,,,,,,,,,,,,,,,,,,,,,, > MCPS.Ind(Data)

L J L "

End-device App server MSV63601V1

3

UM2073 Rev 10 17/55

LoRa standard overview

UM2073

2.5

Data flow

The data integrity is ensured by the network session key (NwkSKey) and the application
session key (AppSKey). The NwkSKey is used to encrypt and decrypt the MAC payload
data and the AppSKey is used to encrypt and decrypt the application payload data. See the
figure below for the data flow representation.

Figure 10. Data flow

End-device
(sensor — MCU - radio)

LoRa RF IP infra
Gat
)) (ateway —>

Network
server

NwkSKey (payload of MAC data)

IP infra
-+

Application
server

Application - data

AppSKey (payload of application message)

ejep - uoieolddy

MSv41553V1

18/55

The NwkSKey is shared between the end-device and the network server. The NwkSKey
provides message integrity for the communication and provides security for the end-device
towards the network server communication.

The AppSKey is shared between the end-device and the application server. The AppSKey
is used to encrypt/decrypt the application data. In other words, the AppSKey provides

security for the application’s payload. In this way, the application data sent by an end-device
can not be interpreted by the network server.

UM2073 Rev 10

3

UM2073

I-CUBE-LRWAN middleware description

3

3.1

3

I-CUBE-LRWAN middleware description

Overview

This I-CUBE-LRWAN package offers a LoRa stack middleware for STM32 microcontrollers.
This middleware is split into several modules:

LoRaMac layer module
LoRa utility module
LoRa crypto module
LoRa core module

The LoRa core module implements a LoRa state machine coming on top of the LoRaMac
layer. The LoRa stack module interfaces with the BSP Semtech radio driver module.

This middleware is provided in a source-code format and is compliant with the STM32Cube
HAL driver.

Refer to Figure 11 for the structure of the project files.

UM2073 Rev 10 19/55

I-CUBE-LRWAN middleware description UM2073
Figure 11. Project files structure
BSP drivers LoRa for Di ki -4 Divers
SP drivers LoRa for Discovery kit \ﬁ |, BSP
BSP drivers for) [B0/ LI/
M-) CMWX1ZZABZ {box
CMWX1ZZABZ-091 module #- 4/ Components
BSP drivers I-NUCLEO-LRWAN1 B~ Js |_NUCLEO_LRWANI
modem board g LRWAN_NS1
-4y MDM221 07X01
BSP drivers ST Nucleo sensor “4u STM32LMoc_Nucleo
modem board E- b STM32L bax_Nucieo
- Ju STM32L&oc_Nucleo
_— FH- J. SX1261DVKIBAS
BSP drivers Nucleo boards |. SX1262DVKICAS
B- . SX1262DVK1DAS
. - - SX1272MB2DAS
BSP drivers for Semtech radio T B SX127EMB1LAS
boards B J. SX1276MBIMAS
F- J. X_NUCLEO_IKSD1A1
- X _MNUCLEO_IKSD1A2

BSP drivers for sensor board

Middleware LoRa core

Middleware LoRa crypto engine

Middleware LoRa MAC layer

Middleware LoRa radio interface

LoRa applications

B
[

. STM32L053R8-Mucleo

CMSIS
STM32L0oc_HAL_Driver
STM32L Tsoc_HAL_Driver
STM32L%0c_HAL_Driver

: i sc
.}, MDK-ARM
- b, SW4STM32

= 4 PingPong

STM32L073RZ-Nucleo
STM32L152RE-Nucieo
STM32L476RG-Nucleo

MSv41554V5

20/55 UM2073 Rev 10

S74

UM2073

I-CUBE-LRWAN middleware description

3.2

3

The I-CUBE-LRWAN package includes:

The LoRa stack middleware:
— LoRaWAN layer

— LoRa utilities such as power, queue, system time, time server, and trace
managements

— LoRa software crypto engine
— LoRa state machine

Board support package:

— Radio Semtech drivers

— Sensor ST drivers

STM32L0 HAL drivers

LoRa main application example

Features

Compliant with the specification for the LoRa Alliance protocol named LoRaWAN
On-board LoRaWAN class A, class B, and class C protocol stack

EU 868MHz ISM band ETSI compliant

EU 433MHz ISM band ETSI compliant

US 915MHz ISM band FCC compliant

KR 920Mhz ISM band defined by the Korean government

RU 864Mhz ISM band defined by Russian regulation

End-device activation either through over-the-air activation (OTAA) or through
activation-by-personalization (ABP)

Adaptive data rate support
LoRaWAN test application for certification tests included
Low-power optimized

UM2073 Rev 10 21/55

I-CUBE-LRWAN middleware description UM2073

3.3 Architecture
The figure below describes the main design of the firmware for the I-CUBE-LRWAN
application.
Figure 12. Main design of the firmware
Application (user)
=

o] [Tt 1
! I
| I
|
i MAC (upper Layer) :
— 1
| (o] |
| 1L 2!
! MAC (lower Layer) - 3 |
| Utilities: g |

| timer server T | Sensor

| ‘ ‘ ‘ ‘ low-power 5 ! driver
| rand gen @ |
: Crypto/ !
| | software Radio driver !
| | secure SX12xx driver !
| element [
! l
___ I

17 10 1L 4l

HAL
‘ GPIO ‘ ‘ SPI ‘ ‘ RTC ‘ ‘ 12¢ ‘ ‘ ADC
\ ST/ Semtech || Provided by Semtech |

MSv41542v3

22/55

The HAL uses STM32Cube APIs to drive the MCU hardware required by the application.
Only specific hardware is included in the LoRa middleware as it is mandatory to run a LoRa
application.

The RTC provides a centralized time unit that continues to run even in low-power mode
(Stop mode). The RTC alarm is used to wake up the system at specific timings managed by
the timer server.

The radio driver uses the SPI and the GPIO hardware to control the radio (see Figure 12).
The radio driver also provides a set of APIs to be used by higher-level software.

The LoRa radio is provided by Semtech, though the APIs are slightly modified to interface
with the STM32Cube HAL.
The radio driver is split in two parts:

e The sx1276.c, sx1272.c and sx126x.c contain all functions that are radio dependent
only.

e The sx1276mb1mas.c, sx1276mb1las, sx1272mb2das, sx1262dvk1das,
sx1262dvk1cas and sx1262dvk1bas contain all the radio board dependent functions.

The MAC controls the PHY using the 802.15.4 model. The MAC interfaces with the PHY
driver and uses the timer server to add or remove timed tasks and to take care of the

UM2073 Rev 10 ‘Yl

UM2073

I-CUBE-LRWAN middleware description

3.4

3.4.1

3.4.2

343

3

"Tx time on-air'. This action ensures that the duty-cycle limitation mandated by the ETSI is
respected and also carries out the AES encryption/decryption algorithm to cipher the MAC
header and the payload.

