Introduction

The EVALKITSTKNX is a hardware platform to evaluate and to develop applications for the STKNX miniature transceiver with the STM32F103 microcontroller.

This document gives an overview of the software architecture and describe how to use this software with the evaluation kit.

Figure 1. STKNX evaluation board
Contents

1 Overview ................................................................. 3
  1.1 EVALKITSTKNX development platform overview .................. 3
  Board description ...................................................... 3
  1.2 Development platform spirit ....................................... 4

2 Software overview and setup ........................................ 5
  2.1 Software components ............................................. 5
  2.2 Software overview ................................................ 6
  STM32F103RB-STKNX software description .......................... 6
  2.3 Software prerequisites .......................................... 6
  2.4 Install and build firmware with Ac6 System Workbench ............ 7

3 Setup and demonstration examples ................................... 10
  3.1 Hardware prerequisites .......................................... 10
  3.2 Setup a simple KNX network ...................................... 11

4 Revision history .......................................................... 14
1 Overview

1.1 EVALKITSTKNX development platform overview

Board description

Figure 2. Board description
1.2 Development platform spirit

- The EVALKITSTKNX has been developed in the spirit of the STM32™ Nucleo boards.
- Expansion boards with additional functionality can be plugged directly on top of the Eval Kit development board or stacked on another expansion board.

Figure 3. Building blocks
2 Software overview and setup

2.1 Software components

- The EVALKITSTKNX comes with a complete software package. A sample application is provided.
- Access to hardware features is simplified with the utilization of the STM32 Standard Peripheral Libraries (SPL).
- A demonstration version of the TAPKO’s KNX protocol stack is provided as a binary file.
- The software package is compatible with two free GCC-based IDEs: Ac6 System Workbench for the STM32 and Atollic TrueSTUDIO®. Versions of these two IDEs exist for the Linux® and Windows OS.

![Figure 4. System architecture](image-url)
2.2 Software overview

STM32F103RB-STKNX software description

- This software, running on the STM32F103, demonstrates the STKNX capabilities.
- It is built on the top of the STM32 Standard Peripheral Libraries (SPL) that eases access to STM32 features.
- It uses a demonstration version of the TAPKO KNX protocol stack.
- Example to demonstrate actuator and sensor.

![Figure 5. Overall software architecture](image)

2.3 Software prerequisites

- A Linux computer or a Windows computer with one of the supported development toolchains:
  - Atollic: TrueSTUDIO (Link)
  - Ac6 System Workbench for STM32: SW4STM32 (Link)
- Or a Mac OSX computer with Ac6 System Workbench for STM32
- EVALKITSTKNX firmware example
- ST-LINK/V2-1 USB driver (Link)
- ST-LINK/V2-1 firmware upgrade (Link)
- KNX ETS5 (engineering tool software) application (Link)
2.4 Install and build firmware with Ac6 System Workbench

1. Download the STM32F103RB-STKNX package and extract it in your file system.

Open the AC6 System Workbench for the STM32 and when requested to select a directory as workspace, browse to:
<your path>/STM32F103RB-STKNX/Project/STM32F10x_STKNX_LedLevel/SW4STM32

2. In the Project Explorer panel, right click and select Import → General → “Existing Projects into Workspace”.

Figure 6. Workspace selection

Figure 7. Import project
3. In the **Import** windows, click on **Browse** and on **OK** in the next window.

   **Figure 8. Select project directory**

4. The project to import has been automatically selected. You can now click on **Finish**. The project is imported.

   **Figure 9. Select project to import**
5. Select the project name in the Project Explorer, and click on the Clean icon or select Clean Project in the contextual menu.

6. Click on the build icon or select Clean Project in the contextual menu.

**Figure 10. Console view**

7. Once build is finished, you can start debugging the project click on the Clean icon or select Debug As → Embedded C/C++ Application in the contextual menu.

Or you can drag and drop the binary (EvalKitSTKNX_LedLevel.bin), available in Debug, to the virtual drive that is mounted when you connect the EVALKITSTKNX board to your computer. The name of this virtual drive is STKNX.
3 Setup and demonstration examples

3.1 Hardware prerequisites

- One EVALKITSTKNX board
- One KNX sensor: Apricum TAI-KNX 4

Figure 11. Apricum TAI-KNX 4

- One KNX power supply

Figure 12. KNX power supply

- One KNX TP interface (USB-KNX interface)

Figure 13. KNX TP interface

- A type A to type B USB cable

Figure 14. USB cable

- KNX cable

Figure 15. KNX cable
3.2 Setup a simple KNX network

1. Setup the KNX network in accordance to description in Figure 16.

![Figure 16. KNX demonstration network](image)

2. In the ETS5 application, import the project STKNX_LED_Level_Demo.knxproj available in the:
   STM32F103RB-STKNX/Project/STM32F10x_STKNX_LedLevel/ETS5_ProjectFile
3. Download the full configuration in both STI and EVALKITSTKNX devices.

![Figure 17. ETS5 application screenshot](image]

4. When asked in the ETS5 application, press the “KNX PROG” button of the EVALKITSTKNX board.

![Figure 18. KNX PROG button on EVALKITSTKNX board](image]
5. Tests:
   - ON button of the sensor is used to increase the number of the LED switched on.
   - OFF button of the sensor is used to decrease the number of the LED switched on.

**Figure 19. Test description**
## Revision history

Table 1. Document revision history

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>23-Jul-2018</td>
<td>1</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>