Since the state machine, that controls the LoRa class A, is sensitive, an intermediate level
of software is inserted (lora.c) between the MAC and the application (Refer to MAC’s “upper
layer” on Figure 12). With a set of APlIs limited as of now, the user is free to implement the
class A state machine at the application level.

The application, built around an infinite loop, manages the low-power, runs the interrupt
handlers (alarm or GPIO) and calls the LoRa class A if any task must be done. This
application also implements the sensor read access.

Hardware related components

Radio reset

One GPIO from the MCU is used to reset the radio. This action is done once at the
initialization of the hardware (Refer to Table 40: LoRa radio expansion board characteristics
and to Section 5.1: Single MCU end-device hardware description).

SPI

The sx127x or sx126x radio commands and registers are accessed through the SPI bus at
1 Mbit/s (Refer to Table 40 and to Section 5.1).

RTC

The RTC calendar is used as a timer engine running in all power modes from the 32 kHz
external oscillator. By default, the RTC is programmed to provide 1024 ticks (sub-seconds)
per second. The RTC is programmed once at the initialization of the hardware when the
MCU starts for the first time. The RTC output is limited to a 32-bit timer that is around a 48
days period.

If the user needs to change the tick duration, note that the tick duration must remain below
1 ms.

UM2073 Rev 10 23/55

I-CUBE-LRWAN middleware description UM2073

3.4.4

Note:

24/55

Input lines

3.4.4.1 sx127x interrupt lines

Four sx127x interrupt lines are dedicated to receiving the interrupts from the radio (Refer to
Table 40 and to Section 5.1).

The DIOO is used to signal that the LoRa radio successfully completed a requested task
(TxDone or RxDone).

The DIO1 is used to signal that the radio failed to complete a requested task (RxTimeout).

In FSK mode, a FIFO-level interrupt signals that the FIFO-level reached a predefined
threshold and needs to be flushed.

The DIO2 is used in FSK mode and signals that the radio successfully detected a preamble.
The DIO3 is reserved for future use.
The FSK mode in LoRaWAN has the fastest data rate at 50 Kbit/s.

3.4.4.2 sx126x input lines

The sx126x interface is simplified compared to sx127x. One busy signal informs the MCU
that the radio is busy and can not treat any commands. The MCU must poll that the ready
signal is deasserted before any new command can be sent.

DIO1 is used as a single line interrupt.

3

UM2073 Rev 10

UM2073

I-CUBE-LRWAN middleware programming guidelines

4

4.1

4.2

4.2.1

3

I-CUBE-LRWAN middleware programming guidelines

This section gives a description of the LoRaMac layer APIs. The proprietary PHY layer (see
Section 2.1: Overview) is out of the scope of this user manual and must be viewed as a
black box.

Middleware initialization

The initialization of the LoRaMac layer is done through the ‘LoraMacinitialization’ function.
This function does the preamble run time initialization of the LoRaMac layer and initializes
the callback primitives of the MCPS and MLME services (see the table below).

Table 4. Middleware initialization function

Function Description

LoRaMacStatus_t

LoRaMacInitialization Do initialization of the LoRaMac layer module
(LoRAMacPrimitives_t *primitives, (see Section 4.3: Middleware MAC layer
LoRaMacCallback_t *callback, callbacks)

LoRaMacRegion_t region)

Middleware MAC layer functions

The provided APIs follow the definition of “primitive” defined in IEEE802.15.4-2011 (see
Section 1.2: References).

The interfacing with the LoRaMac is made through the request-confirm and the indication-
response architecture. The application layer can perform a request that the LoRaMAC layer
confirms with a confirm primitive. Conversely, the LoRaMAC layer notifies an application
layer with the indication primitive in case of any event.

The application layer may respond to an indication with the response primitive. Therefore all
the confirm/indication are implemented using callbacks.

The LoRaMAC layer provides MCPS services, MLME services, and MIB services.

MCPS services

In general, the LoORaMAC layer uses the MCPS services for data transmissions and data
receptions (see the table below).

Table 5. MCPS services function

Function Description

LoRaMacStatus_t LoRaMacMcpsRequest

Requests to send Tx data
(McpsReqg_t *mcpsRequest)

UM2073 Rev 10 25/55

I-CUBE-LRWAN middleware programming guidelines UM2073

4.2.2 MLME services

The LoRaMAC layer uses the MLME services to manage the LoRaWAN network (see the
table below).

Table 6. MLME services function

Function Description

LoRaMacStatus_t LoRaMacMlmeRequest Used to generate a join request or request for a
(MlmeReq_t *mlmeRequest) link check

4.2.3 MIB services
The MIB stores important runtime information (such as MIB_NETWORK_ACTIVATION,
MIB_NET_ID) and holds the configuration of the LoRaMAC layer (for example the
MIB_ADR, MIB_APP_KEY). The provided APIs are presented in the table below.

Table 7. MIB services functions

Function Description

LoRaMacStatus_t

LoRaMacMibSetRequestConfirm To set attributes of the LoRaMac layer
(MibRequestConfirm_t *mibSet)

LoRaMacStatus_t

LoRaMacMibGetRequestConfirm To get attributes of the LoRaMac layer
(MibRequestConfirm_t *mibGet)

4.3 Middleware MAC layer callbacks

Refer to Section 4.1: Middleware initialization for the description of the LoRaMac user event
functions primitives and the callback functions.

4.3.1 MCPS

In general, the LoORaMAC layer uses the MCPS services for data transmission and data
reception (see the table below).

Table 8. MCPS primitives

Function Description

Event function primitive for the called callback to be

. N .
void (rMaclMcpsconfirm) implemented by the application. Response to a

(McpsConfirm_t *McpsConfirm)

McpsRequest
Void (*MacMcpsIndication) Event function primitive for the called callback to be
(McpsIndication_t implemented by the application. Notifies application that a
*McpsIndication) received packet is available
26/55 UM2073 Rev 10 Kys

UM2073

I-CUBE-LRWAN middleware programming guidelines

4.3.2

43.3

43.4

4.4

441

44.2

3

MLME

The LoRaMAC layer uses the MLME services to manage the LoRaWAN network (see the
table below).

Table 9. MLME primitive

Function Description
void (*MacMlmeConfirm) Event function primitive so-called callback to be
(MlmeConfirm_t *MImeConfirm) implemented by the application

MIB

No available functions.

Battery level

The LoRaMAC layer needs a battery-level measuring service (see the table below).

Table 10. Battery level function

Function Description

uint8_t HW_GetBatterylLevel (void) Get the measured battery level

Middleware MAC layer timers

Delay Rx window

Refer to Section 2.2.2: End-device classes. See the table below for the delay Rx functions.

Table 11. Delay Rx functions

Function Description

Set the RxDelay1 (ReceiveDelayX -
RADIO_WAKEUP_TIME)

void OnRxWindowlTimerEvent (void)

void OnRxWindow2TimerEvent (void) Set the RxDelay2

Delay for Tx frame transmission

Table 12. Delay for Tx frame transmission function

Function Description

void OnTxDelayedTimerEvent (void) Set timer for Tx frame transmission

UM2073 Rev 10 27155

I-CUBE-LRWAN middleware programming guidelines UM2073

443 Delay for Rx frame

Table 13. Delay for Rx frame function

Function Description
void OnAckTimeoutTimerEvent (void) Set timeout for received frame acknowledgment
4.5 Middleware utility functions
451 Timer server APIs description

A timer server is provided so that the user can request timed-tasks execution. As the
hardware timer is based on the RTC, the time is always counted, even in low-power modes.

The timer server provides a reliable clock for the user and the LoRa stack. The user can
request as many timers as the application requires.

Four APIs are provided as shown in the table below.

Table 14. Timer server functions

Function Description

void TimerInit Initialize the timer and associate a callback function
(TimerEvent_t *obj, void (*callback) (void)) |when timer elapses

void TimerSetValue

\ . . Set the timer a timeout value on milliseconds
(TimerEvent_t *obj, uint32_t value)

void TimerStart (TimerEvent_t *obj) Start the timer

void TimerStop (TimerEvent_t *obj) Stop the timer

The timer server is located in Middlewares\Third _Party\Lora\Utilities.

4.5.2 Low-power functions
The APIs presented in the table below, are used to manage the low-power modes of the
core MCU.
Table 15. Low-power functions
Function Description
void LPM_EnterLowPower (void) To enter the system in low-power mode

Allow the application to implement a dedicated code before entering

void LPM_EnterSleepMode (void) Sleep mode

void LPM_ExitSleepMode (void) Allow the application to implement a dedicated code before exiting

Sleep mode
void LPM_EnterStopMode (void) Enter low-power Stop mode
void LPM_ExitStopMode (void) Exit low-power Stop mode

Allow the application to implement a dedicated code before entering

void LPM_EnterOffMode (void) Off mode

28/55 UM2073 Rev 10 ‘Yl

UM2073 I-CUBE-LRWAN middleware programming guidelines

Table 15. Low-power functions (continued)

Function Description

Allow the application to implement a dedicated code before exiting

void LPM_ExitOffMode (void) Off mode

LPM_GetMode_t LPM_GetMode (void) Return the selected low-power mode

void LPM_SetStopMode Used to enable or disable the Stop mode in order to require Sleep
(LPM_Id_t id, LPM_SetMode_t mode) | mode

void LPM_SetOffMode

(LPM_Td_t id, LPM _SetMode t mode) Used to enable Stop mode or to enable Off mode

453 System time functions

MCU time is referenced to MCU reset. SysTime is able to record the Unix epoch time.

The APIs presented in the table below are used to manage the system time of the core
MCU.

Table 16. System time functions

Function Description

Based on an input Unix epoch in seconds and sub-seconds, the
difference with the MCU time is stored in the BACK_UP register
(retained even in Standby mode).

The system time reference is the Unix epoch starting January 1st,
1970.

void SysTimeSet
SysTime_t sysTime)

Get the current system time.

SysTi t SysTimeGet id
ysTime_t SysTimeGet (void) The system time reference is UNIX epoch starting January 1st 1970.

uint32_t SysTimeMkTime

. Convert local time into Epoch time (see the note below)
(const struct tm* localtime)

void SysTimeLocalTime

(const uint32_t timestamp, Convert Epoch time into local time (see the note below)
struct tm *localtime)

Note: SysTimeMkTime and SysTimeLocalTime are also provided in order to convert Epoch into
tm structure as specified by the time.h interface.
To convert Unix time to local time, a time zone must be added and leap seconds must be
removed. In 2018, 18 leap seconds must be removed. In Paris summer time, there is a two-
hour difference with Greenwich time. Assuming time is set, a local time can be printed on
terminal:

{

SysTime_t UnixEpoch = SysTimeGet () ;

struct tm localtime;

UnixEpoch.Seconds-=18; /*removing leap seconds*/

UnixEpoch.Seconds+=3600*2; /*adding 2 hours*/

SysTimeLocalTime (UnixEpoch.Seconds, & localtime);

3

UM2073 Rev 10 29/55

I-CUBE-LRWAN middleware programming guidelines UM2073

PRINTF ("it's %02dh%02dm$%02ds on $02d/%02d/%04d\n\r",
localtime.tm hour, localtime.tm _min,
localtime. tm _sec,
localtime.tm mday, localtime.tm _mon+1,
localtime.tm year + 1900);

}
454 Trace functions

The trace module enables to print data on a com port using DMA. The APIs presented in the

table below are used to manage the trace functions.

Table 17. Trace functions
Function Description
Tracelnit must be called at the application initialization. It initializes the com

void TraceInit (void) or vcom hardware in DMA mode and registers the call back to be processed

at DMA transmission completion.

int32_t TraceSend
(const char *strFormat,...)

Convert string format into a buffer and buffer length and records it into the
circular queue if sufficient space is left. Returns 0 when queue if sufficient
space is left. Returns -1 when not enough room is left.

30/55

The TraceSend (. .) function can be used in polling mode when no real-time constraints
apply, typically during application initialization:

#define PPRINTF(...) do{} while (0!= TraceSend (__VA ARGS__))
//Polling Mode.

The TraceSend (. .) function can be used in real-time mode. In this case, when there is
not space left in the circular queue, the string is not added and is not printed out in com port
#define PRINTF(...) do {TraceSend (__VA _ARGS__);} while(0)

The TraceSend (. .) function can be used in real-time mode by adding a timestamp:
#define PRINTNOW (a) do{ \

SysTime_t stime =SysTimeGetMcuTime () ; \

TraceSend ("%$3ds%03d:%d ",stime.Seconds, stime.SubSeconds,a); \
}while (0)

A verbose level (VERBOSE_LEVEL_1,VERBOSE_LEVEL 2 in utilities_cnf.h) can be
applied to the system trace.

#define TVLI1 (X) do{ if(VERBOSE_LEVEL>=VERBOSE_LEVEL_1) { X }
}while (0) ;
#define TVL2 (X) do{ if(VERBOSE_LEVEL>=VERBOSE_LEVEL_2) { X }
}while (0) ;

UM2073 Rev 10 ‘Yl

UM2073 I-CUBE-LRWAN middleware programming guidelines
The buffer length can be increased in case it is saturated in utilities_conf.h
#define DBG_TRACE_MSG_QUEUE_SIZE 256
4.5.5 Queuing functions
The queue module provides a set of services managing a buffer as a circular queue.
The APIs presented in the table below are used to manage a circular queuing buffer.
Table 18. Middleware queuing functions
Function Description
int CircularQueue_Init (queue_t *q,
. . .
ulnt8_? quel.leBuffer’ ulnt32.—t Initialize the circular buffer.
queueSize, uintl6_t elementSize,
uint8_t optionFlags)
uint8_t* CircularQueue_Add (queue_t
q, uint8_t x, uintlé_t Add an element to the circular buffer.
elementSize, uint32_t nbElements)
. .
uint8_t Clrcu%arQueue—Remove . Remove an element from the circular buffer.
(queue_t *qg, uintlé6_t* elementSize)
uint8 t* CircularQueue Sense Sense |.f the circular buffer is not empty. If not .
. . empty, it returns the address of the buffer and its
(queue_t *qg, uintlé6_t* elementSize)
length through element size.
Note: The queue is filled with elements. Each element is composed of buffer length field (2 bytes)

3

and the buffer. When an element is too large to fit at the end of the queue, it is fragmented

into two elements.

UM2073 Rev 10 31/55

I-CUBE-LRWAN middleware programming guidelines

UM2073

4.6

32/55

Emulated secure-element

By default, the proposal hardware platforms do not integrate a secure-element device.

Therefore this secure-element device is emulated by software.

The figure below describes the main design of the LoRaMacCrypto module.

Figure 13. LoRaMacCrypto module design

LoRaMac LoRaMac

Message | [Message Message | [Message
serializer parser serializer parser

LoRaMacCrypto.h

Y

/
LgRaMacCrypto LgRaMacCrypto

|Message preparation| | Nonce handling | |Message preparation | Nonce handling |

Frame counter | Frame counter |

| Key-ID selection | | | Key-ID selection | |

Key derivation CMAC computation

Key provisioning CMAC verification

verification verification
secure-element.h
Software Secure Element | g —— — |
| Key storage | | Encryption |
| Key derivation | | CMAC computation |
| Key provisioning | | CMAC verification | Key storage Encryption

MSv49597V2

The APIs presented in the table below are used to manage the emulated secure-element.

Table 19. Secure-element functions

Function Description
SecureElementStatus_t Initialization of the secure-element driver
SecureElementInit The Callback function that is called when the
(EventNvmCtxChanged seNvmCtxChanged) |non-volatile context must be stored.
SecureElementStatus_t Restore the internal nvm context from passed
SecureElementRestoreNvmCtx (void* pointer to non-volatile module context to be
seNvmCtx) restored.
void* SecureElementGetNvmCtx Request address where the non-volatile context
(size_t* seNvmCtxSize) is stored.

SecureElementStatus_t
SecureElementSetKey (KeyIdentifier_t |Seta key.
keyID, uint8_t* key)

SecureElementStatus_t
Se?ureE1ementComput§AesCmac . Compute a CMAC.
(uint8_t* buffer, uintlé6_t size,
KeyIdentifier_t keyID, uint32_t*
cmac)

The KeylID determines the AES key to use.

UM2073 Rev 10

S74

UM2073 I-CUBE-LRWAN middleware programming guidelines
Table 19. Secure-element functions (continued)
Function Description
SecureElementStatus_t _ Compute cmac and compare with expected
SecureElementVerifyAesCmac (uint8_t* cmac
buffer, uintlé_t size, uint32_t) .
expectedCmac, KeyTdentifier t keyID) The KeylID determines the AES key to use.
SecureElementStatus_t
lie(f:;lreEler.nelztlzéeiEn§rypt (uint8_t~* Encrypt a buffer.
108 er, uiln _ slze, .
KeyTIdentifier t keyID, uint8_t* The keyID determines the AES key to use.
encBuffer)
:ZEE:iﬂiitizzt&iagtorem Derive and store a key. The key derivation
. \ . Y depends of the LORaWAN versionKeylID,
(Version_t version, uint8_t* input, . .
. rootKeyID are used to identify the root key to
KeyIdentifier_ t rootKeyID, ..
o perform the derivation.
KeyIdentifier_t targetKeyID)
4.7 Middleware End_Node application function

3

The interface to the MAC is done through the MAC interface file LoRaMac.h.

Standard mode

In standard mode, an interface file (see MAC upper layer in Figure 12) is provided to let the
user start without worrying about the LoRa state machine. The interface file is located in

Middlewares\Third_Party\Lora\Core\lora.c.

The interface file implements:

e aset of APIs allowing to access to the LoRaMAC services
e the LoRa certification test cases that are not visible to the application layer

Advanced mode

In this mode, the user accesses directly the MAC layer by including the MAC in the user file.

UM2073 Rev 10

33/55

I-CUBE-LRWAN middleware programming guidelines

UM2073

34/55

Operation model

The operation model proposed for this LoRa End_Node (see Figure 14) is based on ‘event-
driven’ paradigms including ‘time-driven’. The behavior of the system LoRa is triggered
either by a timer event or by a radio event plus a guard transition.

Figure 14. Operation model

Reset

'

HAL initialization
Hardware initialization
LoRa stack initialization

l

LoRa join start

LoRa init Tx event

4

Process event

DISABLE_IRQ

!

h J

ENABLE_IRQ

Low -power mode

t

‘ \/\ event

Process event

Process Tx or
Rx event

v

Process ClassB
event

) J
Process timer
event
Y

MSv41544V4

UM2073 Rev 10

S74

UM2073 I-CUBE-LRWAN middleware programming guidelines

LoRa system state behavior
Figure 15 describes the LoRa End_Node system state behavior.

On reset, after the system initialization is done, the LoRa End_Node system goes into a
Start state defined as ‘Init’.

The LoRa End_Node system sends a join network request when using the
“over_the_air_activation (OTAA)” method and goes into a state defined as ‘Sleep’.

When using the “activation by personalization (ABP)”, the network is already joined and
therefore the LoRa End_Node system jumps directly to a state defined as ‘Send’.

From the state defined as ‘Sleep’, if the end-device joined the network when a “TimerEvent
occurred, the LoRa End_Node system goes into a temporary state defined as ‘Joined’
before going into the state defined as ‘Send’.

From the state defined as ‘Sleep’, if the end-device joined the network when an
“OnSendEvent” occurred, the LoRa End_Node system goes into the state defined as
‘Send’.

From the state defined as ‘Send’, the LoRa End_Node system goes back to the state
defined as ‘Sleep’ in order to wait for the ‘onSendEvent’ corresponding to the next
scheduled packet to be sent.

Figure 15. LoRa state behavior

Reset

I NWK_JOINED / TimerEvent

OTAA / JoinTimer

TxNext / TKNextPacket

True\/ printf

DutyCycleEnable

NWK_JOINED// OnSendEvent

ABP / Void MSv41543V2

3

UM2073 Rev 10 35/55

I-CUBE-LRWAN middleware programming guidelines UM2073

36/55

LoRa class B system state behavior
Figure 16 describes the LoRa class B mode End-Node system state behavior.

Before doing a request to switch to class B mode, an end-device must be first in a Join state
(see Figure 14).

The decision to switch from class A to class B mode always comes from the application
layer of the end-device. If the decision comes from the network side, the application server
must use class A uplink of the end-device to send back a downlink frame to the application
layer.

On MLME Beacon_Acquisition_req, the end-device LoRa class B system state goes in
BEACON_STATE_ACQUISITION.

The LoRa end-device starts the beacon acquisition. When the MAC layer received a beacon
in function RxBeacon successfully, the next state is BEACON_STATE_LOCKED.

When the LoRa end-device receives a beacon, the acquisition is no longer pending: the
MAC layer goes in BEACON_STATE_IDLE.

In BEACON_STATE_IDLE, the MAC layer compares the BeaconEventTime with the current
end-device time. If the beaconEventTime is less than the current end-device time, the MAC
layer goes in BEACON_STATE_REACQUISITION. Otherwise, the MAC layer goes in
BEACON_STATE_GUARD and performs a new beacon acquisition.

If the MAC layer does not find a beacon, the state machine stays in
BEACON_STATE_ACQUISITION. This state detects that an acquisition was previously
pending and changes the next state to BEACON_STATE_LOST.

When the MAC layer receives a bad beacon format, it must go in
BEACON_STATE_TIMEOUT. It enlarges window timeouts to increase the chance to receive
the next beacon and goes in BEACON_STATE_REACQUISITION.

3

UM2073 Rev 10

UM2073 I-CUBE-LRWAN middleware programming guidelines

Figure 16. LoRa class B system state behavior

BeaconFormat != OK Beacon

MLME_Beacon_Acquisition_req TimeOut

Beacon not received

Beacon '
Acquisition

_Acquisition_Ind

BeaconFormat == OK

EnlargeWindowTmeout

MLME_Beacoy

Beacon
Locked

CurrentTime > Beacon_Less_Period

BeaconAcqPé¢nding == Beacon

Reacquisition

LME_Beacon_Acquisition_cnf CurrentTime < Beaeon_Less_Period

BeaconSetup
Beacon
Idle
BeaconEvenTime < CurrentTime
Beacon
Guard
BeaconEvenTime > CurrentTime MSv49598V2
4.71 LoRa End_Node initialization
Table 20. LoRa class A initialization function
Function Description
void lora_Init

(LoRaMainCallback_t *callbacks, LoRaParam_t*

Initialization of the LoRa class A finite state machine
LoRaParamInit)

3

UM2073 Rev 10 37/55

I-CUBE-LRWAN middleware programming guidelines UM2073

4.7.2 LoRa End_Node Join request entry point

Table 21. LoRa End_Node Join request entry point

Function Description

Join request to a network either in OTAA mode or ABP mode (The Join mode must

void lora_goin (void) be defined at compile time).

4.7.3 LoRa End-Node start Tx

Table 22. LoRa End-Node start Tx

Function Description

. Start the OnTxTimerEvent occurrence if EventType parameter is
void loraStartTx (TxEventType_t

equal to TX_ON_TIMER. The user is free to implement its own code
EventType) here

4.7.4 Request End-Node Join Status

Table 23. End-Node Join status

Function Description
LoraFlagStatus Check the End-Node activation type: ACTIVATION_TYPE_NONE,
LORA_JoinStatus (void) ACTIVATION_TYPE_ABP, ACTIVATION_TYPE_OTAA.

4.7.5 Send an uplink frame

Table 24. Send an uplink frame

Function Description

bool LORA_send (lora_AppData_t*
AppData, LoraConfirm_t
IsTxConfirmed)

Send an uplink frame. This frame can be either an unconfirmed
empty frame or an unconfirmed/confirmed payload frame.

4.7.6 Request the current network time

Table 25. Current network time

Function Description

The end-device requests from the network the current network time
LoraErrorStatus LORA_DeviceTimeReq |(useful to accelerate the beacon discovery in class B mode)

(void) Note: To be used in place of BeaconTimeReq in LORaWAN
version = 1.0.3

3

38/55 UM2073 Rev 10

UM2073 I-CUBE-LRWAN middleware programming guidelines

4.7.7 Request the next beacon timing

Table 26. Next beacon timing

Function Description

The end-device requests from the network the next beacon
LoraErrorStatus LORA_BeaconTimeReq |timing (useful to accelerate the beacon discovery in class B
(void) mode)

Note: command deprecated in the LoORaWAN V1.0.3

4.7.8 Switch class request

Table 27. Switch class request

Function Description

LoraErrorStatus LORA_RequestClass Request the end-device to switch from current to new class A, B
(DeviceClass_t newClass) or C.

4.7.9 Get End-device current class

Table 28. Get End-Device current class

Function Description

void LORA_GetCurrentClass (DeviceClass_t

Request the current running class A, B or C.
*currentClass)

4710 Request beacon acquisition

Table 29. Request beacon acquisition

Function Description

LoraErrorStatus LORA_BeaconReq (void) Request the beacon slot acquisition.

4.7.11 Send unicast ping slot info periodicity

Table 30. Unicast ping slot periodicity

Function Description

LoraErrorStatus LORA_PingSlotReq

(void) Transmit to the server the unicast ping slot info periodicity.

3

UM2073 Rev 10 39/55

I-CUBE-LRWAN middleware programming guidelines UM2073

4.8 LIB End_Node application callbacks

4.8.1 Current battery level

Table 31. Current battery level function

Function Description
uint8_t HW_GetBatteryLevel (void) Get the battery level.
4.8.2 Current temperature level
Table 32. Current Temperature function
Function Description
uintl6_t HW_GetTemperatureLevel Get the current temperature (degree Celsius) of
(void) the chipset in 7.8 format.

4.8.3 Board unique ID

Table 33. Board unique ID function

Function Description
void HW_GetUniqueId (uint8_t *id) Get a unique identifier.
4.8.4 Board random seed

Table 34. Board random seed function

Function Description

uint32_t HW_GetRandomSeed (void) Get a random seed value.

4.8.5 Make Rx frame

Table 35. Make Rx frame

Function Description

void LoraRxData (lora_AppData_t To process the incoming frame application.

*AppData) The user is free to implement his own code here.
4.8.6 Request class mode switching

Table 36. LoRa HasJoined function
Function Description

void LORA_HasJoined (void) Notify the application that the End-Node joined.

40/55 UM2073 Rev 10 Kys

UM2073 I-CUBE-LRWAN middleware programming guidelines
4.8.7 End_Node class mode change confirmation
Table 37. End_Node class mode change confirmation function
Function Description
void LORA_ConfirmClass Notify the application that the End-Node class
(DeviceClass_t Class) changed.
48.8 Send a dummy uplink frame

3

Table 38. Send a dummy uplink frame

Function Description

void LORA_TxNeeded (void) Request the application to send a frame.

UM2073 Rev 10 41/55

Example description

UM2073

5

5.1

42/55

Example description

Single MCU end-device hardware description

The application layer, the Mac Layer and the PHY driver are implemented on one MCU. The
End_Node application is implementing this hardware solution (see Section 5.4).

The I-CUBE-LRWAN runs on several platforms such as:

e STM32 Nucleo platform stacked with a LoRa radio expansion board

e B-L072Z-LRWAN1 Discovery kit (no LoRa expansion board required)

Optionally, an ST X-NUCLEO-IKS01A1 sensor expansion board can be added on Nucleo

boards and Discovery kits. The Nucleo-based supported hardware is presented in the table
below.

Table 39. Nucleo-based supported hardware

LoRa radio expansion board
Nucleo board
SX1276MB1MAS | SX1276MB1LAS SX1272MB2DAS

NUCLEO-L053R8 Supported Supported Supported

Supported
NUCLEO-LO73RZ Supported Supported (P-NUCLEO-LRWAN1 (1))
NUCLEO-L152RE Supported Supported Supported
NUCLEO-L476RG Supported Supported Supported

1. This particular configuration is commercially available as a kit P-NUCLEO-LRWAN1.

The I-CUBE-LRWAN Expansion Package can easily be tailored to any other supported
device and development board.

The main characteristics of the LoRa radio expansion board are described in the table
below.

Table 40. LoRa radio expansion board characteristics

Board Characteristics
SX1276MB1MAS 868 MHz (HF) at 14 dBm and 433 MHz (LF) at 14 dBm
SX1276MB1LAS 915 MHz (HF) at 20 dBm and 433 MHz (LF) at 14 dBm
SX1272MB2DAS 915 MHz and 868 MHz at 14 dBm
SX1261DVK1BAS E406V03A sx1261, 14 dBm, 868 MHz, XTAL
SX1262DVK1CAS E428V03A sx1262, 22 dBm, 915 MHz, XTAL
SX1262DVK1DAS E449V01A sx1262, 22 dBm, 860-930 MHz, TCXO

3

UM2073 Rev 10

UM2073

Example description

5.2

3

The radio interface is described below:

e The radio registers are accessed through the SPI.

e The DIO mapping is radio dependent, see Section 3.4.4.

e One GPIO from the MCU is used to reset the radio.

e One MCU pin is used to control the antenna switch to set it either in Rx mode or in Tx
mode.

The hardware mapping is described in the hardware configuration files at
Projects\<platform>\Applications\LoRa\<App_Type>\Corelinc.

The <platform> can be STM32L053R8-Nucleo, STM32L073RZ-Nucleo,
STM32L152RE-Nucleo, STM32L476RG-Nucleo or B-L072Z-LRWAN1 (Murata modem
device).

The <Target> can be STMLOxx and the <App_Type> can be AT_Master, End_Node,
PingPong or AT_Slave.

Interrupts

The table below shows the interrupt priorities level applicable for the Cortex system
processor exception and for the STM32L0 Series LoRa application-specific interrupt (IRQ).

Table 41. STM32L0xx IRQ priorities

Interrupt name Preempt priority Sub-priority
RTC 0 NA
EXTI2_3 0 NA
EXTI4_15 0 NA

Split end-device hardware description (two-MCUs solution)

The Application layer, the Mac Layer and the PHY driver are separated. The LoRa
End_Node is composed of a LoRa modem and a host controller. The LoRa modem runs the
LoRa stack (Mac Layer and Phy Layer) and is controlled by a LoRa host implementing the
application layer.

The AT_Master application implementing the LoRa host on a NUCLEO board is compatible
with the AT_Slave application (see Section 5.6). The AT_Slave application demonstrates a
modem on the CMWX1ZZABZ-091 LoRa module (Murata). The AT_Master application is
also compatible with the -NUCLEO-LRWAN1 expansion board featuring the
WM-SG-SM-42 LPWAN module from US| and with the LRWAN_NS1 expansion board
featuring the RiISINGHF modem RHFOMOO03 available in P-NUCLEO-LRWANS (see
Section 5.7).

This split solution is used to design the application layer without any constraint linked to the
real-time requirement of LoRaWAN stack.

UM2073 Rev 10 43/55

Example description UM2073

Figure 17. Concept for split end-device solution

I—NUCLEO—LO53R8 1 |_Lora expansion board 1

| | I-NUCLEO-LRWAN1 |

| AT_MASTER | AT) | Lora Moderm |
application comman

| (included in over UART _|_> Lora\£Vadr.l stack |

| I-CUBE-LRWAN) | adio |

| | |

MSv43977V1

The interface between the LoRa modem and the LoRa host is a UART running AT
commands.

3

44/55 UM2073 Rev 10

UM2073 Example description

5.3 Package description

When the user unzips the I-CUBE-LRWAN, the package presents the structure shown in the
figure below.

Figure 18. I-CUBE-LRWAN structure

= J Dvivos
=4 BSP
b B-LO7ZZ-LRWAN1
L CMWZZABZ -Dhex
. Components
L I_NUCLED_LRAWAN1
LRWAN_NS1
b MDM3I2LOTXDT
L STMIA2LDex_Mucieo
. STMA2L o _Nuckeo
L STMA2Ldcx_MNuckeo
. SX1261DVK1BAS
L SX1262DVKICAS
L SX12e20VKIDAS
L SX12T2MBZDAS
L SX1ZTEMBILAS
. SX12TEMBIMAS
X_NUCLED_IKSOA1
; X_NUCLED_IKSO0NAZ
CMSIS
E-). STM3IZLDex HAL_ Dwiver
- . STM32L boc_HAL Deiver
). STM32L4ox_HAL _Driver
B). Third_Party
= . LoRaWAN
] . Cond
H=). Com
i+l Cryplo
B L Mac
23] Phy
B Ll sy
= . Proacts
=- b B-LO72Z-LRWAN)
B 4. Applcabons
= LoRa
G- b AT_Save
El- J. End_MNode
). Come
. EWARM
J. LoRaWAN
Bds Aep
B L nc
B =
. MDK-ARM
L SW4ASTM32
E- ds PngPong
- STM3ZLDS53RE-Nusles
[+] STM3ZLD7TIRZ-MNudleo
F- 4 STM3ZL15ZRE-Mucieo
- . STM3IZLATERG-Nucieo

FREHE®

[

FEENERREREH

i &+

il

MSv44118V3

The I-CUBE-LRWAN package contains four applications: End_Node, PingPong, AT_Slave,
and AT_Master. For each application, three toolchains are available: MDK-ARM, IAR, and
SW4STM32.

3

UM2073 Rev 10 45/55

Example description UM2073

5.4

5.4.1

5.4.2

Note:

46/55

End_Node application

This application reads the temperature, humidity and atmospheric pressure from the
sensors through the 12C. The MCU measures the supplied voltage through Vggg| NT in Order
to calculate the battery level. These four data (temperature, humidity, atmospheric pressure,
and battery level) are sent periodically to the LoRa network using the LoRa radio in class A
at 868 MHz.

In order to launch the LoRa End_Node project, the user must go to
\Projects\<target>\Applications\LoRa\End_Node and choose his favorite toolchain folder (in
the IDE environment). The user selects then the LoRa project from the proper target board.

Activation methods and keys

There are two ways to activate a device on the network, either by OTAA or by ABP.

\Projects\<target>\Applications\LoRa\End_Node\LoRaWAN\App\inc\Commissioning.h file
gathers all the data related to the device activation. The chosen method, along with the
commissioning data, is printed on the virtual port and visible on a terminal.

Debug switch

The user must go to \Projects\Multi\Applications\LoRa\End_Node\inc\hw_conf.h to enable
the debug mode or/and the trace mode by commenting out
#define DEBUG

The debug mode enables the DBG_GPIO_SET and the DBG_GPIO_RST macros as well
as the debugger mode, even when the MCU goes in low-power.

For trace mode, three levels of tracing are proposed:

e VERBOSE_LEVEL_O0: traces disabled

e VERBOSE_LEVEL_1: enabled for functional traces

e VERBOSE_LEVEL_2: enabled for Debug traces

The user must go to

\Projects\<platform>\Applications\LoRa\<App>\LoRaWAN\App\inc\utilities _conf.h to set the
select trace level.

In order to enable a true low-power, “#define DEBUG” mentioned above must be
commented out.

3

UM2073 Rev 10

UM2073

Example description

54.3 Sensor switch
When no sensor expansion board is plugged on the set-up, #define SENSOR_ENBALED
must be commented out on the
\Projects\<target>\Applications\LoRa\End_Node\LoRaWAN\App\inc.
The table below provides a summary of the main options for the application configuration.
Table 42. Switch options for the application’s configuration
Project Switch option Definition Location
OVER_THE_AIR_ACTIVATION Application uses over-the-air Commissioning.h
activation procedure.
STATIC_DEVICE_EUI Static or dynamic end- device Commissioning.h
identification
Compile the relevant code for . . .
LORAMAC_CLASSB_ENABLED Compiler option setting
class B mode.
Includes either
USE_DEVICE_TIMING "LORA_DeviceTimeReq ()" or lora.c
"LORA_BeaconTimeReq (void)
STATIC_DEVICE_ADDRESS Static or dynamic end- device Commissioning.h
address
LoRa I 2eGION_EUS6S
stack -
REGION_EU433
REGION_US915
REGION_AS923
REGION_AU915
Enable the band selection Compiler option setting
REGION_CN470
REGION_CN779
REGION_IN865
REGION_RU864
REGION_KR920
DEBUG Enable ‘Led on/off’ hw_conf.h
Sensor |VERBOSE_LEVEL Enable the trace level utilities_conf.h
SENSOR_ENABLED Enable the call to the sensor board | hw_conf.h
Note: The maximum payload length allowed depends on both the region and the selected data
rate, so the payload format must be carefully designed according to these parameters.
5.5 PingPong application description

3

This application is a simple Rx/Tx RF link between two LoRa end-devices. By default, each
LoRa end-device starts as a master and transmits a ‘Ping’ message and wait for an answer.
The first LoRa end-device receiving a ‘Ping’ message becomes a slave and answers the

master with a ‘Pong’ message. The PingPong is then started.

UM2073 Rev 10

47/55

Example description UM2073

5.6

5.7

48/55

In order to launch the PingPong project, the user must go to the
\Projects\<platform>\Applications\LoRa\PingPong folder and follow the same procedure as
for the LoRa End_Node project to launch the preferred toolchain.

Hardware and software set-up environment

To set up the STM32LXxx-NUCLEO, connect the NUCLEO (or the B-LO72Z-LRWAN1)
board to the computer with a USB cable type A to mini B to the ST-LINK connector (CN1).
Ensure that the CN2 ST-LINK connector jumpers are fitted. See the figure below for a
representation of the PingPong setup.

Figure 19. PingPong setup

LoRa end-device LoRa end-device
ComPort | sTM32 NUCLEO + Radio | | STM32 NUCLEO + Radio | COmPort
expansion board expansion board

MSv41541V1

AT _Slave application description

The purpose of this example is to implement a LoRa modem controlled through the AT
command interface over UART by an external host.

The external host can be a host-microcontroller embedding the application and the AT driver
or simply a computer executing a terminal.

This application targets the B-L072Z-LRWAN1 Discovery kit embedding the
CMWX1Z2ZABZ-091 LoRa module. This application uses the STM32Cube low-layer drivers
APIs targeting the STM32L072CZ to optimize the code size.

The AT_Slave example implements the LoRa stack driving the built-in LoRa radio. The
stack is controlled through the AT command interface over UART. The modem is always in
Stop mode unless it processes an AT command from the external host.

In order to launch the AT_Slave project, the user must go to the folder
Projects\B-L072Z-LRWAN1\Applications\LoRa\AT _Slave and follow the same procedure as
for the LoRa End_Node project to launch the preferred toolchain.

The application note Examples of AT commands on I-CUBE-LRWAN (AN4967) gives the list
of AT commands and their description.

AT _Master application description

This application reads sensor data and sends them to a LoRa network through an external
LoRa modem. The AT_Master application implements a complete set of AT commands to
drive the LoRa stack that is embedded in the external LoRa modem.

UM2073 Rev 10 ‘Yl

UM2073

Example description

Note:

5.8

3

The external LoRa modem targets the B-LO72Z-LRWAN1 Discovery kit, the
I-NUCLEO-LRWAN1 board (based on the WM-SG-SM-42 US| module) or the LRWAN-NS1
expansion board featuring the RiSINGHF modem available in P-NUCLEO-LRWAN3(@) and
P-NUCLEO-LRWAN3®).

This application uses the STM32Cube HAL drivers APIs targeting the STM32L0 Series.

BSP programming guidelines

The table below gives a description of the BSP driver APIs to interface with the external
LoRa module.
Table 43. BSP programming guidelines

Function Description

ATEerror_t Modem_ IO Init (void) Modem initialization

void Modem_IO_DeInit (void) Modem deinitialization

ATEerror_t Modem_AT Cmd (ATGroup_t,

. Modem IO commands
at_group, ATCmd_t Cmd, void *pdata)

The NUCLEOQO board communicates with the expansion board via the UART (PA2, PA3). The
following modifications must be applied (see section 5.8 of the user manual STM32 Nucleo-
64 boards (UM1724)):

» SB62 and SB63 must be closed.
» SB13 and SB14 must be opened to disconnect the UART from ST-LINK.

FUOTA application description

The purpose of this application is to implement the firmware update over-the-air (FUOTA)
feature. It provides a way to manage the firmware update over the LoRaWAN protocol.

This application is based on the LoRaWAN recommendations version V1.0.3 and the three
application packages specification V1.0, Clock Synchronization, Fragmented Data Block
Transport, and Remote Multicast Setup.

This application is made up of secure boot and secure firmware update (SBSFU),
LoRaWAN protocol stack and User Application.

This application only targets the SMT32L476 microcontroller

The FUOTA application Note on I-CUBE-LRWAN (AN5411) gives all the needed information
to make use of the FUOTA I-CUBE-LRWAN part.

a. Refer to the user manual Getting started with the P-NUCLEO-LRWAN2 (UM2587).
b. Refer to the user manual Getting started with the P-NUCLEO-LRWAN3 (UM2612)

UM2073 Rev 10 49/55

System performances UM2073

6

6.1

6.2

50/55

System performances

Memory footprints

The values in the table below are measured for the following configuration of the Keil
compiler (Arm compiler 5.05):

e Optimization: optimized for size level 3

e Debug option: off

e Trace option: off

e Target: P-NUCLEO-LRWAN1 (STM32L073+ SX1272MB2DAS)

Table 44. Memory footprint values for End_Node application

Project Flash (bytes) | RAM (bytes) Description
Application layer 4336 456 Includes all microlib.
LoRa stack 29926 3486 Includes MAC + RF driver.
HAL 10362 1536 -
Utilities 2474 464 ;nncéugjjusee-rvices like system, timeserver, vcom
Total application 52468 6362 Memory footprint for the overall application

Real-time constraints

The LoRa RF asynchronous protocol implies to follow a strict TX/Rx timing recommendation
(see the figure below for a Tx/Rx diagram example). The SX1276MB1MAS expansion board
is optimized for user-transparent low-lock time and fast auto-calibrating operation. The
LoRa Expansion Package design integrates the transmitter startup time and the receiver
startup time constraints.

Figure 20. Rx/Tx time diagram

Start-Tx TimerStart(&RxWindowTimer1) Start-Rx

wu || T
\ \

RF Activity (DIO#5) Tx-ON W Rx-ON

\|

\
DIO#0 | Y. l

Tx-Done Rx-Done

MSv41545V1

UM2073 Rev 10 ‘Yl

UM2073 System performances
Rx window channel start
The Rx window opens the RECEIVE_DELAY1 for 1second (+ 20 ps) or the
JOIN_ACCEPT_DELAY1 for 5 s (x 20 us) after the end of the uplink modulation.
The current scheduling interrupt-level priority must be respected. In other words, all the new
user-interrupts must have an interrupt priority > DIO#n interrupt (see Table 41) in order to
avoid stalling the received startup time.

6.3 Power consumption

3

The power-consumption measurement is done for the Nucleo boards associated with the

SX1276MB1MAS shield.

Measurements setup

e No DEBUG
e No TRACE
e No SENSOR_ENABLED

Measurements results

e Typical consumption in stop mode: 1.3 pA
e Typical consumption in run mode: 8.0 mA

Measurements figures

¢ Instantaneous consumption over 30 s

Figure 21 shows an example of the current consumption against time on a microcontroller of

the STM32L0 Series.

UM2073 Rev 10

51/55

System performances UM2073

Figure 21. STM32L0 current consumption against time

Fle Fdt Tools Datalogger Help @ " Scope v Data Logger

joRuoy) JuaLIngsuf

o
g
=
5

3

23730412 23.732248 YE 3.73 23737757 9 23.741430 3 b 23745102

{ >

Markers & Measurements () @ @ AutoScroll Ranges.. AUTOSCALE Dy & Q

Marker 1 Measurements Between Markers Marker 2
00:00:23.733790 4 Fr 00:00:23.740324
Peak to Peak Charge / Energy

2nAh

Avg Avg Max Avg
1081 uA 1011748 mA 7591867 mA 7.591224 mA 7.591867 mA

2ms/ ~ Duration: 000:01:00 Period:; 1.00352 ms (] Min/Max File: datalogdata52.dlg .. Trigger Data Log Run Button ~

3

52/55 UM2073 Rev 10

UM2073

Revision history

7

3

Revision history

Table 45. Document revision history

Date

Revision

Changes

27-Jun-2016

1

Initial release.

10-Nov-2016

Updated:

— Introduction

— Section 2.1: Overview

— Section 3.2: Features

— Section 5: Example description
— Section 6: System performances

4-Jan-2017

Updated:

— Introduction with reference to the CMWX1ZZABZ-xxx
LoRa module (Murata).

— Section 5.1: Hardware description: 3rd hardware
configuration file added.

— Section 5.2: Package description: AT_Slave
application added.

Added:
— Section 5.5: AT_Slave application description

21-Feb-2017

Updated:

— Introduction with -NUCLEO-LRWAN1 LoRa
expansion board.

— Figure 10: Project files structure

— Section 5.1: Single MCU end-device hardware
description

— Figure 15: I-CUBE-LRWAN structure
— Section 5.4: End_Node application

— Section Table 27.: Switch options for the application's
configuration

— Section 5.5: PingPong application description

— Section 5.6: AT_Slave application description

— Table 29: Memory footprint values for End_Node
application

Added:

— Section 5.2: Split end-device hardware description
(two-MCUs solution)

— Section 5.7Section 5.7: AT_Master application
description.

18-Jul-2017

Added:

— Note to Section 5.4: End_Node application on
maximum payload length allowed

— Note to Section 5.7: AT_Master application
description on the NUCLEO board communication
with expansion board via UART

UM2073 Rev 10 53/55

Revision history

UM2073

54/55

Table 45. Document revision history (continued)

Date Revision Changes
Added:
— New modem reference: expansion board featuring the
RiSINGHF® modem RHFOM003
14-Dec-2017 6 Updated:
— New architecture design (LoRa FSM removed)
— Figure 10: Project files structure
— Figure 13: Operation model
Added:
— New expansion boards
4-Jul-2018 7 — introduction of LORaWAN class B mode
Updated:
— Figure 10 to Figure 17, Table 4, Table 10 to Table 45
Removed:
13-Dec-2018 8 — Class B restriction regarding AT commands in
Section 5.6: AT_Slave application description
Updated:
— P-NUCLEO-LPWANZ2/3 in Introduction and Section
9-Jul-2019 9 5.7: AT_Master application description
— Added Section 2.4.3: End-device class B mode
establishment
Added:
— FUOTA and SBSFU acronyms in Table 1
4-Nov-2019 10 — LoRa Alliance and application notes references in

Section 1.2
— New Section 5.8: FUOTA application description

UM2073 Rev 10

3

UM2073

IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics — All rights reserved

3

UM2073 Rev 10 55/55

